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Numerical simulations of various domain growth systems are reported in order to compute the parameter
describing the violation of fluctuation-dissipation theorem ~FDT! in aging phenomena. We compute two-time
correlation and response functions and find that, as expected from the exact solution of a certain mean-field
model @equivalent to the O(N) model in three dimensions, in the limit of N going to infinity#, this parameter
is equal to one ~no violation of FDT! in the quasiequilibrium regime ~short separation of times!, and zero in the
aging regime. @S1063-651X~98!05703-1#

PACS number~s!: 02.50.Ng

The study of aging phenomena is currently the subject of
many efforts, since this kind of behavior, for which a given
system remains out of equilibrium at all available times, is
present in many systems of interest, like spin glasses or
structural glasses @1#. When concerned with the dynamics of
a given system, it is usual to study the correlation function of
an observable A ,

C~ t ,t8!5^A~ t !A~ t8!& ~1!

(^ & denotes an average over thermal noise! and the conju-
gated response function

R~ t ,t8!5K ]A~ t !

]h~ t8!
L , ~2!

where h is an external field applied at time t8. Then, at
equilibrium, these two-time quantities satisfy time transla-
tional invariance @TTI: the functions depend only on the dif-
ference of the two times t2t8# and the fluctuation dissipation
theorem ~FDT! relating correlation and response by
R(t2t8)5(1/T)]C(t2t8)/]t8. On the other hand, for aging
phenomena, since the dynamics is out of equilibrium, such
equilibrium properties are not expected to hold. In the con-
text of mean-field spin glasses, Cugliandolo and Kurchan
have proposed the general following scenario, in the limit
where the times t and t8 go to infinity @2#: for small time
differences @(t2t8)/t8!1#, the system is in quasiequilib-
rium, and the equilibrium properties hold; however, if t2t8
is not small with respect to t8, the study of two-time quanti-
ties reveals that it is not at equilibrium @C(t ,t8) depend ex-
plicitly on t and t8#. Moreover, they have proposed to mea-
sure the violation of FDT by the function X(t ,t8) where

R~ t ,t8!5

X~ t ,t8!

T

]C~ t ,t8!

]t8
, ~3!

with the important assumption ~afterwards supported by the
study of many different cases, see for example @3–7#! that, as
t and t8 go to infinity, it becomes a function of time only
through C(t ,t8):

R~ t ,t8!5

X~C !

T

]C~ t ,t8!

]t8
. ~4!

This X(C) has moreover received an interpretation in terms
of effective temperature @8#. In the high-temperature phase of
any system, X is equal to 1 since the system equilibrates and
the equilibrium properties hold. In the low-temperature
phase where aging phenomena appear, violations of FDT can
be quantified by its departure from 1. In simulations or ex-
periments, it is more convenient to look at an integrated re-
sponse function: the system can be quenched under a mag-
netic field, which is cut off after a waiting time tw ~the
relaxation of the magnetization is then measured, and found
to depend on the waiting time!, or it is quenched under zero
field, and a field is applied after tw . In this second case, the
growth of the zero-field-cooled magnetization

M ~ t1tw ,tw!5E
tw

t1tw
R~ t1tw ,s !h~s !ds ~5!

is observed. The quasi-FDT relation ~3! allows one to then
write ~for a constant field!

T

h
M ~ t1tw ,tw!5E

tw

t1tw
X~ t1tw ,s !

]C~ t1tw ,s !

]s
ds , ~6!

which, in the limit of large tw , gives

T

h
M ~ t1tw ,tw!5E

C~ t1tw ,tw!

1

X~C !dC . ~7!

Then, if FDT is satisfied, we obtain a linear relation
(T/h)M (t1tw ,tw)512C(t1tw ,tw), independently of the
system, while a deviation from this straight line in an M
versus C plot indicates violation of FDT and gives informa-
tion on X: different systems can have different types of vio-
lation of FDT. This kind of M -versus-C plot has been used
to compute the value of X in the aging regime, analytically
for various mean-field models @2,3,9#, and using numerical
simulations for the mean-field Sherrington-Kirkpatrick
model @6#, for the three-dimensional Edwards-Anderson
model @4# ~a more realistic spin glass!, for the p spin in finite
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dimensions @5#. While, for the p52 spherical p-spin model,
equivalent to the O(N) ferromagnetic model in three dimen-
sions, X is zero @9#, it is found to be constant for p>3, and
a nontrivial function of C for the Sherrington-Kirkpatrick
and the three-dimensional Edwards-Anderson model. An nu-
merical investigation of a glass forming binary mixture ~in
three dimensions! has also been made recently @7#, with the
result of a constant value of X .

In this paper, we report numerical simulations of various
domain-growth systems ~for a review on such systems, see
@10#!, for which it is expected @8# that X is zero in the aging
regime. We examine Ising ferromagnetic systems in two and
three dimensions at various temperatures, and with con-
served or nonconserved order parameter. We also make a
simulation of the Edwards-Anderson model in three dimen-
sions, to show the striking difference of behavior.

