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The systematic study of large-scale networks has unveiled the
ubiquitous presence of connectivity patterns characterized by
large-scale heterogeneities and unbounded statistical fluctuations.
These features affect dramatically the behavior of the diffusion
processes occurring on networks, determining the ensuing statis-
tical properties of their evolution pattern and dynamics. In this
article, we present a stochastic computational framework for the
forecast of global epidemics that considers the complete world-
wide air travel infrastructure complemented with census popula-
tion data. We address two basic issues in global epidemic model-
ing: (i) we study the role of the large scale properties of the airline
transportation network in determining the global diffusion pat-
tern of emerging diseases; and (ii) we evaluate the reliability of
forecasts and outbreak scenarios with respect to the intrinsic
stochasticity of disease transmission and traffic flows. To address
these issues we define a set of quantitative measures able to
characterize the level of heterogeneity and predictability of the
epidemic pattern. These measures may be used for the analysis of
containment policies and epidemic risk assessment.

complex systems � epidemiology � networks

The mathematical modeling of epidemics has often dealt with
the predictions and predictability of outbreaks in real pop-

ulations with complicated social and spatial structures and with
heterogeneous patterns in the contact network (1–8). All these
factors have led to sophisticate modeling approaches including
disease realism, metapopulation grouping, and stochasticity, and
more recently to agent-based numerical simulations that re-
create entire populations and their dynamics at the scale of the
single individual (9, 10). In many instances, however, the intro-
duction of the inherent complex features and emerging proper-
ties (11–13) of the network in which epidemics occur implies the
breakdown of standard homogeneous approaches (5, 6) and calls
for a systematic investigation of the impact of the detailed
system’s characteristics in the evolution of the epidemic out-
break. These considerations are particularly relevant in the study
of the geographical spread of epidemics where the various
long-range heterogeneous connections typical of modern trans-
portation networks naturally give rise to a very complicated
evolution of epidemics characterized by heterogeneous and
seemingly erratic outbreaks (14, 15), as recently documented in
the severe acute respiratory syndrome case (www.who.int�csr�
sars�en). In this context, air-transportation represents a major
channel of epidemic propagation, as pointed out in the modeling
approach to global epidemic diffusion of Rvachev and Longini
(16) capitalizing on previous studies on the Russian airline
network (17). Similar modeling approaches, even if limited by a
partial knowledge of the worldwide transportation network,
have been used to study specific outbreaks such as pandemic
influenza (18–20), HIV (21), and, very recently, severe acute
respiratory syndrome (22). The availability of the complete
worldwide airport network (WAN) data set and the recent
extensive studies of its topology (23, 24) are finally allowing a
full-scale computational study of global epidemics. In the fol-
lowing article, we will consider a global stochastic epidemic

model including the full International Air Transport Association
(www.iata.org) database, aiming at a detailed study of the
interplay among the network structure and the stochastic fea-
tures of the infection dynamics in defining the global spreading
of epidemics. In particular, whereas previous studies have gen-
erally been focused in the a posteriori analysis of real case studies
of global epidemics, the large-scale modeling presented here
allows us to address more basic theoretical issues such as the
statistical properties of the epidemic pattern and the effect on it
of the complex architecture of the underlying transportation
network. Finally, such a detailed level of description allows for
the quantitative assessment of the reliability of the obtained
forecast with respect to the stochastic nature of the disease
transmission and travel f lows, the outbreak initial conditions,
and the network structure.

Results and Discussion
The Air-Transportation-Network Heterogeneity. The International
Air Transport Association database contains the world list of
airport pairs connected by direct f lights and the number of
available seats on any given connection for the year 2002. The
resulting worldwide air-transportation network (WAN) is there-
fore a weighted graph comprising V � 3,880 vertices denoting
airports and E � 18,810 weighted edges whose weight wjl
accounts for the passenger flow between the airports j and l. This
data set has been complemented by the population Nj of the
large metropolitan area served by the airport as obtained by
different sources. The final network data set contains the 3,100
largest airports, 17,182 edges (accounting for 99% of the world-
wide traffic), and the respective urban population data. The
obtained network is highly heterogeneous both in the connec-
tivity pattern and the traffic capacities (see Fig. 1). The proba-
bility distributions that an airport j has kj connections (degree)
to other airports and handles a number Tj � �lwjl of passengers
(traffic) exhibit heavy-tails and very large statistical f luctuations
(23, 24). Analogously, the probability that a connection has a
traffic w is skewed and heavy-tailed. Finally, the city population
N is heavy-tailed distributed in agreement with the general result
of Zipf’s law for the city size (25). More strikingly, these
quantities appear to have nonlinear associations among them.
This is clearly shown by the behavior relating the traffic handled
by each airport T with the corresponding number of connections
k that follows the nonlinear form T � k� with � � 1.5 (23).
Analogously, the city population and the traffic handled by the
corresponding airport follows the nonlinear relation N � T� with
� � 0.5 in contrast with the linear behavior assumed in a
previous analysis (22). The presence of broad statistical distri-
butions and nonlinear relations among the various quantities
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indicate a possible major impact in the ensuing disease spreading
pattern.

