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Abstract

We study metapopulation models for the spread of epidemics in which different subpopulations (cities) are connected by fluxes of
individuals (travelers). This framework allows one to describe the spread of a disease on a large scale and we focus here on the
computation of the arrival time of a disease as a function of the properties of the seed of the epidemics and of the characteristics of the
network connecting the various subpopulations. Using analytical and numerical arguments, we introduce an easily computable quantity
which approximates this average arrival time. We show on the example of a disease spread on the world-wide airport network that this
quantity predicts with a good accuracy the order of arrival of the disease in the various subpopulations in each realization of epidemic
scenario, and not only for an average over realizations. Finally, this quantity might be useful in the identification of the dominant paths

of the disease spread.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Epidemiology; Complex networks; World airport network

1. Introduction

In our modern world, the existence of various transpor-
tation means has strongly affected the way in which
infectious diseases spread among humans. In fact, it has
become unavoidable to take into account in the study of
the geographical spread of epidemics the various long-
range heterogeneous connections typical of modern trans-
portation networks. This naturally gives rise to a very
complicated evolution of epidemics characterized by
heterogeneous outbreaks patterns (Cohen, 2000; Cliff and
Haggett, 2004; Colizza et al., 2006a,b), as recently
documented at the world-wide level in the SARS case
(http://www.who.int/csr/sars/en).

Such complex phenomenon can be tackled at different
granularity levels, including very detailed agent-based
simulations, complicated social and spatial structures,
complex contact networks, etc. (Anderson and May,
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1992; Hethcote and Yorke, 1984; Kretzschmar and Morris,
1996; Keeling, 1999; Pastor-Satorras and Vespignani,
2001a,b; May and Lloyd, 2001; Ferguson et al., 2003;
Meyers et al., 2005; Chowell et al., 2003; Eubank et al.,
2004). In particular, a very important class of models in
modern epidemiology describes the propagation between
different interconnected subpopulations with the help of
the so-called metapopulation models. In these models, the
disease spreads inside each subpopulation (often assumed
homogeneously mixed) and is transmitted between differ-
ent subpopulations by a “coupling” depending on the
model. In the case of human infectious diseases, this
coupling is caused by the movements of individuals and
depends on the transportation means relevant at the spatial
scale chosen for the description of the spread.

In the context of large scale spread, air-transportation
represents a major channel of epidemic propagation, as
pointed out in the modeling approach to global epidemic
diffusion of Rvachev and Longini (1985) (Baroyan et al.,
1969) and by similar studies on the behavior of specific
outbreaks such as pandemic influenza, HIV or SARS
(Longini, 1988; Grais et al., 2003; Brownstein et al., 2006;
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Flahault and Valleron, 1992; Hufnagel et al., 2004; Colizza
et al., 2006a,b, 2007a). In this case, the relevant
metapopulation model considers as subpopulations the
inhabitants of the various world cities and the air travel of
infectious individuals results in the spread of the disease
from one city to another.

Taking into account the global airline transportation
infrastructure in metapopulation models has recently
become possible thanks to the availability and analysis of
large scale databases (Barrat et al., 2004; Guimera et al.,
2005), and to the always increasing computer capacities.
The word wide airport network (WAN) is described by a
complex weighted graph, in which the airports are the
vertices and the weighted links represent the presence of
direct flight connections among them (the weights corre-
sponding to the number of available seats on each
connection). This network, which consists of more than
3000 nodes and 18000 links, displays small-world proper-
ties as well as strongly heterogeneous topology and traffic
properties. For many different dynamical phenomena
occurring on complex networks (Albert and Barabasi,
2002; Dorogovtsev and Mendes, 2003; Pastor-Satorras and
Vespignani, 2004; Boccaletti et al., 2006), the presence of
such emerging properties has been shown to imply the
breakdown of the standard results. This is particularly true
for epidemiology (Pastor-Satorras and Vespignani,
2001a,b; May and Lloyd, 2001) where classical results
about epidemic thresholds do not apply if the heterogeneity
of the network is too large. This therefore calls for a
systematic investigation of the epidemic spread in the
framework of metapopulation models defined on complex
networks such as the world airport network. Such
investigations can be carried out in various parallel
and complementary directions. On the one hand, the
availability of large scale data sets has recently allowed for
the development of tools for intensive computational
epidemiology (Colizza et al., 2006a,b, 2007a), which
can be used for example for scenario evaluations (Colizza
et al.,, 2007a) and risk assessment. On the other hand,
these computational tools can also be used for the study
of fundamental properties of these metapopulation
models, and to understand the main mechanisms of the
disease spread and the role of the various complex
properties of the transport network. In particular, Colizza
et al. (2006a, b) have investigated how the properties of the
global air travel network affect the heterogeneity and the
predictability of spreading patterns. Very recently more-
over, the effect on the epidemic threshold of both the
network properties and the endogenous reaction was
studied using analytical and numerical tools typical of
statistical physics (Colizza et al., 2007b; Colizza and
Vespignani, 2007).

In this paper, we tackle the problem of determining the
arrival time of an epidemics spread in a metapopulation
model consisting in subpopulations (cities) coupled by a
transportation network. We stress that this study is
different from the ones of Crépey et al. (2006) and

Barthélemy et al. (2005), in which each node of the
network is an individual (and not a full subpopulation),
and where links represent the possibility of the contamina-
tion between individuals. The main result of the present
paper is to exhibit an easily computable quantity depend-
ing only on the networks characteristics and which
approximates the average arrival time. This quantity is
only an approximation of the exact arrival time but we
show on the example of the world-wide disease spread that
it allows one to rank the cities according to the arrival of
the disease.