We consider Ising spins s i on a square or cubic lattice of
linear size L , with ferromagnetic interactions. Starting from a
random configuration, we quench the system at time 0 to
temperature T and let it evolve according to Glauber dynam-
ics, with a single-spin-flip algorithm ~we will also consider
later soft spins evolving through a Langevin equation!. We
then measure the spin-spin correlation function

C~ t ,t8!5

1

N (
i51

N

^s i~ t !s i~ t8!& ~8!

for an unperturbed system. It is known that this correlation
function exhibits two time regimes: for t2t8!t8 ~for sim-
plicity we take t8,t), it decays rapidly from 15C(t8,t8) to
qEA5m2, m being the magnetization at temperature T; then,
for more separated times, it scales like L(t)/L(t8), where
L(t) is the characteristic size of the domains at time t . We
also check that the domain sizes remain much less than L ,
thus ensuring that finite size effects are not significant. At a
certain waiting time tw , we take a copy of the system, to
which a small, constant magnetic field is applied. We then
measure the staggered magnetization

M ~ t1tw ,tw!5

1

N (
i51

N

^s i~ tw1t !h i&. ~9!

For spin glasses, the applied field can equivalently be
taken uniform or random, since the interactions between
spins are random. Taking a uniform field allows one to avoid
averaging over the realizations of the field. On the other
hand, for a ferromagnetic system, the action of a uniform
field is to favor one of the phases, which will grow faster.
The correct quantity to measure is therefore the response to a
random field: the staggered magnetization ~9!. @In two di-
mensions, a random field destroys the long range order ~see
@11# for a review on the random field Ising model!; however,
the instability destroying it appears only for domain sizes
growing exponentially with 1/h @12#, so that this effect is not
important as long as we work with small enough fields and at
times not to long#. For simplicity, the random h i are taken
from a bimodal distribution (h i56h). The staggered mag-
netization is averaged over the realizations of h i , and we
checked linear response using various values of h ~typically

from 0.01 to 0.2). The sizes used are L5600 in two dimen-
sions, and L580 in three dimensions.

To compare the various curves, obtained for various sys-
tems, temperatures and waiting times tw , we look at the
plots of TM (t1tw ,tw)/h versus C(tw1t ,tw). We first made
some runs at high T: in this case, the system reaches quickly
equilibrium, with TTI @C(tw1t ,tw)5Ceq(t), M (t1tw ,tw)
5M eq(t)# and we checked that FDT holds @TM eq(T)/h51
2Ceq(t)#. For temperatures below the transition tempera-
ture, a dependence on tw appears in C and M ~violation of
TTI!, corresponding to the growth of domains of the two
competing phases. We observe as expected two time regimes
@we stress that we are interested in long time limits, since the
X(C) function is defined as such; nevertheless, we already
can observe two distinct regimes with finite times, and de-
duce the limit of interest#:

~i! For times t smaller than tw , the two-times quantities
do not depend on tw , and FDT also holds: TM (t
1tw ,tw)/h512C(tw1t ,tw). This happens at large values
of C ~close to 1) and small values of M .

~ii! For larger times separation, we observe aging in the
correlation function, and also clearly a deviation from FDT.

We show the data in Figs. 1–3 for the various systems,
and for various waiting times. In the aging part, we see that
the M versus C curves are in fact getting flat, except at small
tw . A closer look at the data for the aging part shows that ~i!
for larger tw , the plateau reached by the magnetization is
lower, and ~ii! for a fixed tw , the magnetization first grows
@like 12C(tw1t ,tw), this is the nonaging part#, then satu-
rates, and eventually goes slowly down again, this last effect
becoming less important as tw grows, with a flattening of the
curves ~the slope of this part of the curves decreases as tw
increases!. We can explain these effects in the following
way: after tw , the domains have reached a certain typical
size, and the domain walls have a certain total length. The
effect of the random field is then to try to flip some spins;
this flipping will be easier at the domain walls, since the
spins there are less constrained by their neighbors. Therefore

FIG. 1. TM (t1tw ,tw)/h vs C(t1tw ,tw) for two-dimensional
domain growth (Tc52.27), at temperatures ~from top to bottom!

T51.7 and tw5200, 400, 800, 2000, T51.3 and tw5800, T51
and tw5800. The straight line is M512C: we see that FDT holds
at short times t , and the violation of FDT with X50 at longer time
separation.
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we have two contributions to the staggered magnetization:
one from the bulk, and one from the domain walls. As time
evolves, the domains grow and the total length ~or surface, in
three dimensions! of the domain walls decreases. Therefore,
the contribution from the interfaces decreases. On the other
hand, the contribution of the bulk will be rather independent
of tw , since the effect on a random field on a domain of 1

spins or on a domain of 2 is the same on average. The total
staggered magnetization is thus decreasing when tw in-
creases, and also, at tw fixed, as t grows ~after the initial
growth, when the field is switched on!. In the limit of large
tw , the effect of the bulk becomes relatively more important,
and we observe the flattening. ~We have checked by a direct
visualization of the spins that this is indeed what happens: at
short times, the majority of the spins flipped by the random
field are on the domain walls, this fraction going then down
as the domains grow; we will also see that this effect due to
the motion of domain walls is not present for the Edwards-
Anderson spin glass.!

