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Abstract. In real networks complex topological features are often associated
with a diversity of interactions as measured by the weights of the links. Moreover,
spatial constraints may also play an important role, resulting in a complex
interplay between topology, weight, and geography. In order to study the
vulnerability of such networks to intentional attacks, these attributes must
therefore be considered along with the topological quantities. In order to tackle
this issue, we consider the case of the worldwide airport network, which is a
weighted heterogeneous network whose evolution and structure are influenced by
traffic and geographical constraints. We first characterize relevant topological and
weighted centrality measures and then use these quantities as selection criteria
for the removal of vertices. We consider different attack strategies and different
measures of the damage achieved in the network. The analysis of weighted
properties shows that centrality driven attacks are capable of shattering the
network’s communication or transport properties even at a very low level of
damage in the connectivity pattern. The inclusion of weight and traffic therefore
provides evidence for the extreme vulnerability of complex networks to any
targeted strategy and the need for them to be considered as key features in
the finding and development of defensive strategies.
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1. Introduction

Network representation applies to large communication infrastructures (the Internet, e-
mail networks, the World-Wide-Web), transportation networks (railroads, airline routes),
biological systems (gene and/or protein interaction networks), and to a variety of social
interaction structures [1]–[4]. Very interestingly, many real networks share a certain
number of topological properties. For example, most networks are small worlds [5]:
the average topological distance between nodes increases very slowly (logarithmically
or even slower) with the number of nodes. Additionally, ‘hubs’ (nodes with very large
degree k compared to the mean of the degree distribution P (k)) are often encountered.
More precisely, the degree distributions exhibit in many cases heavy tails often well
approximated for a significant range of values of degree k by a power-law behaviour
(P (k) ∼ k−γ) [1, 2] from which the name scale-free networks originated. Real networks
are however not only specified by their topology, but also by the dynamical properties
of processes taking place on them, such as the flow of information or the traffic among
the constituent units of the system. In order to account for these features, the edges are
endowed with weights: for example, the air transportation system can be represented by a
weighted network in which the vertices are commercial airports and the edges are non-stop
passenger flights. In this context, a natural definition of link weights arises, such as the
capacities (in terms of number of passengers) of the corresponding flights. Data on real
weighted networks (communication and infrastructure networks, scientific collaboration
networks, metabolic networks, etc) have been recently studied, giving particular attention
to the relation between weight properties and topological quantities [6]–[8]. These findings
have also generated several studies concerning modelling approaches in which the mutual
influence of weights and topology plays an explicit role in determining the network’s
properties [9]–[13].
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One of the most striking effects of the complex topological features of networks
concerns their vulnerability to attacks and random failures. Compared to ‘regular’ d-
dimensional lattices and random graphs with a bounded degree distribution, heavy tailed
networks can tolerate very high levels of random failure [14, 15]. On the other hand,
malicious attacks on the hubs can swiftly break the entire network into small components,
providing a clear identification of the elements which need the highest level of protection
against such attacks [16, 17]. In this context it is therefore important to study how the
introduction of traffic and geographical properties may alter or confirm the above findings.
In particular we are interested in two main questions:

(i) which measures are best suited to assess the damage suffered by weighted networks
and to characterize the most effective attack (protection) strategies;

(ii) how traffic and spatial constraints influence the system’s robustness.

In this paper, our attention is therefore focused on weighted networks with geographical
embedding and we analyse the structural vulnerability with respect to various centrality
driven attack strategies. In particular, we propose a series of topological and weight-
dependent centrality measures that can be used to identify the most important vertices of
a weighted network. The traffic integrity of the whole network depends on the protection
of these central nodes and we apply these considerations to a typical case study, namely
the worldwide airport network. We find that weighted networks are even more vulnerable
than expected in that the traffic integrity is destroyed when the topological integrity of
the network is still extremely high. In addition all attack strategies, both local and
non-local, perform with almost the same efficacy. The present findings may help in
providing a quantitative assessment of the most vulnerable elements of the network and
the development of adaptive reactions aimed at contrasting targeted attacks.