The paper is organized as follows. We present in Section
2 the Rvachev-Longini metapopulation model for the
epidemics spreading, and in Section 3, we study the arrival
time of a disease for simple topologies such as a one-
dimensional line of cities. We then extend these results
to the case of complex networks and we propose a quantity
which is a good approximation to the average arrival
time in the various nodes or subpopulations connected
through an arbitrary network of connections. We
finally show in Section 4, using numerical simulations of
epidemic spreading on the world-WAN, that our
approximation is not only valid for the average arrival
time, but is also able to give the order of arrival of the
disease in the various cities with a good precision for each
spreading realization. A brief account of some of the
results presented here can be found in Gautreau et al.
(2007).

2. The Rvachev-Longini metapopulation model

The Rvachev-Longini (1985) model was initially intro-
duced to describe the spread of the 1968-1969 Hong Kong
flu at the world-wide level. This metapopulation model
uses two different levels of description: the various
subpopulations are given by the inhabitants of the 58 large
cities corresponding to the 58 largest airports, and
homogeneous mixing is assumed at the individual city
level. In this model, the propagation of the disease from
one subpopulation to another is due to individuals
traveling on the air-transportation network between these
airports (Rvachev and Longini, 1985).

The evolution of the number I; of infectious individuals
in each city i can thus be written as the sum of two terms

0 = K({X:}) + QR (1)

where the first term K of the rhs describes the (epidemic)
reaction process inside each subpopulation (city), due to
the interaction of individuals in the various possible states
X (X=S8,L,1,R,... depending on the population com-
partimentalization into individuals who are susceptible,
latent, infected, recovered, ....). The second term of the rhs
represents the incoming and outgoing fluxes of infectious
individuals to and from other cities j. This model therefore
considers a simplified mechanistic approach with a
Markovian assumption in which individuals are not
labeled according to their original subpopulation, and
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where at each time step the same traveling probability
applies to all individuals in the subpopulation, without any
memory of their previous locations (Rvachev and Longini,
1985; Hufnagel et al., 2004; Colizza et al., 2006a, b). The
travel term Q depends therefore on the air-transportation
network: if the weight wy; represents the number of
passengers traveling from i to j per unit of time (w; =0
if there is no direct connection between i and j), and
N; the population of the city i, it is reasonable to assume
that the probability per unit time that an individual in
city i travels to city j is given by w;/N,. In the case
of a simple SI model, the time evolution of the number

I; of infectious individuals in city i is therefore
given by
N,’ — Ij(t) Wii Wii
od; = () ———= L=y 11, 2
e Y AW @)

where Z is the transmission rate. Similar equations can be
written for the other compartments in the various possible
models (SIS, SIR, ...), by modifying the first term K of the
rhs in Eq. (2) accordingly.

This original formulation has an important drawback.
Indeed, it is deterministic, since it considers only expecta-
tion values, while both epidemic spreading and travel of
individuals are inherently stochastic processes. The number
of infectious individuals is then treated as a continuous
variable and, even if the initial condition (at ¢ = 0) of the
spreading consists in one single infectious individual in a
given city iy, all cities have a non-zero density of infectious
at any time 7>0. In order to tackle the problem of the
arrival time of the spread in the various subpopulations,
this pathology has to be accounted for. A first possibility,
already presented by Rvachev and Longini (1985), to avoid
this unrealistic situation consists in considering that each
travel term w;;1;/ N, is present only when w;/;/N;>1,i.e. in
putting a threshold term 0(w;;I;/N; — 1), corresponding to
the fact that the expected number of travelers has to be
larger than unity. In this approach, however, the “quan-
tity” of individuals traveling is still a continuous variable.
Another possibility, which consists in treating all quantities
as integers and going back to the microscopic stochastic
processes, can be necessary for detailed modeling purposes
(Colizza et al., 2007a). This solution is, however, compu-
tationally quite demanding, so that we will consider in all
numerical simulations performed in this paper an inter-
mediate framework: the travel term is treated as in the
stochastic generalization described by Colizza et al.
(2006a,b) (sece also Hufnagel et al., 2004), where the
number of individuals traveling on each connection is an
integer variable randomly extracted at each time step.
More precisely, each of the [I;] (the integer part of I;)
infectious individuals has a probability p; = w;At/N; to go
from i to j in the time interval Az. The numbers &; of
infectious individuals traveling on the various connections
existing from i to other cities j are given by a set of
stochastic variables which follow then a multinomial

distribution (Colizza et al., 2006b):
[:]
1- 3, LSS

<I1»y <1 —D.p
J J

where the mean and variance of the stochastic variables
are (E;([1;])) = wyAdI;]/N; and Var(&;) = (w;/Nj)At(1—
(w;i/Ni)At)[1;]. On the other hand, the endogenous growth
(inside each city) will be treated for simplicity as a
deterministic evolution of densities of infectious and
susceptible individuals. We have moreover checked nu-
merically that the inclusion of stochastic effects described
by noise terms in the evolution equations (Colizza et al.,
2006a, b) do not change our results. Finally, we will present
the results essentially for the simple SI model, since arrival
times will basically depend on the first stage of the disecase
development. We have, however, carried out numerical
simulations as well in the SIS and SIR case, with consistent
results (see Section 4).

It is interesting to note that in realistic cases such as a
disecase propagation on the WAN, most weights are
symmetric (w; = wjy) (Barrat et al., 2004) but the probabi-
lities of travel from one city to another are not (p; #p;;). The
travel therefore effectively occurs as a random diffusion on a
directed weighted complex network. Moreover, an important
difference with the case of random walks on complex
networks (Noh and Rieger, 2004) comes from the endogen-
ous evolution inside each subpopulation. Indeed, as soon as
an infectious individual reaches a city, a contamination
process starts and the number of random infectious walkers
is not constant. Such an intricate behavior has also
important consequences on the existence of epidemic
thresholds, as studied recently by Colizza et al. (2007b).

As a last general remark, we note that the simple
topological distance between nodes should naturally play a
role in the context of arrival times, but does not contain all
the information needed to characterize such a process, nor
does a priori the optimal weighted distance, which takes
into account the weights (Wu et al., 2006) but not the
populations nor the endogenous epidemic evolution.
Moreover, since most transportation networks are small-
world networks (even when taking into account weights),
many cities lie at the same topological distance from a
given seed, but will be reached at very different times.