Modeling Global Epidemics. As a basic element of our modeling
approach we assume the basic standard compartmentalization in
which each individual can only exist in one of the discrete states
such as susceptible (S), latent (L), infected (I), permanently
recovered (R), etc. In each city j, the population is Nj and Xj

[m](t)
is the number of individuals in the state [m] at time t. By
definition, it follows that Nj � �mXj

[m](t). In each city j, the
individuals are allowed to travel from one city to another by
means of the airline transportation network and to change
compartment because of the infection dynamics in each city,
similarly to the models in refs. 16, 19, and 21 and the stochastic
generalization of ref. 22. The dynamics of individuals due to
travels between cities is described by the stochastic transport
operator �j({X[m]}) representing the net balance of individuals
in a given state X[m] that entered and left each city j. This
operator is a function of the traffic f lows with the neighboring
cities wjl per unit time and the city populations Nj (for its explicit
expression, see Materials and Methods) and might also include
transit passengers on connecting flights. In each city, the dy-
namics of the individuals Xj

[m] between the different compart-
ments assumes a fully mixed population and depends on the
specific disease studied. The homogeneous assumption allows
for a description of the disease evolution in terms of differential
equations. In the present approach, we go beyond the simple
deterministic approximation and use epidemic stochastic differ-
ential equations (22) with noise terms derived from the Langevin
formulation of the epidemic reaction rate equations (26–29).
The stochastic epidemic equations are then coupled among them
by the stochastic transport operator �j({X[m]}) that describes
movements of individuals among cities. The epidemic evolution

is therefore obtained by solving numerically this set of coupled
differential equations as reported in Materials and Methods.

Susceptible–Infected–Removed (SIR) Dynamics. Global epidemic
forecast would be extremely relevant in the case of the emer-
gence of a new pandemic influenza that in general spreads
rapidly with substantial transmission occurring before the onset
of case-defining symptoms. For this reason, as a specific disease
dynamics, we use the very simplistic approximation of the SIR
that can be considered as the minimal model for a pandemic
spread. This model provides a general discussion that is not
hindered by the use of very complicate disease transmission
mechanisms. Specific characteristics such as latency, incubation,
and seasonal effects of the disease can be, however, easily
implemented in the present framework (16). The analysis of two
case studies and the comparison of the forecasts obtained with
the present approach and the real data will be presented
elsewhere. In the SIR model, the population Nj of each city is
given by Nj � Sj(t) � Ij(t) � Rj(t), where Sj, Ij, and Rj represent
the number of susceptible, infected, and recovered individuals at
time t, respectively. The epidemic evolution is governed by the
basic dynamical evolution of the SIR model where the proba-
bility that a susceptible individual acquires the infection from any
given infected individual in the time interval dt is proportional
to �dt, where � is the transmission parameter that captures the
aetiology of the infection process. At the same time, infected
individuals recover with a probability �dt, where ��1 is the
average duration of the infection. Following the procedure
outlined in Materials and Methods, we obtain the corresponding
set of coupled differential equations (in this case three for each
city) whose numerical integration provides the disease evolution
in the 3,100 city considered. In the following, the results shown
refer to this specific disease dynamics.