2. Network data set

In the following we use the worldwide air transportation network (WAN), built from the
International Air Transportation Association database (www.iata.org). This database
contains the direct flight schedules and available seat data from the vast majority of the
world’s airlines for the year 2002. The network obtained from the IATA database contains
N = 3880 interconnected airports (vertices) and 18 810 direct flight connections (edges).
This corresponds to an average degree of 〈k〉 = 9.7, while the maximal one is kmax = 318
showing a strong heterogeneity of the degrees. This is confirmed by the fact that the degree
distribution can be described by the functional form P (k) ∼ k−γf(k/kc), where γ � 2.0
and f(k/kc) is an exponential cut-off which finds its origin in physical constraints on the
maximum number of connections that can be handled by a single airport [18, 19]. The
WAN is a small world: the average shortest path length, measured as the average number
of edges separating any two nodes in the network, is 〈�〉 = 4.4. The data contained
in the IATA database allow one to go beyond the simple topological representation of
the airport connections by obtaining a weighted graph [20] that includes the traffic wij

and actual length dij of each link, specifying respectively the number of available seats
in flights between cities i and j during the year 2002 and the Euclidean distance dij

specifying the route length between cities i and j [6, 19, 21]. The weights are symmetric
(wij = wji) for the vast majority of edges, so we work with a symmetric undirected graph.
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In addition to the very large degree fluctuations, both the weights and the strength are
broadly distributed [6, 8] adding another level of complexity in this network.

3. Measures of centrality

A key issue in the characterization of networks is the identification of the most central
nodes in the system. Centrality is however a concept that can be quantified by various
measures. The degree is a first intuitive and local quantity that gives an idea of the
importance of a node. Its natural generalization to a weighted graph is given by the
strength of vertices defined for a node i as [22, 6]

si =
∑

j∈V(i)

wij, (1)

where the sum runs over the set V(i) of neighbours of i. In the case of the air transportation
network it quantifies the traffic of passengers handled by any given airport, with both a
broad distribution and strong correlations with the degree, of the form s(k) ∼ kβs with
βs ≈ 1.5 [6] (a random attribution of weights would lead to s ∼ k and thus βs = 1).

Since space is also an important parameter in this network, other interesting quantities
are the distance strength Di and outreach Oi of i:

Di =
∑

j∈V(i)

dij, Oi =
∑

j∈V(i)

wijdij , (2)

where dij is the Euclidean distance between i and j. These quantities describe the
cumulated distances of all the connections from the airport considered and the total
distance travelled by passengers from this airport, respectively. They both display
broad distributions and grow with the degree as D(k) ∼ kβD with βD ≈ 1.5 [21], and
O(k) ∼ kβO , with βO ≈ 1.8, showing the existence of important correlations between
distances, topology, and traffic.

Such local measures however do not take into account non-local effects, such as the
existence of crucial nodes which may have small degree or strength but act as bridges
between different parts of the network. In this context, a quantity widely used for
investigating node centrality is the so-called betweenness centrality (BC) [23], which
counts the fraction of shortest paths between pairs of nodes that passes through a given
node. More precisely, if σhj is the total number of shortest paths from h to j and σhj(i) is
the number of these shortest paths that pass through the vertex i, the betweenness of the
vertex i is defined as bi =

∑
h,j σhj(i)/σhj, where the sum is over all the pairs with j �= h.

Key nodes are thus part of more shortest paths within the network than less important
nodes.

In weighted networks, unequal link capacities make some specific paths more
favourable than others in connecting two nodes of the network. It thus seems natural to
generalize the notion of betweenness centrality through a weighted betweenness centrality
in which shortest paths are replaced with their weighted versions. A straightforward way
to generalize the hop distance (number of traversed edges) in a weighted graph consists
in assigning to each edge (i, j) a length �ij that is a function of the characteristics of the
link (i, j). For example for the WAN, �ij should involve quantities such as the weight wij

or the Euclidean distance dij between airports i and j. It is quite natural to assume that
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the effective distance between two linked nodes is a decreasing function of the weight of
the link: the larger the flow (traffic) on a path, the more frequent and the faster will be
the exchange of physical quantities (e.g. information, people, goods, energy). In other
words, we consider that the ‘separation’ between nodes i and j decreases as wij increases.
While a first possibility would be to define the length of an edge as the inverse of the
weight, �i,j = 1/wij, we propose to also take into account the geographical embedding of
the network, through the following definition:

�ij =
dij

wij
. (3)

It is indeed reasonable to consider two nodes of the networks as further apart if their
geographical distance is larger; however, a large amount of traffic allows one to decrease
the ‘effective’ distance by providing more frequent travel possibilities.

For any two nodes h and j, the weighted shortest path between h and j is the one for
which the total sum of the lengths of the edges forming the path from h to j is minimum,
independently of the number of traversed edges. We denote by σw

hj the total number of
weighted shortest paths from h to j and by σw

hj(i) the number of them that pass through
the vertex i; the weighted betweenness centrality (WBC) of the vertex i is then defined
as

bw
i =

∑

h,j

σw
hj(i)

σw
hj

, (4)

where the sum is over all the pairs with j �= h.4 The weighted betweenness represents a
trade-off between the finding of ‘bridges’ that connect different parts of a network, and
taking into account the fact that some links carry more traffic than others. We note that
the definition (4) is very general and can be used with any definition of the effective length
of an edge �ij .

