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I. INTRODUCTION

Granular systems @1,2# involve many particles, so there is
a strong motivation to treat them with thermodynamic meth-
ods. This approach is justified when one is able to identify a
distribution that is left invariant by the dynamics ~e.g., the
microcanonical ensemble!, and then assume that this distri-
bution will be reached by the system, under suitable condi-
tions of ‘‘ergodicity.’’ Unfortunately, because energy is lost
through internal friction, and gained by a nonthermal source
such as tapping or shearing, the dynamical equations do not
leave the microcanonical or any other known ensemble in-
variant. Moreover, just as in the case of aging glasses, the
compaction dynamics does not approach any stationary state
on experimental time scales.

Consider a compaction experiment, in which we subject a
granular system to gentle, periodic tapping. To keep the dis-
cussion simple, we can assume that there is no gravity, and
that there is a piston applying a constant pressure on the
surface. The system compactifies very slowly @3#, in practice
never reaching the most dense, optimal packing. At a given
long time, when the system has density r(t), we may wish to
measure for example the fraction of grains that are at relative
distance r: the structure factor. This quantity being averaged
over all particles, one can expect it to be a reproducible
observable. However, there is in principle no method to cal-
culate the structure factor other than solving the dynamics.

Some years ago Edwards @4–6# proposed that one could
reproduce the observables attained dynamically by calculat-
ing the value they take in the usual equilibrium distribution
at the corresponding volume, energy, etc. but restricting the
sum to the ‘‘blocked’’ configurations defined as those in
which every grain is unable to move @7,8#. In the case of the
previous paragraph, we would compute the structure factor
in all the possible blocked configurations of density r(t),
and calculate the average. Thus, the only input from dynam-
ics would be r(t), apart from which the calculation is based
on a statistical ensemble.

This ‘‘Edwards ensemble’’ leads immediately to the defi-

nition of an entropy ~in the glass literature a ‘‘complexity’’!
SEdw , given by the logarithm of the number of blocked
configurations of given volume, energy, etc., and its
corre- sponding density sEdw[SEdw /N . Associated with
this en- tropy are state variables such as ‘‘compactivity’’
XEdw

21
5(]/]V)SEdw(V) and ‘‘temperature’’ TEdw

21

5(]/]E)SEdw(E).
Recent developments in glass theory, especially those re-

lated to their out of equilibrium dynamics, have come to
clarify and support such a hypothesis—at least within mean-
field models ~see below!. It is interesting to recall that there
has been also an attempt to extend the compactivity concept
to the dynamics of glasses @9#. The present paper addresses
the natural question of whether Edwards’ measure gives
good results for the compaction of finite dimensional, non
mean-field models. The result is that there is a class of mod-
els for which this is the case. A shorter version of this work
has been published in @10#.

The article is organized as follows: we first discuss the
nature of the assumptions ~Sec. I A!, and the evidence in
support coming from mean-field models ~Sec. I B!. In Sec.
I C we discuss in detail the checks already made with
Lennard-Jones glasses, in the context of the so-called ‘‘in-
herent structures,’’ and their relation with the present ap-
proach.

In Secs. II and III we treat two finite-dimensional models
which reproduce many of the features of glasses and granular
media, namely the Kob-Andersen ~KA! @12# and Tetris @13#
models. We devise a method to count and calculate averages
over the blocked configurations, explicitly constructing in
this way Edwards’ measure. We compare expectation values
thus obtained with equilibrium values and with the outcome
of slow, aging dynamics and find very good agreement be-
tween the predictions of Edwards’ measure and aging dy-
namics.

In order to show that this agreement does not hold for all
forms of slow dynamics, we repeat the procedure in Sec. IV
for another model exhibiting slow, logarithmic relaxations,
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the random field Ising model ~RFIM! @14#. We conclude
with a discussion of our results in Sec. V.

A. The assumption

One possibility of making an assumption in the manner of
Edwards would be to consider a fast quench, and then pro-
pose that the configuration reached has the macroscopic
properties of the typical blocked configurations. This would
imply that the system stops at a density for which the number
of blocked configurations is maximal. We do not follow this
path, as we will give sufficient evidence that generically the
vast majority of the blocked configurations are much less
compact than the one reached dynamically, even after abrupt
quenches.

Our strategy here is instead to quench the system to a
situation of very weak but non-zero tapping, shearing or
thermal agitation. In this way, the system keeps compactify-
ing, albeit at a very slow rate. In this context, we consider a
flat measure over blocked configurations conditioned to hav-
ing the energy and/or density of the dynamical situation we
wish to reproduce. This means that we have given up trying
to predict the dynamical energy or density by methods other
than the dynamics itself.