Fig. 1. Properties of the worldwide airport network. Statistical fluctuations are observed over a broad range of length scales. (A) The degree distribution P(k)
follows a power-law behavior on almost two decades with exponent 1.8 � 0.2. (B) The distribution of the weights (fluxes) is skewed and heavy-tailed. (C) The
distribution of populations is heavy-tailed distributed, in agreement with the commonly observed Zipf’s law (25). (D) The city population varies with the traffic
of the corresponding airport as N � T� with � � 0.5, in contrast with the linear behavior postulated in previous works (22).
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At first instance, it is possible to monitor standard epidemi-
ological quantities such as the level of infected individuals, the
morbidity, and the prevalence at different granularity levels; i.e.,
country, state, or administrative regions. In Fig. 2, we show the
dynamical evolution in the United States of an epidemic starting
in Hong Kong. The evolution of epidemic outbreaks is moni-
tored by recording at each time step (1 day) the density of
individuals in each state (S, I, and R) present in each city. The
parameters � and � are chosen according to ref. 20 in order to
use biologically sound values and kept constant during the
evolution (different values do not lead to different overall
conclusions). This corresponds to assume that no restrictions on
traveling or targeted prophylaxis measures are implemented
during the outbreak. We group the states in the nine influenza
surveillance regions that are identical to the nine divisions of the
United States census and use two different visualization strat-
egies. In the first set of maps, regions are drawn with their normal
size, and a color code gives the prevalence of the infection in
each region; i.e., the fraction of infected individuals. This
representation readily shows the high heterogeneity of the
pandemic evolution. Although useful, such visualization might
be misleading because the same prevalence obtained in different
regions might correspond to very different values in the number
of infected individuals if the two regions are very differently
populated. Moreover, it is common to find strong population-
density heterogeneities, and it is not easy to detect visually a
large level of contamination in a small but densely populated
geographical area. To obtain a geographical representation that
is able to carry at the same time information both on the level
of infection and on the infection cases in each region, we have
constructed the corresponding cartograms of the original maps
in which the size of each geographic region (in our case United
States influenza surveillance regions) is rescaled according to its
population. Several methods for constructing cartograms have
been developed (see ref. 30 and references therein), and here we
have adopted the diffusion-based method (30), which produces
cartograms by equalizing the population density through a linear
diffusion process. The geographical map representation readily
shows the heterogeneity of the spatiotemporal epidemic evolu-
tion, but a quantitative characterization of this heterogeneity and
its relation with the air transportation network statistical prop-
erties are major issues that are not yet fully explored.

Epidemic Heterogeneity and Network Structure. To discriminate the
role of the network structure on the spatiotemporal pattern of
the epidemic process, we aim at a more quantitative analysis of
its global heterogeneity. This heterogeneity might find its origin
just in the stochastic nature of the infectious process or deter-
mined by the structural properties of the transportation network.
In the latter case, it is possible to envision the possibility of a
larger predictability of the epidemic behavior that would reflect
the underlying network structure. Here, we introduce a charac-
terization of the epidemic pattern by using the entropy, a
quantity customarily used in information theory to quantify the
level of disorder of a signal or system. At each time step, a
snapshot of the epidemic pattern is provided by the set of values
of the prevalence ij(t) � Ij(t)�Nj in each city j. We can therefore
define the normalized vector �� with components �j � ij��lil,
which contains the relevant information on the epidemic pattern.
In particular, we can measure the level of heterogeneity of the
disease prevalence by measuring the disorder encoded in the
vector �� with the normalized entropy function H:

H�t	 � �
1

logV �
j

� j� t	 log�j� t	 . [1]

If the epidemics is homogeneously affecting all nodes (i.e., all
prevalences are equal), the entropy attains its maximum value
H � 1. Starting from H � 0, which corresponds to one initial
infected city (the most localized and heterogeneous situation),
H(t) increases as more cities become infected, thus reducing the
level of heterogeneity (see Fig. 3A). It is important to stress that
in the present context, the entropy does not have any thermo-
dynamical meaning. It must be just considered as the appropriate
mathematical tool able to quantify the statistical disorder of a
complicate spatiotemporal signal.

To ascertain the effect of the network structure, we compare
the results obtained on the actual network with those obtained
on different network models providing null hypotheses (see Fig.
3). The first model network we consider (called HOMN) is a
homogeneous Erdos–Rényi random graph with the same num-
ber of vertices V as the WAN, and is obtained as follows: for each
pair of vertices (j, l), an edge is drawn independently, with
uniform probability p � 
k�V, where 
k� is the average degree of

Fig. 2. Geographical representation of the disease evolution in the United States for an epidemics starting in Hong Kong based on a SIR dynamics within each
city. States are collected according to the nine influenza surveillance regions. The color code corresponds to the prevalence in each region, from 0 to the maximum
value reached (�max). In the top row, the original United States maps are shown, and in the bottom are provided the corresponding cartograms obtained by
rescaling each region according to its population. Three representations of the airport network restricted to the United States are also shown, in correspondence
to the three different snapshots. The nodes represent the 100 airports in the United States with highest traffic T; the color is assigned in accordance to the color
code adopted for the maps.
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the WAN. In this way, we obtain a typical instance of a random
graph with a Poissonian degree distribution, peaked around the
average value 
k� and decreasing faster than exponentially at
large degree values, in strong contrast with the true degree
distribution of the WAN. For the second model (called HETN)
instead, we retain the exact topology of the real network. In both
models, f luxes and populations are taken as uniform and equal
to the corresponding averages in the actual air-transportation
network.