Centrality measure correlations

The probability distributions of the various definitions of centrality are all characterized
by heavy tailed distributions. In addition a significant level of correlation is observed:
vertices that have a large degree have also typically large strength and betweenness. When
a detailed analysis of the different rankings is done, however, we observe that they do not
coincide exactly. For example, in the case of the WAN the most connected airports
do not necessarily have the largest betweenness centrality [18, 19, 21]. Large fluctuations
between centrality measures also appear when inspecting the list of the airports ranked by
using different definitions of centrality including weighted ones: strikingly, each definition
provides a different ranking. In addition, some airports which are very central according
to a given definition become peripheral according to another criterion. For example,
Anchorage has a large betweenness centrality but ranks only 138th and 147th in terms of
degree and strength, respectively. Similarly, Phoenix or Detroit have large strength but
low ranks (>40) in terms of degree and betweenness.

4 As already noted by Brandes, the algorithm proposed in [26] can be easily extended to weighted graphs, using
in addition Dijkstra’s algorithm [27] which provides a way to compute weighted shortest paths in at most O(EN)
where E is the number of edges.
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Table 1. Similarity between the various rankings as measured by Kendall’s τ .
For random rankings of N values, the typical τ is of order 10−2.

k D s O BC WBC

Degree k 1 0.7 0.58 0.584 0.63 0.39
Distance strength D 0.7 1 0.56 0.68 0.48 0.23
Strength s 0.58 0.56 1 0.83 0.404 0.24
Outreach O 0.584 0.68 0.83 1 0.404 0.21
Betweenness BC 0.63 0.48 0.404 0.404 1 0.566
Weighted BC 0.39 0.23 0.24 0.21 0.566 1

While previous analyses have focused on the quantitative correlations between the
various centrality measures, here we focus on ranking differences according to the various
centrality measures. A quantitative analysis of the correlations between two rankings of
n objects can be done using rank correlations such as Kendall’s τ [24]:

τ =
nc − nd

n(n − 1)/2
(5)

where nc is the number of pairs whose order does not change in the two different lists and
nd is the number of pairs whose order was inverted. This quantity is normalized between
−1 and 1: τ = 1 corresponds to identical ranking while τ = 0 is the average for two
uncorrelated rankings and τ = −1 is a perfect anticorrelation.

Table 1 gives the values of τ for all the possible pairs of centrality rankings. For
N = 3880, two random rankings yield a typical value of ±10−2, so even the smallest
observed τ = 0.21 is a sign of a strong correlation. (All the values in this table were
already attained for a sublist of only the first n most central nodes, with n ≈ 500.)
Remarkably, even a highly non-local quantity such as the BC is strongly correlated with
the simplest local, non-weighted measure given by the degree. The weighted betweenness
is the least correlated with the other measures (except with the betweenness), because �ij

involves ratios of weights and distances.
Another important issue concerns how the centrality ranking relates to the

geographical information available for infrastructure networks such as the WAN. Figure 1
displays the geographical distribution of the world’s fifteen most central airports ranked
according to different centrality measures. This figure highlights the properties and biases
of the various measures: on one hand, topological measures miss the economical dimension
of the worldwide airport while weighted measures reflect traffic and economical realities.
Betweenness based measures on the other hand pinpoint the most important nodes in
each geographical zone. In particular, the weighted betweenness appears as a balanced
measure which combines traffic importance with topological centrality, leading to a more
uniform geographical distribution of the most important nodes.

4. Vulnerability of weighted networks

4.1. Damage characterization

The example of the WAN enables us to raise several questions concerning the vulnerability
of weighted networks. The analysis of complex network robustness has indeed been
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Figure 1. Geographical distribution of the world’s 15 most central airports
ranked according to different centrality measures. Topological measures miss
the economical dimension of the worldwide airport. In contrast, the traffic
aspect shows a clear dominance of North America. Non-local measures pinpoint
important nodes in each geographical zone.

largely investigated in the case of unweighted networks [16, 14, 15, 25]. In particular, the
topological integrity of the network Ng/N0 has been studied, where Ng is the size of the
largest component after a fraction g of vertices have been removed and N0 is the size of the
original (connected) network. When Ng � O(1), the entire network has been destroyed5.