P =

U= &
) , (3)

3. Arrival times statistics

In this section, we study the arrival time of the first
infectious individual in the various cities, starting with very
simple topologies for the transportation network.

3.1. Two cities: arrival time distribution

We start with the case of two connected cities (0 and 1).
We denote the link weight by wy; = w, the population of
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the first city by No =N, the number of infectious
individuals in city 0 by Iy = I. The probability to jump
from O to 1 during the time interval Az is p = (w/N)At. The
initial condition is given by Io(t = 0)=1°, I,(t=10) =0,
i.e. infectious individuals are present only in city 0. We
consider that the travel events occur as instantaneous
jumps (of probability p for each individual) at discretized
times. The probability that the first infectious individual
arrives at time #; = ¢ = nAt in city 1 is then given by

n—1
P(n = nAn) = (1= (1= ph) s [T = pf 0 @)

i=1

which expresses the fact that at least one successful “jump”
from 0 to 1 of an infectious individual occurs at time nAt¢,
and none at previous times. In Eq. (4), the quantity [/(]
denotes the integer part of [Iy,. In order to obtain the
probability density of the arrival time in city 1, we first note
that in real-world systems the number of travelers is usually
small with respect to the total population of a city: p =
wAt/N <1 (with any reasonable Az). In this limit, Eq. (4)
becomes

Pty = 1) = plIo(t)]e " 2n=i=illoiA), 5)

We will also assume that the travel probability is
sufficiently small so that the number of infectious
individuals 7y(¢) in the city 0 grows substantially before
the city 1 is contaminated. Writing 1 <y(¢) € N (the second
inequality is due to the fact that in realistic cases only small
fractions of the population are contaminated), we thus
consider the following approximation: [I](f) &~ I(f) ~ I°e*
(as long as t<t;). Using as well the standard approxima-
tion ArY ;- [lo(iAt)] = [y Io(t)dt, we obtain for I° =1

P(r)dt = %e“’("’/m)e”@(t) dr, (6)

where ©(f) is the Heavyside function which ensures
the positivity of the arrival time. The distribution (6)
is a Gumbel distribution with average (1) =(1/4)
(In(NA/w) —y), where y is the Euler constant. The
contribution of the negative ¢ in the distribution has to
be negligible before 1, which reads ffoo P(H)ydt =w/Ni<L1.
This range of validity corresponds also to the hypothesis
of A{t;)>1 (the time to increase I, by one individual is
small with respect to the time scale of the epidemic arrival
in city 1).

Fig. 1 displays the results of numerical simulations of the
propagation between two cities, using discrete stochastic
travel events as described in Section 2. The whole
distribution of arrival times in the second city shows a
very good agreement with the form (6), obtained through
the continuous approximations detailed above. When
w/(NZ) is not small enough, stronger deviations are
obtained; this is expected since the hypothesis 1< y(¢) for
t<t; is less valid. Nonetheless, the overall shape of the
distribution is still in good agreement (Inset of Fig. 1).

0.04 T —

0.03

0.02

P (t,=t)

30 4

10 20

0.01

Fig. 1. Two cities model, distribution of arrival times #" in numerical
simulations with w/N4 = 1072, Inset: distribution of #V with w/NA = 107",
The continuous line is the analytical approximation given by Eq. (6). Here
and in the following, unless specified, N = 10° and 1 = 0.1.

3.2. One-dimensional line

We now consider a one-dimensional line of subpopula-
tions i >0, with an initial condition given by one infectious
individual in city 0. We denote by w; the travel flux between
city 7 and city i + 1, ¢; the arrival time of the first infectious
in city i, and 4; = t; — t;_; (ty = 0). The quantity ¢, is thus
the sum of the random variables 4; for i = 1,...,n, and the
average is given by (t,) =3 ., ,(4;). These random
variables 4; are a priori correlated and not identically
distributed which implies that the central limit theorem
cannot be used in general.

3.2.1. Homogeneous line

In the case of a homogeneous line with uniform
populations and weights (N; = N, w; = w), one expects
that the distributions of 4, becomes independent of n at
large n, with a well-defined average lim,_, o {4,) = (4), so
that 1, ~ n{4). The issue then is the computation of (4).
Two time scales only are present: N /w which represents the
average time for an individual to travel from one city to the
next, and 1/ which represents the typical transmission
time of the disease. Dimensional analysis thus implies that
the adimensional quantity A(4) has the form

") »

In order to estimate the unknown function F, a first
possibility is to consider that at large n the spread consists
in an evolving epidemic front obeying the continuous
equation 0.(x,t) = ASI + w@i[ (x, 7). Looking for a travel-
ing wave solution (Murray, 2004) leads to a front speed

v =24/Aw/N, and thus to

1 /Ni
A fromt = =\ — 8
( )ﬁont 2 W ( )

MAy =
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Another possibility consists in using the results of the
previous subsection, and assume that the average of 4,
remains close to the arrival time in the first city (4,) =~
(41) = (t;) which yields

1 N7
(D) Gunbr = 3 [m (WA> - y} . ©)

This approximation neglects the fact that 7,_;(¢) increases
between ¢,_; and ¢, due to both the endogeneous growth in
city n — 1 and the arrival of infectious individuals from city
n—2, while for the computation of (#;), only the
endogenecous growth of Iy has to be considered. It can
therefore be expected that (4) g, Will overestimate the
real (A).

Finally, we can also consider a deterministic formula-
tion, in which travel between i and i+ 1 occurs only
if there are enough infectious individuals in i, i.e. I;(¢) has
reached a certain threshold 0, and is then treated as
continuous. In this framework, each city is considered
infected only if the number of infectious individuals
is above 0, and ¢, is defined as the first time that I, reaches
the threshold: I,(t,) = 6. Between ¢,_; and ¢,, no travel
can therefore occur out of n, and we can write
0, = AL, + (W/N)I,_,. During [t,-,t,], under the reali-
stic hypothesis that I,<N,, and that I, ; is in a first
approximation given by I,_; ="  we obtain
the equationl = (w/N)4,e*". The difference between
the arrival times in two successive cities is therefore
given by

1 NA
<A>det = z W(V) s (10)

where W is known as the Lambert W function.