The differences in the behavior observed in the HOMN, the
HETN, and the real case provide striking evidence for a direct
relation between the network structure and the epidemic pat-
tern. The homogeneous network displays a homogeneous evo-
lution (with H � 1) of the epidemics during a long time window,
with sharp changes at the beginning and the end of the spread.
We observe a different scenario for heterogeneous networks
where H is significantly smaller than one most of the time, with
long tails signaling a long lasting heterogeneity of the epidemic
behavior. Indeed, the analytical inspection of the epidemic
equations points out that the broad variability of the contact
pattern (degree distribution) and the ratios wij�Nj play an
important role in the heterogeneity of the spreading pattern (see

the supporting information, which is published on the PNAS web
site). Strikingly, the curves obtained for both the real network
and the HETN are similar, indicating that, in the case of the
airport network, the broad nature of the degree distribution
determines to a large extent the overall properties of the
epidemic pattern. Fig. 3B reports the average entropy profile
together with the maximal dispersion obtained for the spreading
starting from a given city with different realizations of the noise.
It is clear that the noise has a mild effect and that the average
behavior of the entropy is representative of the behavior ob-
tained in each realization. In Fig. 4, we show the percentage of
infected cities as a function of time for each null model and for
the real case. Although the HOMN displays a long time window
in which all cities are infected, this interval is much smaller in the
HETN and completely absent in the WAN.

Predictability and Forecast Reliability. A further major question in
the modeling of global epidemics consists in providing adequate
information on the reliability of the obtained epidemic forecast;
i.e., the epidemic predictability. Indeed, the intrinsic stochastic-
ity of the epidemic spreading will make each realization unique,
and reasonable forecast can be obtained only if all epidemics
outbreak realizations starting with the same initial conditions
and subject to different noise realizations are reasonably similar.
A convenient quantity to monitor in this respect is the vector
�� (t), whose components are �j(t) � Ij(t)��lIl; i.e., the normalized
probability that an infected individual is in city j. The similarity
between two outbreaks realizations is quantitatively measured
by the statistical similarity of two realizations of the global
epidemic characterized by the vectors �� I and �� II, respectively. As
a measure of statistical similarity sim(�� I,�� II), we have considered
the standard Hellinger affinity �� I and �� II � �j��j

I�j
II. Normal-

ized similarity measures do not account for the difference in the
total epidemic prevalence, and we have to consider also
sim(ı�I, ı�II), where ı�I(II) � (iI(II), 1 � iI(II)) and i(t) � �jIj(t)�N is the
worldwide epidemic prevalence (N � �jNj is the total popula-
tion). We can thus define the overlap function measuring the
similarity between two different outbreak realizations as

�t	 � sim�ı�I�t	,ı�II�t		 � sim�ı�I�t	,�� II�t		. [2]

Fig. 3. Analysis of the heterogeneity of the epidemic pattern in the actual
network (WAN) compared with the two network models (HOMN and HETN).
A SIR dynamics is adopted within each city. (A) Entropy H(t) averaged over
distinct initial infected cities and over noise realizations. Each profile is divided
into three different phases, the central one corresponding to H � 0.9; i.e., to
a homogeneous geographical spread of the disease. This phase is much longer
for the HOMN than for the real airport network. The behavior observed in
HETN is close to the real case meaning that the connectivity pattern plays a
leading role in the epidemic behavior. (B) Average value of the entropy, with
the maximal dispersion obtained from 2�102 noise realizations of an epidemics
starting in Hong Kong. Fluctuations have a mild effect in all cases.

