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We study analytically and numerically the statics and the off-equilibrium dynamics of spin models over
finitely connected random graphs. We identify a threshold value for the connectivity beyond which the loop
structure of the graph becomes thermodynamically relevant. Glauber dynamics simulations show that this loop
structure is responsible for the onset of dynamical features of a local character (dynamical heterogeneities and
spontaneous time scale separation), consistently with previous (experimental and numerical) studies of glasses
and spin glasses in their approach to the low temperature phase. [S1063-651X(99)51002-7]

PACS number(s): 05.40.—a, 75.10.Nr, 64.60.Cn

Among the characteristic features of the equilibrium and
off-equilibrium behavior of complex physical systems such
as glasses or granular materials, two basic ones are the het-
erogeneities occurring in the spatial distribution of particles
and the time scale separation in the relaxation processes of
the different degrees of freedom [1-4]. The issue of building
a clear connection between such local structures and the glo-
bal relaxation process is currently an open basic topic. In this
context, simple spin models have played a crucial role, both
for the analytical studies that have provided a possible mean-
field theory of the glass transition [5] and for numerical
simulations. In particular, the study of mean field spin
glasses with infinite connectivity has allowed us to under-
stand some features of both the statics [6] and dynamics of
the glassy phase [7]. However, intrinsic to the above models
is the topology of the connections which cannot account for
any local structure, each site being connected with all others.

In this Rapid Communication, we will discuss the rela-
tionship between the topology of interactions, in the spirit of
random networks [8,9], and the onset of heterogeneous
glassy dynamics in models that allow some analytical under-
standing, namely, interacting spin models defined over ran-
dom graphs with finite connectivity. We will provide analyti-
cal and numerical results that clarify some basic differences
between infinitely connected and finitely connected mean
field spin models and, more interestingly, identify a simple
link between the loop structure of the random lattice, the
nature of the couplings and the glassy heterogeneous dynam-
ics. As we shall discuss, in finitely connected mean field
models the nontrivial underlying topological structure of the
links is responsible for the appearance of nonequilibrium
phenomena of local nature (both in space and time), and the
numerical results turn out to be in remarkable agreement
with those of finite dimensional systems.

Given a graph G=(V,E), where V is the set of N vertices
and E is the set of bonds joining K=2 (graphs) or K>2
(hyper-graphs) vertices, the spin Hamiltonians take the form
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where the indices iy, ...,ik run over the set V of N vertices,
each vertex i bearing an Ising spin S;, and the couplings
Jil ,,,,, i associated to the random bonds assume values of

order 1 [to be compared with O(1/y/N) as in usual infinitely
connected models]. We consider graphs with finite connec-
tivity, in which the notion of distance is simply the minimal
number of bonds on a path connecting two sites, also re-
ferred to as chemical distance.

In the study of random (hyper)graphs the control param-
eter is the average density of bonds, y (or the average con-
nectivity C=K!y). For densities small enough, the graph
consists of many small connected clusters of size O(InN). If
v increases up to the percolation value vy, , there appears a
spanning cluster containing a finite fraction of the N sites in
the limit of large N. However, such a spanning cluster can a
priori have a treelike structure, for which the randomness of
the couplings J; . ; ==1 can be eliminated by a gauge
transformation on the spins (just like in the one-dimensional
random bonds Ising model). This leads to the definition of a
second threshold value for the density v, defined as that criti-
cal density vy, at and beyond which frustration in the system
cannot be removed by such a gauge transformation, and
therefore gives a macroscopic contribution to the thermody-
namics, raising both internal energy and entropy in the sys-
tem. Geometrically this threshold corresponds to the appear-
ance of an extensive number of loops in the spanning cluster
and it has been named percolation of order (PO) transition in
Ref. [10]. While, for random K=2 graphs, the two transi-
tions are known to coincide [10], here we shall study the K
=3 hypergraph structure. While the notion of loops in hy-
pergraphs is rather counterintuitive, the idea of frustration
retains its simple physical interpretation. The study of the
onset of frustration in the ground state phase diagram of the
associated random K=3 spin glass model, will allow us to
show that the percolation transition . and the PO transition
vo are well separated. Interestingly enough, by resorting to
extensive Glauber dynamics simulations, we shall also show
that such a change in the graph structure is responsible for
the onset of heterogeneous glassy dynamics.
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As discussed in Refs. [11,12], the most striking geometri-
cal feature characterizing the ground state phase diagram of
frustrated spin models over finite connectivity random
graphs above the PO transition, is that, in spite of a finite
entropy per site, there exists a finite fraction of spins which
is totally constrained, a ‘‘backbone’’ that does not change
from state to state (strongly reminiscent of rigidity percola
tion [13]). The remaining fraction of spins is weakly con-
strained and accounts for the overall exponential degeneracy
of the ground state.