In order to test these various analytical approaches, we
consider numerical simulations of the stochastic model
described in Section 2, for identical cities of population
N = 10° located on a one-dimensional line, with uni-
form travel fluxes w between successive cities. The
measured average arrival times are, as expected, propor-
tional to n at large n (not shown). Fig. 2 displays the
corresponding slope as A{4) versus In(AN/w). Various
values of N, 4 and w with the same ratio AN /w yield the
same A(A4), as predicted from the theoretical dimensional
analysis (7). As shown in Fig. 2, (4),, is in agreement
with the simulations only at small AN/w: the slowest
the travel, the less a spatial continuous approximation
is valid. On the other hand, both (4),, and (4)Gumpe
display reasonable agreement, and in particular correctly
capture the increase with In(AN/w) for large AN/w. As
expected, (A)gumper Slightly overestimates (A4). We also
show in the inset of Fig. 2 the correlations between the
A,’s. These correlations vanish rapidly with the distance
along the line. Negative correlations can, however, be
observed between 4,_; and 4,. Such phenomenon can be
understood as follows. Assume that, in a given spreading
realization, 4,_; is small. In this case, I, »(f,—;) will be
unusually small too. The “reservoir” of infectiousness

15 . , . , .
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50 .3
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10F 0
g _SOIIIIIIIIIIIIIIIIIII
= FT0 5 10 /15 20, .3 1

a7 .
=il , .
; .

5 ‘. - o simulations||
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- <A>fmnl
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0 i n 1 n 1 n
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Fig. 2. Slope (4) of (t,) versus n on a line of length 500. The average (z,) is
taken over 500 realizations of the spreading, and the slope is measured at
large n (only the cities with n>100 are considered). The error bars
represent the variance of 4. 2 € [1072,1] and w € [10,10°], N = 10°. Full
line: (4),. Dotted line: (4) Gype- Dashed line: (4) . Inset: correlations
Cjj = (4;4;) — (4;){4;) versus |i — j| on a line of length 500, the average is
done over 500 realizations.
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Fig. 3. Distribution of 4, = 1, — 1, for various values of n. For small n,
the distribution is close to a Gumbel and for large n, it evolves to a
Gaussian. w/(N4) = 1072, N = 10°, 2 = 0.1.

defined by city n—2 will thus transmit less infectious
individuals to n — 1 at times ¢>t,_;, and therefore the
subsequent contamination of city n will be slower, leading
to a larger 4,.

The numerical simulations also allow one to measure the
whole distributions of arrival times and of their intervals.
In Fig. 3, we show P(4,) for different values of n. The
Gumbel shape is only valid for » = 1, and for large n more
symmetric (Gaussian-like) distributions are obtained. On
the other hand, Fig. 4 shows that the distribution of the
arrival times themselves display asymmetric Gumbel-like
shapes even at large n.
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Fig. 4. Distribution of ¢, for various values of n. The distribution remains close to Gumbel shapes even at large n. The plot on the right is in log-scale on
the y-axis and the curves are shifted vertically for clarity. w/(N1) = 1072, N =10% /. =0.1.
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Fig. 5. (A—C) Black circles indicate the arrival time distribution on a line at the city #7 obtained for a fixed random set of populations {/N;} and weights
{w;} (three different sets are used in the three graphs). Red crosses correspond to the same distribution obtained (A) with uniform travel w; = and
populations {N;}; (B) with uniform populations N; = N and weights {w;}; (C) with uniform populations N; = N and uniform weights w; = .

3.2.2. General populations and weights

We now consider the general case of heterogeneous
populations N; and fluxes w;. The application of the same
considerations as in the case of a homogeneous line leads to
(tn) = >_1_1(4;). Since our main goal is to understand the
case of complex networks which usually have the small-world
property (i.e. a small diameter varying typically as log V), we
will now focus on the properties of ¢, at small n. Assuming
that the average of A; remains close to the formula for the
arrival time in the first city ((4;) ~ (¢t;(4, w;, N;))), we obtain

n—1 ar 9. .—y
M) = 7, = | [TV

i=0

(1D

Wi

This expression links the expected arrival time in city »n of a
stochastic spreading event to the quantity y, which depends
on the properties of the line on which the spreading
propagates. It is symmetric by permutations of weights and
populations, and Fig. 5 shows in fact that the whole
distribution of arrival times, obtained through numerical
simulations of the discrete stochastic dynamics, and not only
its average, respects this symmetry. In the numerical
simulations, heterogeneous populations and travel fluxes are
uniformly distributed (w; € [10,2000] and N; € [10°,2.107]).
Fig. 5 shows that the distribution of arrival times is invariant
when one replaces (i) all the random weights by their
geometrical mean w = ([],_, ,w)'""; (i) all the random
populations by their geometrical mean N = ([],_, ,N B RAS
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(iii) all weights by W and all populations by N. The ratios of
the average arrival times for these different sets (z({w;},
{ND) /W, AN D), (fQwik AN /(f({wik, N)) and («({wi},
{N:}))/{t(w, N)) stay very close to 1, with deviations at most
of the order of 5%.