Fig. 4. Percentage of infected cities as a function of time for an epidemics
starting in Hong Kong based on a SIR dynamics within each city. The HOMN
case displays a large interval in which all cities are infected. The HETN and the
real case show a smoother profile with long tails, signature of a long lasting
geographical heterogeneity of the epidemic diffusion.
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The overlap is maximal [(t) � 1] when the very same cities have
the very same number of infectious individuals in both realiza-
tions, and (t) � 0 if the two realizations do not have any
common infected cities at time t. Clearly, a large overlap
corresponds to a predictable evolution, providing a direct mea-
sure of the reliability of the epidemic forecast. In the HOMN, we
find a significant overlap [(t) � 80%; see Fig. 5] even at the
early stage of the epidemics, the most relevant phase for
epidemic surveillance. The picture is different if we consider the
HETN and the real airport network where especially at the initial
stage of the epidemics the predictability is much smaller. These
results may be rationalized by relating the level of predictability
to the presence of a backbone of dominant spreading channels
defining specific ‘‘epidemic pathways’’ that are weakly affected
by the stochastic noise. Epidemic pathways are the outcome of
the conflict between two different properties of the network. On
the one hand, the heterogeneity of the connectivity pattern
provides a multiplicity of equivalent channels for the travel of
infected individuals depressing the predictability of the evolu-
tion. On the other hand, the heterogeneity of traffic f lows
introduces dominant connections that select preferential path-
ways increasing the epidemic predictability. The heterogeneous
connectivity pattern of the HETN and the WAN thus generates
a multiplicity of channels that decreases the predictability. In the
real case, the lowering of the epidemic predictability also
indicates the dominant effect of the topological heterogeneity
that wins over the opposite tendency of the traffic heterogeneity.
The above framework is confirmed by the two distinct behaviors
depending on the degree of the initial infected city. Epidemics
starting in initial cities with a hub airport generate realizations
whose overlap initially decreases to 50–60% because of the many
possible equivalent paths resulting in a larger differentiation of
the epidemic history in each stochastic realization. On the
contrary, outbreaks from poorly connected initial cities display
a large overlap due to the few available connections that favor
the selection of specific epidemic pathways.

Conclusions
From our study, it emerges that the air-transportation-network
properties are responsible for the global pattern of emerging
diseases. In this perspective, the complex features characterizing
this network are the origin of the heterogeneous and seemingly
erratic spreading on the global scale of diseases such as severe
acute respiratory syndrome. The analysis provided here show
that large-scale mathematical models that take fully into account
the complexity of the transportation matrix can be used to obtain
detailed forecast of emergent disease outbreaks. We have also
shown that it is possible to provide quantitative measurements
of the predictability of epidemic patterns, providing a tool that
might be used to obtain confidence intervals in epidemic forecast
and in the risk analysis of containment scenarios. It is clear that
to make the forecast more realistic, it is necessary to introduce
more details in the disease dynamics. In particular, seasonal
effects and geographical heterogeneity in the basic transmission
rate (due to different hygienic conditions and health care
systems in different countries) should be addressed. Finally, the
interrelation of the air transportation network with other trans-
portation systems such as railways and highways could be very
useful for forecast on longer time scales. We believe, however,
that the basic understanding of the interplay of the transporta-
tion network complex features with the disease spreading evo-
lution and the detailed modeling obtained by the full consider-
ation of these features may represent a valuable tool to test
traveling restrictions and vaccination policies in the case of new
pandemic events.

Materials and Methods
Transport Operator. The number of passengers of each category
traveling from a city j to a city l is an integer random variable,
in that each of the Xj

[m] potential travelers has a probability pjl �
wjl�t�Nj to go from j to l in the time interval �t. In each city j,
the numbers of passengers 	jl traveling on each connection j 3
l at time t define a set of stochastic variables which follow the
multinomial distribution

P��
jl�	 �
Xj

�m�!

�Xj
�m� � �l
jl�!�l
jl!

��
l

pjl

jl�� �1 � �

l
pjl��xj

�m���
l
jl
�

,

[3]

where (Xj
[m] � �l	jl) identifies the number of nontraveling individ-

uals, and we use standard numerical subroutines to generate
random numbers of travelers following these distributions.

The transport operator in each city j is therefore written as

���X�m��	 � �
l

�
lj�Xl
�m�	 � 
jl�Xj

�m�		, [4]

where the mean and variance of the stochastic variables are

	jl(Xj

[m])� � pjlXj
[m] and Var(	jl(Xj

[m])) � pjl(1 � pjl)Xj
[m]. In

addition, since the traffic f lows are expressed as the number of
available seats on a given connection, we have to consider that
the transport operator is in general affected by fluctuations due
to an occupancy rate of the airplanes not equal to 1. This
introduces a further source of noise because we have to consider
that on each connection (j, l), the flux of passengers at each time
t is given by a stochastic variable

w̃jl � wjl�� � ��1 � �	�, [5]

where � � 0.7 corresponds to the average occupancy rate of 70%
provided by official statistics (www.iata.org) and � is a random
number drawn uniformly in the interval [�1, 1] at each time step.