Damage is generally studied for increasingly larger fractions g of removed nodes in
the network, where the latter are chosen following different strategies. Heterogeneous
networks with a scale-free degree distribution are robust against situations in which the
damage affects nodes randomly. On the other hand, the targeted destruction of nodes
following their degree rank is extremely effective, leading to the total fragmentation of the
network at very low values of g [14]–[16]. Moreover, the removal of the nodes with largest
betweenness typically leads to an even faster destruction of the network [25].

In the case of weighted networks, the quantification of the damage should consider also
the presence of weights. In this perspective, the largest traffic or strength still carried by a
connected component of the network is probably an important indicator of the network’s
functionality. For this reason, we define new measures for the network’s damage:

Is(g) =
Sg

S0
, IO(g) =

Og

O0
, ID(g) =

Dg

D0
, (6)

where S0 =
∑

i si, O0 =
∑

i Oi and D0 =
∑

i Di are the total strength, outreach,
and distance strength in the undamaged network and Sg = maxG

∑
i∈G si, Og =

maxG

∑
i∈G Oi, and Dg = maxG

∑
i∈G Di correspond to the largest strength, outreach,

or distance strength carried by any connected component G in the network, after the
removal of a density g of nodes. These quantities measure the integrity of the network
with respect to either strength, outreach, or distance strength, since they refer to the
relative traffic or flow that is still handled in the largest operating component of the
network.

5 Since the topological integrity focuses only on the largest component and overlooks the connectivity of smaller
components, one can also monitor the average inverse geodesic length, also called the efficiency [28].
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Figure 2. Effect of different attack strategies on the size of the connected giant
component (top) and on the outreach (bottom).

4.2. Variable-ranking attack strategies

In order to evaluate the vulnerability of the air transportation network WAN, we study
the behaviour of damage measures in the presence of a progressive random damage and of
different attack strategies. Similarly to the simple topological case, weighted networks are
inherently resilient to random damages. Even at a large density g of removed nodes,
Ng/N0 and all integrity measures decrease mildly and do not seem to have a sharp
threshold above which the network is virtually destroyed. This is in agreement with the
theoretical prediction for the absence of a percolation threshold in highly heterogeneous
graphs [14, 15]. Very different is the scenario corresponding to the removal of the most
central nodes in the network. In this case, however, we can follow various strategies
based on the different definitions for the centrality ranking of the most crucial nodes:
nodes can indeed be eliminated according to their rank in terms of degree, strength,
outreach, distance strength, topological betweenness, and weighted betweenness. In
addition, we consider attack strategies based on a recursive recalculation of the centrality
measures on the network after each damage. This has been shown to be the most effective
strategy [25], as each node removal leads to a change in the centrality properties of the
other nodes. Such a procedure is somewhat akin to a cascading failure mechanism in
which each failure triggers a redistribution on the network and changes the next most
vulnerable node.

In figure 2 we report the behaviour of Ng/N0 and of the outreach integrity IO(g)
for all cases. As expected, all strategies lead to a rapid breakdown of the network
with a very small fraction of removed nodes. More precisely, the robustness level of the
network depends on the quantity under scrutiny. First, the size of the giant component
decreases faster upon removal of nodes which are identified as central according to global
(i.e. betweenness) properties, instead of local ones (i.e. degree, strength), showing that, in
order to preserve the structural integrity of a network, it is necessary to protect not only
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the hubs but also strategic points such as bridges and bottleneck structures. Indeed,
the betweenness, which is recomputed after each node removal, is the most effective
quantity for pinpointing such nodes [25]. The weighted betweenness combines shortest
paths and weights and leads to an intermediate result: some of the important topological
bridges carry a small amount of traffic and are therefore part of more shortest paths
than weighted shortest paths. These bridges have therefore a lower rank according to
the weighted betweenness. The weighted betweenness is thus slightly less efficient for
identifying bridges. Finally, we note that all locally defined quantities yield a slower
decrease of Ng and that the removal of nodes with the largest distance strength is rather
effective since it targets nodes which connect very distant parts of the network.

Interestingly, when the attention shifts on the behaviour of the integrity measures, one
finds a different picture in which all the strategies achieve the same level of damage (the
curves of Is(g) and ID(g) present shapes very close to the one of IO(g)). Most importantly,
their decrease is even faster and more pronounced than for topological quantities: for
Ng/N0 still of the order of 80%, the integrity measures are typically smaller than 20%. This
emphasizes how the purely topological measure of the size of the largest component does
not convey all the information needed. In other words, the functionality of the network can
be temporarily jeopardized in terms of traffic even if the physical structure is still globally
well connected. This implies that weighted networks appear more fragile than would be
thought from considering only topological properties. All targeted strategies are very
effective in dramatically damaging the network, reaching the complete destruction at a
very small threshold value of the fraction of removed nodes. In this picture, the maximum
damage is achieved still by strategies based on non-local quantities such as the betweenness
which lead to a very fast decrease of both topological and traffic related integrity measures.
On the other hand, the results for the integrity show that the network may unfortunately
be substantially harmed also by using strategies based on local quantities more accessible
and easy to calculate.