We test in Fig. 6 the relation (11) which predicts the
average arrival time measured in numerical simulations of
the stochastic model. We use for simplicity uniform
populations N = 10°, and we measure, for each fixed set
of weights, the arrival time in each city, averaged over 10°
stochastic realizations of the spread. Fig. 6 displays A(t;)
versus y; for the various cities of a five cities line, for 100
different random sets of weights (each point corresponds to
one given set of weights). We first note that A(#;) is a
monotonous function of y;. The figure also clearly shows
that y systematically overestimates the average arrival time.
This is due, as already explained in the discussion of
Eq. (9), to the fact that the use of (4)g,.me neglects
correlations, and in particular the travel between cities
n—2 and n— 1 for the estimate of the arrival time in n.
Since this travel term increases I,_;, it increases the
probability that an infectious travels from n — 1 to n, and
therefore reduces ¢,. This overestimation effect is not
present for the first group of points that lie on the diagonal
of the figure and correspond to cities directly connected to
the seed. For this first group of cities, the average arrival
time is indeed correctly given by y. On the other hand, the
small overestimation can already be observed for cities at
distance 2 of the seed. For example, points 4 and B
highlighted in Fig. 6 have the same yz = y, = . Point 4
corresponds to a city directly connected to the seed S, with
a flux of w, passengers per unit time, such that
%4 = In(N1/w,4) — y, while point B is obtained for a city
which lies at topological distance two from the seed, with a
city B in between and such that yp =In(NA/wge’)+
In(NA/wge’). The two cases correspond to the same value

30 —mM@m————————————————

25 -
XA=XB - ]
20 -

A
T

0 5 10 15 20 25 30

Fig. 6. A(t) versus y for five cities connected on a line. Each point
correspond to the average arrival time in one of the city of the line, for one
realization of the weights w, averaged over 10’ realizations of the epidemic
spread. Results are presented for 100 different random sets {w;}.

of y, but to different average arrival times: the arrival time
in B is smaller than in 4, even if y, = x5, because relation
(11) neglects the travel of additional infectious individuals
between S and B’ to compute {¢g). Despite this systematic
effect, Fig. 6 shows that relation (11) allows one to define a
quantity that depends only on the populations and
passenger fluxes, and such that the average arrival time
of the spreading is a monotonous function of this quantity.
In the following, we will investigate how to generalize this
quantity to more complex topologies.

3.3. From the one-dimensional line to complex networks

Eq. (11) gives an estimate of the average arrival time in a
city n connected to the seed of the spreading through links
with certain fluxes, and corresponds to a sum of the
quantity In(Ni/w)—7y along the links followed by the
disease from the seed to city n. In a network, the sum can
be computed along any of the paths linking the seed s to
any other city j. Since these different paths correspond a
priori to different fluxes and to different arrival times, a
natural approach consists in approximating the average
arrival time in j, starting from a given seed s, by the
minimum of (11) over all possible paths:

. Nl
At) = y(j|s) = min {ln (—) - y}, (12)
! Py} (kJ)g’.w Wki

where s is the seed, {P,;} is the set of all possible paths
connecting s to j, and the sum is performed over the links
(k, ) along each path. In other terms, we have introduced a
new weight on each oriented link (k,/) of the network:
In(NyA/wrr) — y. The quantity y(j|s) is then the weighted
distance between the seed s and the node j on this non-
symmetric network (such a quantity can easily be
computed for any topology using the Dijkstra, 1959
algorithm). Note that since the weights are real-valued, it
is highly improbable that two different paths with the same
sum of weights exist, so that Eq. (12) selects a unique path
between s and ;.

Differences between propagation on a one-dimensional
line and on a network can be expected from the two
following important topological differences between these
structures: (i) paths go through nodes with degree larger
than 2 and (ii) there are usually more than one path
between two points. We first focus on the effect of the
intermediate nodes with possibly large degrees through
which the disease propagates. To this aim, we consider the
simple topology consisting of a node 0 connected to k
neighbors (as shown in the inset of Fig. 7). The infectious
individuals, when they arrive at the central node, have
multiple possible travel destinations. The probability for
each destination to become infected is thus decreased; if the
seed is in 0 for instance, the initial infectious individual
may even travel to a different peripherical node before
creating an endogenous epidemic growth in the hub. This
effect can be quantified by measuring the average arrival



516 A. Gautreau et al. | Journal of Theoretical Biology 251 (2008) 509-522

3 —

@ oseed: hub
oseed: not hub

(LG

degree of the hub (k)

Fig. 7. Ratio (t;)/ (lfm) of the average arrival time in a fixed peripheral
city 7 of the network shown in the inset and the average arrival time in the
ld case, versus the degree of the hub, k. Averages are done over 1000
realizations of the spreading, with parameter w/NA = 1072, Circles: the
seed is the hub; squares: the seed is one of the peripheral cities.

time of the disease in a given peripheral city i in various
situations. We first consider the case of a spreading
phenomenon starting in a randomly chosen peripheral
node, iy #1i, and compare the average arrival time in i with
the average arrival time in the one-dimensional situation in
which only cities iy, 0 and i are present. The ratio of these
two times is displayed in Fig. 7 (‘seed: not hub”) as a
function of the degree k of the central node. We also show
in the same figure the ratio of arrival times when the seed is
0, i.e. the hub itself (“seed: hub”), and the topology is
either the one of the inset or the simple two-cities
configuration in which only 0 and i are present and
connected. In all cases, the arrival time in 7 is increased by
the presence of other possible connections from the hub.
The effect is stronger for larger degree when the seed is the
hub itself. The multiplicity of possible destinations there-
fore not only decreases the predictability of the spread
(Colizza et al., 2006a), but also increases the average
disease arrival time in a given city.