Fig. 5. Percentage of overlap as a function of time. The shaded area
corresponds to the standard deviation obtained with 5�103 couples of differ-
ent realizations of the global spreading model based on a SIR dynamics within
each city. Topological heterogeneity plays a dominant role in reducing the
overlap in the early stage of the epidemics. We observe two different behav-
iors depending on the degree of the initially infected city: a reduced initial
predictability in the case of airport hubs (Left) with respect to poorly con-
nected cities (Right). Large fluctuations at the end of the epidemics are
observed in the HETN and in the real case, due to the different lifetime of the
epidemics in distinct realizations induced by the heterogeneity of the net-
work. We also report the prevalence profile as a function of time showing that
the maximum predictability corresponds to a prevalence peak.
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Infection Dynamics. The dynamics of the individuals X[m] between
the different compartments depends on the specific disease
considered. In compartmental models, there are two possible
elementary processes ruling the disease dynamics. The first class
of process refers to the spontaneous transition of one individual
from one compartment [m] to another compartment [h]. Pro-
cesses of this kind are the spontaneous recovery of infected
individuals (I3 R) or the passage from a latent condition to an
infectious one (L3 I) after the incubation period. In this case,
the variation in the number of individuals X[m] is simply given by
�hvh

mahX[h], where ah is the rate of transition from the state [h]
and vh

m � {�1, 0, 1} is the change in the number of X[m] due to
the spontaneous process from or to the compartment [h]. The
second class of processes refers to binary interaction among
individuals such as the contagion of one susceptible in interac-
tion with an infectious (S � I 3 2I). In the homogeneous
assumption, the rate of variation of individuals X[m] is given by
�h,gvh,g

m ah,gN�1X[h]X[g], where ah,g is the rate of transition rate of
the process and vh,g

m � {�1, 0, 1} is the change in the number of
X[m] due to the interaction. The factor N�1, where N is the
number of individuals, stems from the fact that the above
expression considers the homogeneous approximation in which
the probability for each individual of state [h] to interact with an
individual of state [g] is simply proportional to the density X[g]�N
of such individuals [note that it is, however, possible to consider
other cases (1)].

Stochastic Formulation of the Global Spreading Model. To go beyond
the usual deterministic approximations, in each city we work
directly with the master equations for the processes described
above (22); and under the assumption of large populations, we
obtain the Langevin equations in which we associate to each
reaction process a noise term with amplitude proportional to the
square root of the reaction term (26–28). The epidemic Lange-
vin equations are coupled among them by the stochastic trans-
port operator that describes movements of individuals from one
city to another and can be numerically solved by considering the

discretized evolution equations (26–28) for small time steps �t
that read

Xj
�m��t � �t	 � Xj

�m��t	 � �
h,g

Nj
�1vh,g

m ah, g Xj
�h��t	Xj

�g��t	�t

� �
h

vh
mahXj

�h��t	�t

� �
h, g

vh, g
m �ah, g Nj

�1Xj
�h�Xj

�g��t�h, g

� �
h

vh
m�ahXj

�h��t�h��j��X�m��	,

[6]

where �h,g and �h are statistically independent Gaussian random
variables with zero mean and unit variance and j({X}) is the
stochastic travel operator (defined in the previous paragraph)
depending on the traveling probabilities (obtained from the
International Air Transport Association data set) pjl � wjl�t�Nj.
The model is thus a compartmental system of differential
equations that can be numerically integrated. It is worth men-
tioning, however, that the standard integration of these equa-
tions by using Cauchy–Euler methods leads to a well known
technical problem, and specific techniques must be used to avoid
an asymmetric truncation of the noise terms (29). A detailed
discussion of the integration procedure may be found in the
supporting information. In the case of the SIR model used in the
article, by considering the three compartments S, I, and R in Eq.
6 and plugging in aI,S � �, aI � aR � �, and the corresponding
parameters vI,S

I � 1 and vI
R � �vI

I � 1, it is possible to obtain
explicitly (see the supporting information) the 3,100 � 3 differ-
ential equations whose integration provides the disease evolu-
tion in every urban areas corresponding to an airport.

We thank International Air Transport Association for making the airline
commercial f light database available to us.
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