Here we are interested in the dynamical, off-equilibrium
conseguences of such a structure consisting, as we shall see,
of a spontaneous separation of weakly constrained spins (i.e.,
dynamically fast) and strongly constrained ones, leading to
time scale separation and heterogeneous dynamics at suffi-
ciently low temperatures. Such a behavior, by definition typi-
ca of glassy systems[2], turns out, for K= 3, to be indepen-
dent of the frustration of the couplings in that the underlying
loop structure together with the K-body interaction lead to an
annealed self-induced ‘‘geometrical’’ frustration.

K =3 hypergraphs are constructed as follows: given N
sites, we choose at random yN triplets (i,j,k) for which the
couplings J;;c will be nonzero. For y greater than the perco-
lation value y.= 13 (y.=2/K(K—1) for K-spin couplings),
we obtain, as previously explained, a spanning cluster of
connected sites, containing a finite fraction of the N spinsin
the large N limit, and many other smaller (order log N) dis-
connected clusters [15].

The PO transition is simply identified by comparing the
ground state energy of the random J;; = +1 system with
that of the ferromagnetic system defined over the same hy-
pergraphs. The value of y beyond which the two energies
start to deviate identifies y,. Such a calculation allows to
identify awide gauge region, y.< y<1y,, where the relevant
structure of the spanning cluster is treelike.

Within the so-called replica symmetric (RS) functional
framework of diluted spin glasses [14], we find a first order
PO transition at y§>=0.9, characterized by a finite backbone
and finite entropy at the threshold. Such a result was derived
by adopting the full RS iterative scheme discussed in Ref.
[11] in the resolution of the self-consistency equation for the
T=0 probability distribution of the effective local fields
P(h)=2R(h/2) (in the notation of Ref. [11]), whichis given
by R(y)=SZ_. dx/27 cos(xy)exp{—9¢1(1— R x])}, where
¢[Rix]="..dz;d2,R(z;) R(z;) cog xmin(L,|zs],|z,]) 1.
Looking for solutions of the form R(y)=X7___r,8(y
— /Ip), where 1/p is the resolution of the field which even-
tually goes to zero, one obtains a set of p+ 1 coupled equa-
tions in the independent variables {r,} (/=0,1,...,p).
Once this set has been solved, the ground state energy can be
easily derived and compared with that of the corresponding
ferromagnetic model, which, as expected, is simply propor-
tional to the average connectivity and corresponds to the
trivial r ;=0 (/' #0) and ry=1 RS solution. While the exact
identification of the threshold value y, would require a full
replica symmetry breaking solution, indeed an open problem,
the qualitative features of the phase transition are correctly
identified already at the RS level [17]. In order to check this
fact, we have done exhaustive enumeration of finite systems
with sizes N=18,20,...,28 (averaged over 18000,
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15000,...,3000 samples, respectively). The extrapolated
value for the threshold is y,=0.8—-0.9 (with a value of the
backbone at the transition of ~0.2), dlightly below §°
(~0.9 for p=15) as expected. However, both the nature of
the phase transition and the dependence of the ground state
energy on vy for large connectivity are consistent with the RS
solution.