Another important point distinguishes a propagation in
a network from a one-dimensional line: namely, that
multiple paths can often be found between two given
nodes. In fact, it has already been shown by Crépey et al.
(2006) in the case in which nodes represent individuals and
not subpopulations, that the average arrival time is
decreased by the presence of multiple paths, and that not
only the shortest paths contribute to the spread between
the seed and other nodes. To quantify this effect in
metapopulation models, we consider the simple topology
depicted in Fig. 8: a node A4 (population N 4) is connected
to a node B by two different paths of length 2. The first
path connects 4 with weight wy to an intermediate city C of
population N, which is in its turn connected toB with
weight w,. The second path has weights w| and w/), and the
intermediate city C’ has population N’. We denote the

iyt (10

w’/w

Fig. 8. Ratio of the average arrival time in B (the seed is 4) and the
average arrival time in the 1d case (when only the path 4ACB is connected)
versus w'/w (in the simulations w; =w,=w, w)=w)=w" and
N = N’ = N,). Averages are done over 1000 realizations of the spreading,
with w= 10> and w/NJ=10"2. All cities have the same population
N = 10°. Full line: theoretical prediction (17).

probability that the disease spread reaches the city B at
time ¢ by P(¢) if the two paths are present, by P,4cp(¢f) if
only the first path through C (weights wy, w;) is present,
and by P,op(t) if only the second path (through C’,
weights w}, w}) is present. Since the epidemics reaches B
from A through one path or the other, P(f) can be
expressed as

Py = (1 _ /0 PACBmdr)PACB(r)

+ (1 —/0 PAC’B(T)dT> P cB(2). (13)

The data shown in Fig. 4 suggest that we can assume
that Pycp and P,op are Gumbel distributions, of
averages y4cp = IN(N 44/ w1) + In(NA/w,) — 2y and y 05 =
In(N 42/w)) + In(N'2/wh) — 27, respectively. We introduce
the quantities we, = wiwoe? /N4 and w,, = wiwye’ /N'/.
The quantity w,, can be seen as the travel flux which, if 4
and B were directly connected, would yield the same arrival
time distribution than the real two links AC and CB with
weights wy and wa: y4cp = In(N 44/ wey) — 7. We then have

PACB(t) = }t]ﬁeitf(wl,q/]v/l;v)eh’ (14)
A
w, ) ;
Pyop(t) = N_ﬂiem—(wa,/zvme 5

and finally from Eq. (13) (using the fact that the weights are
small with respect to the quantities N4, N'A, N 42)

Weq + W, Weq +W,,
P(H)=——“ It ——— et ), 16
() =" M exp (g = 9T e (16)

We note that P(¢) is also a Gumbel distribution, and the
average of the arrival time in B, (f,,,) (mp = multiple paths),
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can be easily calculated:

N
Itwp) = Yy = In (ﬁ) -, (17)
el eq

so that the existence of two paths results in the law
e tmp — @ ¥ACB o XAC'B (]8)

We have checked this prediction by numerical simulations
of stochastic spreading in the small network formed by
nodes 4, B, C and C’, in the simple case of Ny =N =N’
and w; = wp = w, w) = w), = w'. Fig. 8 displays the ratio of
the average arrival time in B, for a spread seeded in 4, to
the average arrival time in B when only one path (the one
with weights w) is present. We consider only w'<w since
the situation with w' > w is obtained by exchanging the two
paths. As w' — 0, this ratio goes to 1, while, in the other
extreme case w' — w, a decrease of the average arrival time
close to 10% is obtained. Moreover, the prediction (18),
shown as continuous line, is in excellent agreement with the
numerical data.

Interestingly, when more than two paths are present,
Eq. (18) can easily be generalized to a sum over all possible
paths (not necessarily of length 2): A(t,,) = x,,, With

e mp — Z e paih (19)

paths

where ., is computed on each path by Eq. (11). Fig. 9
presents a comparison of numerical results with this
analytical prediction, for various path multiplicities,
showing a very good agreement. Similar results are
obtained for paths of larger lengths.

We have also investigated numerically, on simple
topologies but with random weights, how well the average
arrival time in a city is correlated with y,,, computed as in
(19). In particular, Fig. 10 displays the average arrival time

(A" D)

w’/w

Fig. 9. Ratio of the average arrival time in B (the seed is 4 with degree k)
to the average arrival time in the 1d case (when only the path 41B is
connected) versus w'/w. Averages are done over 1000 realizations of the
spread, with w=10> and w/Ni=10"2. All cities have the same
population, N = 10°. Numerical results (symbols) are compared to the
theoretical model given by Eq. (19) (full lines) for different values of k.
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Fig. 10. Correlations between the average time (¢) of arrival in B and y(B)
(black), and between (7) and y,,,(B) (red), for the network represented in
the inset. The different points correspond to different values of k (from 2
to 5), different path lengths / (from 2 to 6) and different realizations of the
disorder of the links (100 different sets of {w} for each structure). Averages
are done over 1000 realizations of the spreading.

in city B, connected to the seed A of the spreading by k
paths of length / and random weights, as a function of both
yp given by Eq. (12) (i.e. computed along the path that
minimizes y) and g,,, which takes into account all paths.
While y,,, is slightly more strongly correlated with (z) than
yp> and closer to its actual value, the improvement is not
striking. We have also developed an algorithm to compute
Ymp ON a complex network, by taking into account the
contributions of all paths of topological lengths d and d + 1
(where d is the length of the shortest path, in terms of
topology, between the seed and the considered city). While
the algorithmic complexity is increased (we used techniques
based on the Brandes, 2001 algorithm) with respect to the
computation of (12), the obtained improvement was again
significative but not striking.

4. The world-WAN

We now proceed to numerical simulations of the
metapopulation model on the World-WAN,' which dis-
plays various levels of complexity and heterogeneity
(Barrat et al., 2004; Guimera et al., 2005; Colizza et al.,
2006a, b). At the topological level, the degree distribution is
broad and can be approximated by a power-law; the links’
weights (fluxes) are also broadly distributed and span
several orders of magnitude. Finally, the world city
populations are also broadly distributed according to
Zipf’s (1949) law. All these heterogeneity levels have been
shown to play relevant roles in the spread of epidemics at
the world-wide level (Colizza et al., 2006a, b). We perform
the numerical simulations of the stochastic spreading on

'We have as well considered artificial networks, with similar numerical
results. Some arbitrariness in the distribution of weights and city
populations is necessary for artificial networks so that we prefer to
present data obtained with a real-world network, in which all quantities
stem from real data.
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the network containing the 2400 largest airports, which
takes into account 98% of the total traffic (the WAN
comprises 3100 airports, but we consider here only the
links verifying In(NA/w) >0, which amounts to the removal
of the smallest airports; in particular, a certain number of
nodes have a larger traffic than inhabitants, which leads to
a local breakdown of the relation between p;; and the local
population and travel flow).