Note: the reciprocity relations, which state that, for two

observables A and B , the correlations CAB(t ,t8)
5^A(t)B(t8)& and CBA(t ,t8) are equal, are also an equilib-
rium theorem, and therefore are not expected to hold for
aging dynamics. For a field f evolving according to a
Langevin equation, where the force at time t is F(t), it can
be shown @14# that, even if the asymmetry A(t ,t8)
5^F(t)f(t8)2F(t8)f(t)& goes to zero for long times, the
integral *0

t
A(t ,t8)dt8 has a finite limit as t goes to infinity, if

the system is out of equilibrium. Following a suggestion by
Franz, and slightly modifying the simulation program, we
checked that this fact, derived using the Langevin equation,
also holds for a Monte Carlo dynamics, where the field is
replaced by the spins, and the role of the force is played by
the local field acting on the spins. We therefore mention this
integrated quantity, which could also be of interest in the
studies of aging phenomena.

Langevin equation: since similar results were obtained in-
dependently by Castellano and Sellitto @13# for a system of
soft spins evolving through a Langevin equation, we also
mention briefly this case, and show in Fig. 4 an example of
the results that can be obtained with a system of this type: we
simulate soft spins on a square lattice, with a quartic poten-
tial confining them to the vicinity of its minima 11 and
21, and evolving through the discretized Langevin equation

s~ i , j ,t11 !5s~ i , j ,t !1@s~ i11,j ,t !1s~ i21,j ,t !1s~ i , j

11,t !1s~ i , j21,t !24*s~ i , j ,t !1s~ i , j ,t !

2s~ i , j ,t !3#*h1h~ i , j ,t !, ~10!

where s(i , j ,t) is the value of the spin at the lattice site (i , j)
at time t , h is a Gaussian noise with zero mean and variance
2Th , h being the used time step. We proceed by parallel
updating of the field, and, at t50, the s(i , j) are taken as
independent random variables uniformly distributed between
21 and 1. Again, at tw a random field is switched on and the
staggered magnetization and the correlation are measured.

All these simulations clearly show that the parameter X is
zero for these domain-growth systems. This flattening of the
integrated response shows that the long-term memory of

FIG. 2. Same as Fig. 1 for a nonconserved order parameter in
three dimensions, T52.5 (Tc'3.5), tw5100, 300, 600, 1000,
1500.

FIG. 3. Same as Fig. 1 for conserved order parameter in two
dimensions, T50.8 and from top to bottom tw5100, 200, 400, 600,
800, and in three dimensions ~lower symbols!, T52, tw5100, 200,
300, 400.

FIG. 4. Same as Fig. 1 for soft spins on a two-dimensional
square lattice, evolving through ~10!, with, from top to bottom, T
51 and tw5200, 600, T50.33 and tw5200, 600.
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such systems is in fact weak @8#: the aging phenomena are
essentially in the correlations, while it is also important for
the response in spin-glasses.

In Fig. 5, we indeed show the obtained data for an
Edwards-Anderson system in three dimensions, with Hamil-
tonian

H5(̂
i j&

J i js is j , ~11!

where the sum is over nearest neighbors, the spins s i are
Ising spins, and the couplings J i j are quenched random vari-
ables, taking values 11 or 21 with equal probability.

We simulated a system of linear size L580 at T50.7.
Although no precise conclusion can be drawn as to the form
of the function X(C), since the obtained curves still show a
dependence on tw , it is quite clear ~as was shown in @4#! that
they tend to a certain nontrivial curve, very different from
the case of domain growth systems, like the comparison of
Fig. 5 shows. Let us remark that curves similar to the ones
obtained for the EA spin glass have also been obtained for
the p-spin model in three dimensions in @5# and for the
mean-field version of Eq. ~11!, the Sherrington-Kirkpatrick
model @6#.

To conclude, we have reported measurements of the vio-
lation of the fluctuation-dissipation theorem in some systems
exhibiting domain growth, and found that, as expected but
shown only in one particular case, the parameter X describ-
ing it is equal to zero in the aging phase ~and of course to 1
in the quasiequilibrium regime, where FDT holds!. In the
interpretation of @8#, this means that the effective tempera-
ture is the temperature of the heat bath in the quasiequilib-
rium regime ~corresponding to the fast relaxation of the spins
in the bulk of the domains!, while it is infinite in the coars-
ening regime, which corresponds to the dynamics of the do-
mains themselves ~see @8#, Sec. IV-C for a detailed discus-
sion!. It should also be noted that this behavior shows a
tendency of the long-term memory to disappear, in contrast
with spin glasses or glasses.
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sions with L. Cugliandolo and J. Kurchan.
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FIG. 5. Same as in Fig. 1 for the Edwards-Anderson model, T
50.7, from top to bottom tw51000, 600, 300, 100, compared to the
data for the domain growth in two dimensions at T51.7, tw

51000 ~highest plateau!, and in three dimensions at T52.5, tw

51000 ~lowest plateau!.
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