For brevity, here we do not report explicitly the details of
the above anadysis (a similar calculation is thoroughly de-
scribed in Ref. [11]), but rather focus on the dynamical con-
sequences of the topological structure arising from the
ground state analysis. Results from extended Glauber dy-
namics simulations performed over various graphs and
Hamiltonians, indeed, confirm the appearance of the ex-
pected time scale separation and heterogeneous structure of
the dynamics in the low temperature phase, where the sys-
tems are out of equilibrium at al times, and display aging
dynamics. The topology of the connections rather than the
form of the interactions appear to be the source of the ro-
bustness of the phenomenon. Such a feature iswell known in
models of glassy material [9].

The basic tool used to detect aging dynamics is
the spin-spin correlation  function, C(t,+t,t,)=1
NN (si(ty+1t)si(ty)), Where t,, is the so-called waiting
time and the average is taken over the spins, the thermal
noise ({-)) and the disorder (over-line): while, for equilib-
rium dynamics, C(t,,+t,t,) depends only ont, aging is de-
fined by the fact that C(t,,+t,t,,) depends also on t,, for all
times. To look for heterogeneities in a system, we have in-
stead to study more local quantities, such as local correla
tions C;(t,,+t,t,) =(si(ty+t)si(ty)) (averaged over theini-
tial conditions), and the individua rates of flipping of the
spins. For each spin, we can register during one Monte Carlo
run the number of timesit flips, and deduce the mean time 7;
between two spin-flips. Of course, the total running-time
Tmax QiVES an upper cut-off. We can then look at the distri-
bution of 7;, averaged over the samples, P(7) [16].

We have simulated graphs with either fixed connectivity
(4 and 6) or fluctuating connectivity (values of C ranging
from 3 to 18), and either ferromagnetic or random (1)
couplings. To compute P(7), we used sizes from 500 to
5000 spins and a number of samples varying from 50 to 100.
No relevant finite size effect was observed, which is consis-
tent with the self-averaging character of P(7). The dynamics
has been implemented as a Glauber algorithm with random
updating of the spins, with the runs mostly performed up to a
time of 10° Monte Carlo (MC) steps per spin. For consis-
tency, we have also looked at times up to 10’ MC steps per
spin for some samples.

__At high temperature, we find of course a quite simple
P(7), peaked at small values of 7, i.e., high flipping rates,
for @l connectivities. However, as the temperature is low-
ered, we observe very different behaviors for different mean
connectivities. Let us first concentrate on the case of fixed
connectivity. For a random hypergraph with connectivity 4,
P(7) is a smooth function peaked around a mean value (in-
creasing as B is lowered): the dynamics is homogeneous, and
all the spins have more or less the same relaxation time (with
fluctuations). For afixed connectivity equal to 6, on the con-
trary, we see that small values of r till keep a finite weight,
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FIG. 1. Typica examples of the distribution of times 7 between
two flips of a spin, P(7), for a hypergraph of N= 1000 spins, with
fixed connectivity; lines: connectivity 4, B=4 and S=5; symbols:
connectivity 6, 8=23; t,,=10* MC steps, r,x=10° MC steps. In-
set: evolution of the fraction of fast spins, f= f})* P(7)d7 with B, for
connectivity 4 and 6.

while a second part of the curve, corresponding to large
times, emerges as T decreases. This second part appears at
temperatures for which aging dynamics setsin [i.e., at which
C(ty*t,t,) becomes a function of both t and t,, for all
times], thus signaling the onset of a glassy regime. The cusp
in the curve, around t* ~10* MC steps per spin, shows that a
separation of time scales occurs. Such a cusp identifies
“fast’”” and ‘‘slow’’ degrees of freedom, and persists for a
large range of values of B: the fraction of fast spins,