4.1. Average arrival time

Fig. 11 displays the average arrival time in the various
cities, A(t;), as a function of y; as defined by (12). For each
given seed, averages are done over 1000 stochastic
realizations of the disease spread. The figure clearly shows
that the value of y determines the average arrival time
(the two quantities are very strongly correlated) and
various cities with the same y are reached at the same time
by the propagation. As in the case of the simple topologies
studied above, y in fact systematically overestimates the
correct average arrival time, but can still be considered as a
very good approximation.

Fig. 11 also highlights the effect of hubs, analyzed in the
previous section. Frankfurt is indeed the node with the
largest degree in the network, and the arrival times at a
given value of y is larger than for other seeds with a smaller
degree. This effect remains, however, quite small and is
essentially limited to the first reached cities. The arrival
times seem to be closer to our Ansatz. This stems from the
delay introduced by the large degree of the initial seed, as
discussed in the previous section, which increases all the
arrival times, therefore slightly shifting the data upwards

and partially compensating for the fact that y overestimates
these times. We finally note how very similar results are
obtained for the SIR model. As expected, the important
time scale in the SIR (as well as in the SIS) is 4 — w: this
quantity controls the endogenous growth of the epidemic
at small times. We have investigated a wide range of values
for A — u, as well as for A in the simple SI case. The arrival
time is well determined by y as long as the condition
w/NA<1 given in Section 3 is satisfied.

Fig. 11 conveys the result that the average arrival times
are not exactly given by y, but are at least determined to a
large extent, given a seed, by this quantity. An immediate
application of this result is given by a possible prediction of
the order of arrival of the disease in different cities. In
order to compare the list of cities ranked by the average
arrival time and the same list ordered according to y, we
compute the indicator known as Kendall’s 7. This indicator
allows a quantitative analysis of the correlations between
two rankings of n objects (Numerical Recipes, 2004) and is
given by

ne —ng

-2’ (20)

where n. is the number of pairs whose order does not
change in the two different lists and n; is the number of
pairs whose order is inverted. This quantity is normalized
between —1 and 1: T = 1 corresponds to identical rankings
while T = 0 is the average for two uncorrelated rankings,
and 1 = —1 is a perfect anticorrelation.

We present in the first column of Table 1 the values of t
for the lists of cities ordered according, respectively, to the
average arrival time of the spread and to the values of y, for
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Fig. 11. A(t) versus y on the WAN for diseases starting in different cities. Each red dot corresponds to a city and averages are done over 1000 realizations
of the spread. Crosses are an average over cities with the same y. The starting seeds are Frankfurt (degree 240), Bucharest (degree 56) and Hong Kong
(degree 109). When the initial seed is a hub, the average arrival time is larger, especially in the first reached cities, due to the effect of the degree. We also

show A(f) versus y for an SIR model seeded in Hong Kong.
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Table 1
Kendall’s 7 for the list of cities ranked by arrival order and the list
obtained with different indicators

Seed {0, 1} D), 2mp} {(0), d} U0, dw {0, dip)
FRA 0.856 0.917 0.299 0.311 0.3
HKG  0.874 0.934 0.212 0.275 0.262
OTP 0.866 0.938 0.301 0.304 0.284
SIK 0.883 0.906 0.292 0.287 0.275

Each line corresponds to a different seed: Frankfurt (FRA, degree 240),
Hong Kong (HKG, degree 109). Bucharest (OTP, degree 56) and Sao Jose
dos Campos (SJK, Brazil, degree 6).

various seeds. The second column of the table gives the
values of T when the lists are ordered by average arrival
time and by y,,. In both cases the values are extremely
high (two random permutations of a list of size N = 2400
would give an indicator normally distributed with mean 0
and variance (4N + 10)/IN(N — 1) =2 x 10~* Numerical
Recipes, 2004). In order to better emphasize this strong
correlation between the ordered list, we also display in
Table 1 the © of Kendall between the city list ordered by
average arrival time and by different distances from the
propagation seed. As noted in the Introduction, the
topological distance d from the seed is not completely
irrelevant, but other weighted distances which take into
account the diversity of fluxes and populations could be
expected to be more strongly correlated with the arrival
time. In particular, a first possibility consists in defining the
effective “length” of each edge as the inverse of the weight,
t;; = 1/wy: the disease will spread more easily on an edge if
many passengers travel across it. The corresponding
weighted distance between nodes on the network is noted
d, . Since the ratios N/w moreover appear naturally in
the travel probabilities, we also consider that a directed
length N;/w; can be defined on each edge, and the distance
between each node and the seed can as well be computed
(dnw)- The results indicate significant correlations between
the average arrival times and these various distances. The
correlations are, however, much stronger with y and y,,,,
showing that these quantities can be used with a good
confidence as an estimate of the average arrival time
order. Very similar results are obtained for SIS or
SIR models, with, respectively, ts;s{(f),} ~ 0.875 and
tsir{(t), x} =~ 0.866, for a spreading process seeded in
Hong Kong.

4.2. Arrival order for a given realization

The previous results are valid for the average arrival
times, and it is legitimate to ask about their relevance to the
case of a single spreading event. Indeed, in the real-world
there is not such a thing as averages over different
realizations. The natural extension of our results therefore
consists in checking if the quantity y can predict the order
in which the disease will reach the various nodes (cities) of
the network in each stochastic realization of the spread.