That configurations with low mobility should be relevant
in a jammed situation is rather evident, the strong hypothesis
here is that the configurations reached dynamically are the
typical ones of given energy and density. Had we restricted
averages to blocked configurations having all macroscopic
observables coinciding with the dynamical ones, the con-
struction would exactly, and trivially, reproduce the dynamic
results. The fact that conditioning averages to the observed
energy and density suffices to give, at least as an approxima-
tion, other dynamical observables is highly nontrivial.

At this point it is important to warn the reader about a
misconception. It goes like this: The system has at every
energy and density many blocked configurations. Now, we
know that in systems with many minima ~for example from
mean-field glasses! all the minima of given energy tend to
have the same values for macroscopic observables. Hence, it
is natural to assume that their basins of attraction are them-
selves also the same, and hence Edwards’ ‘‘flat average’’
assumption is justified.

To see the danger of such a reasoning, let us paraphrase it
in another context, in which it is clear that the conclusion is
generically erroneous: consider a driven, macroscopic sys-
tem @15# ~e.g., fully developed turbulence! thermostated at
energy E. By the same token, we would say: The system is
restricted to move in the energy 5E shell. Now, we know
that almost all points in an energy shell of a macroscopic
system have in the thermodynamic limit the same values of
macroscopic observables ~we disregard symmetry breaking
cases!. Hence, it is natural to suppose that the dynamic sta-
tionary measure is also the same in all points: therefore the
stationary distribution is flat, i.e., microcanonical.

This is of course wrong: we know that generically the
stationary measure of a driven, thermostated system is domi-
nated by an ensemble of zero volume within the energy shell.
Almost all points in the energy shell do have the same

weight, but this weight is zero. In order that the stationary
measure coincides with the microcanonical measure we need
some strongly specific properties for the dynamics: such is
the case of chaotic Hamiltonian dynamics. The same can be
said about Edwards’ measure: that all blocked configurations
of a given energy have the same basin of attraction may be
quite generally true, but in order for Edwards’ measure to be
relevant the combined basin of attraction of the typical con-
figurations should not vanish.

Starting from a random configuration the probability of
falling into a basin is proportional to its volume, so with a
quench we are not sampling a typical basin: rare basins ~ex-
ponentially smaller in quantity! of large ~exponential! vol-
ume may dominate—and this is generally true for a quench
from equilibrium at any temperature. Using Edwards’ mea-
sure is justified when for some reason one can consider that
typical basins of a given level are also typically accessed: a
very strong assumption that is generally not valid. The rea-
son this hypothesis ~if true! is useful is that one can construct
averages over configurations defined by a local property ~be-
ing blocked! without having to know the basin of attraction,
which involves solving the dynamics.

There is still however a puzzling question: We are using
blocked configurations as a distribution for the dynamic situ-
ation. However, this seems odd, since we know that neither a
relaxing nor a gently driven system will stay in one of those
configurations. Here the example of the stationary measure
in dynamic systems is also instructive: we know that such a
measure can be constructed by considering only the periodic
trajectories, although the probability that the system is in a
periodic trajectory is strictly zero. Somehow, these trajecto-
ries form a ‘‘skeleton’’ of the true distribution—and such
would also be the role of the blocked configurations in Ed-
wards’ measure.

Moreover, we will check that configurations with a small,
though nonzero fraction of mobile particles yield the same
statistics.

B. Solvable models

As mentioned above, the fact that dynamically accessed
blocked configurations are the typical ones does not follow
from any general principle that we know, and, as we shall
see below, is indeed not always true.

In order to progress, one can exploit the analogy between
the settling of grains and powders, and the aging of glassy
systems @11# since in both cases, the system remains out of
equilibrium on all accessible time scales, and displays very
slow relaxations.

In the late eighties, Kirkpatrick et al. @16,17# recognized
that a class of mean-field models contains, although in a
rather schematic way, the essentials of glassy phenomena.
When the aging dynamics of these systems was solved ana-
lytically, a feature that emerged was the existence of a tem-
perature Tdyn for all the slow modes ~corresponding to struc-
tural rearrangements! @18,19#.

For the purposes of this paper, Tdyn can be defined by
comparing the random diffusion and the mobility between
two widely separated times t and tw of any particle or tracer
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in the aging glass. Surprisingly, one finds in all cases an
Einstein relation ^@r(t)2r(tw)#2&5Tdyn@d^r(t)2r(tw)&/
d f # , where r is the position of the particle and f is a constant
perturbing field, and the brackets denote average over real-
izations. While in an equilibrium system the fluctuation-
dissipation theorem guarantees that the role of Tdyn is played
by the thermodynamic temperature, the appearance of such a
quantity out of equilibrium is by no means obvious. Tdyn is
different from the external temperature, but it can be shown
to have all other properties defining a true temperature @19#.