4.3. Single-ranking attack strategies

The previous strategies based on a recursive recalculation of the centrality measures on
the network are however computationally expensive and depend upon a global knowledge
of the effect of each node removal. It is therefore interesting to quantify the effectiveness
of such a strategy with respect to the more simple use of the ranking information obtained
for the network in its integrity. In this case the nodes are removed according to their initial
ranking calculated for the undamaged network. As shown in figure 3, successive removals
of nodes according to their initial outreach or BC lead to a topological breakdown of
the network which is maximized in the case of recalculated quantities [25]. This effect
is very clear in the case of global measures of centrality such as the betweenness that
may be altered noticeably by local rearrangements. When traffic integrity measures
are studied, however, differences are negligible (figure 3, bottom curves): a very fast
decrease of the integrity is observed for all strategies, based either on initial or recalculated
quantities. The origin of the similarity between the two strategies can be traced back by
studying how much the centrality ranking of the network vertices is scrambled during
the damage process. In order to quantify the reshuffling of the ranking of the nodes
according to various properties, we study the previously used rank correlation as measured
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Figure 3. Removal of nodes according to the ranking calculated at the beginning
of the process (empty symbols) or to recalculated rankings (full symbols). The
decreases of Ng and IO(g) are comparable for both cases. Inset: initial decrease
of IO(g) for very small values of g.

by Kendall’s τ , computed between the rankings of the nodes according to a given property
before and after each removal. In all cases, τ remains very close to 1, showing that
the reshuffling caused by any individual removal remains extremely limited. Slightly
smaller values are observed when we compare the rankings of the betweenness or of
the weighted betweenness. This can be understood since such quantities are non-local
and the betweennesses is more prone to vary when any node in the network is removed.
This evidence brings both good and bad news concerning the protection of large scale
infrastructures. On one hand, the planning of an effective targeted attack needs only to
gather information on the initial state of the network. On the other hand, the identification
of crucial nodes to protect is an easier task that is somewhat weakly dependent on the
attack sequence.

4.4. Geographical heterogeneity

As shown in figure 1, various geographical zones contain different numbers of central
airports. The immediate consequence is that the different strategies for node removal have
different impacts in different geographical areas. Figure 4 highlights this point by showing
the decrease of two integrity measures representative of topological and traffic integrity.
These quantities were measured on subnetworks corresponding to the six following regions:
Africa, Asia, Europe, Latin and North America, and Oceania. Figure 4 displays the case
of a removal of nodes according to their strength (other removal strategies lead to similar
data). While the curves of topological damage are rather intertwined, the decrease of
the different integrity measures is much faster for North America, Asia, and Europe than
Africa, Oceania, and Latin America; in particular the removal of the first nodes does not
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Figure 4. Geographical effect of the removal of nodes with largest strength. The
integrity decreases strongly in regions such as North America, while a ‘delay’ is
observed for the zones with smaller initial outreach or strength.

affect these last three zones at all. Such plots demonstrate two crucial points. First,
various removal strategies damage differently the various geographical zones. Second, the
amount of damage according to a given removal strategy strongly depends on the precise
measure used to quantify the damage. More generally, these results lead to the idea that
large weighted networks can be composed from different subgraphs with very different
traffic structures and thus different responses to attacks.

5. Conclusions

In summary, we have identified a set of different but complementary centrality measures
for weighted networks. The various definitions of centrality are correlated but lead to
different rankings since different aspects (weighted or topological, and local or global)
are taken into account. The study of the vulnerability of weighted networks to various
targeted attack strategies shows that complex networks are more fragile than expected
from the analysis of topological quantities when the traffic characteristics are taken into
account. In particular, the network’s integrity in terms of traffic carried is vanishing
significantly before the network is topologically fragmented. Moreover, we have compared
attacks based on initial centrality ranking with those using quantities recalculated after
each removal, since any modification of the network (e.g. a node removal) leads to a partial
reshuffling of these rankings. Strikingly, and in contrast to the case for purely topological
damage, the integrity of the network is harmed in very similar manners in the two cases.
All these results warn about the extreme vulnerability of the traffic properties of weighted
networks, and signals the need to pay particular attention to weights and traffic in the
design of protection strategies.
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