More precisely we can compute, for each pair of nodes (i, )
in the network, and for a given infection seed, the
probability that the arrival times in i and j for the same
realization of the spread, #; and ¢;, are correctly ordered by
their values of y, i.e. that they verify (¢ — #;)(z; — ;) >0.
We use the notation Ay(i,j) = |y; — z;1 and Fig. 12 displays
the probability /', that a couple of nodes with a y-difference
Ay(i,j) = Ay are reached by the disease in the order
predicted by their values of y. If Ay(i,j) = 0, no prediction
can be made and we obtain indeed f, = 0.5. On the other
hand, if Ay(i,j) is large (> 10), the two nodes are reached in
the correctly predicted order in every realization of the
spread.

Since not all node pairs have very different values of x
(and thus a large value of Ay), we also show as in Fig. 12
the cumulative distribution p_(Ay) of the number of
couples of nodes with a given value of Ay. For instance,
for a spreading process seeded in Hong Kong (degree 109),
75% of the couples have Ay>2, and these pairs are
correctly sorted with a probability larger than 80%, instead
of only 50% on average if no information is available.
Fig. 12 moreover shows that the precision is higher when
the seed has a small degree. On the other hand, if the seed is
Frankfurt (of degree 240, data not shown), the situation is
slightly worsened, as can be expected from the smaller
global predictability of the spread starting from a hub
(Colizza et al., 2006a), due to the many possible travel
destinations available for the infectious individuals. In this
case, 80% of the couples have Ay>2, and these pairs are
correctly sorted with a probability larger than 70%; the
probability f, is larger than 90% for 47% of the pairs.
Similar results are obtained when the endogenous growth
of the disease is described by SIS or SIR models.
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Fig. 12. Fraction of couples of nodes correctly ranked as a function of
their Ay (circles), in each realization of the spread, and cumulative
distribution (squares) of the values of Ay (i.e. fraction of couples of cities
(i,7) with Ayx(i, /) = |x(j) — ()| > Ay). Top: the seed is Hong Kong, a node
of degree 109, and the curves of /', for both SI (circles) and SIR (crosses)
processes are shown. Bottom: the seed has degree 6 (Sao Jose dos Campos,
Brazil).
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We also present in Fig. 13 the same quantities f, and
p~(Ay) for couples of nodes having the same topological
distance from the seed. While this topological distance is
indeed too simple a quantity to be really useful in the
prediction of arrival times, it can seem reasonable that a
node at distance 1 from the seed will anyway be reached
before a node at distance 5. If large values of Ay were
obtained only for nodes at very different topological
distances from the seed, the prediction shown in Fig. 12
would not be particularly relevant. We see in Fig. 13 that
nodes at the same topological distance from the seed can
have very different values of y and be therefore reached by
the disease in an order which can be almost certainly
predicted by measuring their values of y. For example,
Fig. 13 shows that more than 70% of the couples are well
ranked with a probability larger than 70%, even if the two
nodes are at the same topological distance (d = 2, 3,4 or 5)
from the seed. Results are presented for a seed with large
degree, and slightly better results are obtained for smaller
degree seeds.

Finally, another quantitative indication of the relevance
of the quantity y is obtained, similarly to the previous
subsection, by comparing the list of cities ordered either by
x or by the arrival time of the spread in a given realization
(and not the average arrival time as in the previous
section). Kendall’s 7 is therefore now a quantity which
fluctuates from one realization to the other (for a given
seed), and the corresponding histograms are shown, for
various seeds, in Fig. 14. The values obtained are system-
atically larger than 0.5, denoting a strong correlation
between the lists ordered according to the arrival time

A. Gautreau et al. | Journal of Theoretical Biology 251 (2008) 509-522

and y. Moreover, the figure highlights how seeds with
larger degrees lead to smaller values of 7. This is in
agreement with the slightly better prediction capacities
displayed in Fig. 12 when the seed has small degree.
Interestingly, this result can also be related to the issue of
predictability studied by Colizza et al. (2006a,b): the
predictability of a spreading process, as measured by the
similarity between two stochastic realizations with the same
initial conditions, has indeed been shown to be larger when
the seed has a small degree.
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Fig. 14. Histogram of Kendall’s 7 for the list of cities sorted according

either to the arrival time in a given realization or to y. Different seeds yield
different histograms.

fe, ps (AY)

fe, ps (AY)

Ay,

Fig. 13. Same quantities as in Fig. 12, but each graph concerns only couples of nodes at the same topological distance from the seed, d. From top left to
bottom right: d =2, d =3, d =4 and d = 5. The seed is Frankfurt (degree 240).
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5. Conclusion

In this paper, we have studied a metapopulation model
for the spread of epidemics on a large scale in which
subpopulations (cities) are linked by fluxes of passengers.
Such models are particularly useful for the analysis of
epidemics which propagate world-wide along the airline
connections (Rvachev and Longini, 1985; Hufnagel et al.,
2004; Colizza et al.,, 2006a,b, 2007a). They couple
endogenous evolutions of epidemics inside each subpopu-
lation with diffusion along the network of connections,
which opens interesting new perspectives (Colizza et al.,
2007b). In this study, we have focused on the issue of
arrival times of epidemics, as a function of the seed and of
the network’s characteristics. We have proposed a quantity
easily computable on any network which depends only on
the links weights and nodes populations, and which
accounts for the average arrival time of the spread in each
city. This quantity allows one to sort the various
subpopulations according to the order of arrival of each
single realization of the spread with a very good accuracy.
We note that this quantity is given by a certain weighted
distance computed on a directed weighted graph, and in
particular that this distance selects a shortest weighted path
between the seed and the various nodes. This result could
therefore shed some light on the existence and properties of
“epidemic pathways” whose relevant role was already
suggested by Colizza et al. (2006a, b) and which certainly
deserve further work. In particular, the role and relative
importance of the multiple paths should be investigated.
These predictive tools could play an important role in the
set-up of containment measures and policies. It would also
be interesting to adapt the proposed quantity to more
refined or sophisticated compartmental models (Elveback
et al.,, 1976; Watts et al., 2005), or to generalize it to
different scales such as the urban scale, where nodes are
places like home, work or malls (Eubank et al., 2004).
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