JYP(7)dr, is a slowly decreasing function of S. For the

case of connectivity 4, [ E,* P(7)dr shows instead a sharp
transition when the mean value of the relaxation times
crosses t*. We show in Fig. 1 the two shapes of P(7), for

connectivity 4 and 6, and the evolution of [ B* P(7)dr with 8.
If we now consider random hypergraphs with fluctuating
connectivity, we observe a crossover between the two situa-
tions, as y (and therefore the mean connectivity C) is in-
creased. Since the connectivity can vary from one site to
another, the global P(7) can be decomposed in a sum of
P,(7), distributions of times 7; restricted to the sites with
connectivity z. Then, for y<vq, the P,(7) are smooth func-
tions peaked around a mean value (evolving with g), while,
as y grows, the P,(7) becomes broader and broader, overlap
with each other, and exhibits cusps [18]. The crossover oc-
curs around 7y, (note that mean connectivity C=4 corre-
sponds to y<y,, and mean connectivity C=6 to y> vy,),
thus indicating that the loop structure is responsible for the
appearance of complicated, inhomogeneous dynamics.

In order to understand the Glauber dynamics mechanisms
on a microscopic level, we analyze in detail single samples
of random hypergraphs (with y> vy,). Rather than averaging
over disorder, we compare single runs and average over ini-
tial conditions. Each single run (i.e., initial configuration)
leads to a broad distribution of ;. However, two cases may
be distinguished. (i) if the connectivity can fluctuate from
site to site, 7; does not have a strong dependence on the
initial conditions: if we call 7% and 7% the values of 7; for
two independent runs, we see in the inset of Fig. 2 that the
histogram of the ratio 7"/ 7{?) is sharp and close to 1. Thus,
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FIG. 2. For one given random hypergraph, local autocorrelation
function C;(t,,+t,t,) vst for various sites i and a given t,,. For
some sitesi C; decreases very fast, while for others it evolves very
slowly. The line is the mean C(t,,+t,t,). Here N=1000, y=1,
B=325, t,=10* MC steps, and the mean is over 300 runs. Inset:
histograms H(r) of the ratios r=7"/7{?) between two runs with
different initial conditions for a random hypergraph with fixed con-
nectivity (dotted line) and without (solid line).

the broad distributions of 7, lead to a broad distribution of
(7;), and the relaxations of the single site correlation func-
tions C;(t,t’) depend strongly on the sitei (see Fig. 2). This
shows that the position of the slow and fast degrees of free-
dom are encoded in the topology of the graph. (ii) On the
contrary, for random hypergraphs with uniform connectivity,
the histogram of Fig. 2 shows that the distribution of
D172 is broad (for a given site i, r; can vary a lot from
one run to the other). It follows that (7;) tends to a value
independent of i in the limit of many runs, and therefore
(si(t)si(t")y=(si(t)si(t")). The slow or fast character of a
spin depends on the initial conditions and is induced dynami-
cally. Such a self-induced frustration is probably more simi-
lar to what happens in real glasses.

Surprisingly enough, both for random and constant con-
nectivity hypergraphs, { 7;) does not depend on the nature of
the couplings, either ferromagnetic or random. Once the loop
structure of the graphs becomes irregular, frustration is to-
tally induced by the dynamics through the initial conditions.
For the sake of completeness, we have repeated the simula-
tions on systems with Gaussian continuous couplings. All the
discussed dynamical features are retained [19].

Asaconcluding remark, let us notice that, while the scope
of this study was to show how mean field models could
provide nontrivial local dynamical information, similar re-
sults are found in finite dimensional Edwards-Anderson spin
glasses. In the latter case the topology of the lattice is fixed
and the way of generating an effective nontrivial topology is
by randomly adding antiferromagnetic bonds to the ordinary
Ising model [10]. For the Edwards-Anderson spin glasses
with equally distributed ferro and antiferro bonds, we have
also simulated aging dynamics in two and three dimensions
[20], with the scope of pushing further the study of [3]. We
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indeed observe a similar shape for P(7). For ferromagnetic
models on regular lattices instead, the well known coarsen-
ing relaxation process occurs: all spins are equivalent and no
rich structure of P(7) or long-lasting spatial heterogeneities
can be found. Thisis also true for spin models on quasiperi-
odic lattices, and on random graphs (i.e., with K= 2 instead
of K=3): the dynamics shows a similar P(7), with hetero-
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geneities, only for random interactions (Viana-Bray modél),
and not for ferromagnetic ones.
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