As it turned out, despite its very different origin, this tem-
perature matches exactly Edwards’ ideas. One can identify in
mean-field models all the energy minima ~the blocked con-
figurations in a gradient descent dynamics!, and calculate
1/TEdw as the derivative of the logarithm of their number
with respect to energy. An explicit computation shows that
TEdw coincides with Tdyn obtained from the out of equilib-
rium dynamics of the models aging in contact with an almost
zero temperature bath @20–25#. Moreover, given the energy
E(t) at long times, the value of any other macroscopic ob-
servable is also given by the flat average over all blocked
configurations of energy E(t). Within the same approxima-
tion, one can also treat systems that like granular matter
present a nonlinear friction and different kinds of energy
input, and the conclusions remain the same @26# despite the
fact that there is no thermal bath temperature.

Edwards’ scenario then happens to be correct within
mean-field schemes and for very weak vibration or forcing.
The problem that remains is to what extent it carries through
to more realistic models. In this direction, there have been
recent studies @27# of Lennard-Jones glass formers from the
perspective of the so-called ‘‘inherent structures’’ @28#,
which suggest that whatever the measure for the slow dy-
namics, it is not sensitive to the details of the thermal
history—see next subsection.

The path we follow here @10# is to construct the Edwards
measure explicitly in the case of representative ~non-mean-
field! systems, together with the corresponding entropy and
expectation values of observables. We thus obtain results
that are clearly different from the equilibrium ones, and we
can compare both sets with those of the irreversible compac-
tion dynamics.

C. Differences and similarities with approaches
based on ‘‘inherent structures’’

Let us discuss in detail the relation between the present
approach @10# with the one followed by Kob et al. @27# with
Lennard-Jones glasses, later applied in the granular matter
context in @29#.

One can describe the work of Kob et al. as follows: start-
ing from an equilibrated system at temperature T above the
glass transition, the system is first quenched to a temperature
T f below the glass transition, where the system spends aging
a time tw , after which it is quenched again to zero tempera-
ture. ~In some of the procedures there is no intermediate
stop: tw50.! The dynamics of the final quench being at zero
temperature, the system eventually lands in a blocked con-
figuration of energy E. For each cooling protocol param-

etrized by (T ,T f ,tw) the final energy ET ,T f ,tw
is a reproduc-

ible quantity in the thermodynamic limit.
Suppose now we classify all thermal histories according

to the energy E of the blocked configuration reached at the
end. Kob et al. then ask the following question: are all other
macroscopic observables fully determined by E, or, other-
wise stated, is the effect of the whole history (T ,T f ,tw) com-
pletely encoded in E? For the macroscopic observables they
considered, their answer is within numerical precision affir-
mative. ~In their work, they chose as macroscopic observ-
ables the spectrum of the energy Hessian, instead of the
structure factor as we do here!.

We can now discuss the relation of their approach and the
present paper. On the one hand, because there is no direct
sampling of typical configurations of energy E, but a com-
parison of configurations reached after different histories, the
procedure of Ref. @27# does not address the question of what
the actual distribution is for given E ~unless, of course, one
makes extra assumptions!. One could imagine a situation in
which a small subset of blocked configurations of given en-
ergy contributes to the measure because they have a larger
basin of attraction for every history. Indeed, we shall see
later that the dynamics of the RFIM, while passing the test of
Kob et al., is not well reproduced by a flat Edwards’ mea-
sure. What Ref. @27# does suggest is that whatever the mea-
sure, it is insensitive to the details of the thermal history,
which only has the effect of specifying E—two thermal his-
tories finishing in the same energy E yield the same values
for all the other macroscopic observables. The approaches
are clearly complementary: the suggestion of the present
work that Edwards’ measure gives good results for a slow
compaction would be of little use without the insensitivity of
the measure on the history suggested in Ref. @27#.

Let us add that Kob et al. define a temperature T* for a
process (T ,T f ,tw) by demanding that E obtained by a direct
quench from T* to zero temperature be equal to ET ,T f ,tw

.
This temperature is not equal to ~but may be an approxima-
tion of! the Edwards temperature which we calculate below.

II. KA MODEL

The first model we consider is the so-called Kob-
Andersen ~KA! model @12# that was first studied in the con-
text of mode-coupling theories @30# as a finite dimensional
model exhibiting a divergence of the relaxation time at a
finite value of the control parameter ~here the density!; this
divergence is due to the presence in this model of the forma-
tion of ‘‘cages’’ around particles at high density ~the model
was indeed devised to reproduce the cage effect existing in
supercooled liquids!.

Though very schematic, it has then been shown to repro-
duce rather well several aspects of glasses @31#, like the ag-
ing behavior with violation of FDT @32#, and of granular
compaction @33#.

The simplicity of its definition and the fact that it is
non-mean-field makes it a very good candidate to test Ed-
wards’ ideas: in fact, the triviality of its Gibbs measure will
allow us to compare the numerical data obtained for the dy-
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namics and for Edwards’ measure with the analytic results
for equilibrium.

A. Definition

The model is defined as a lattice gas on a three dimen-
sional lattice, with at most one particle per site. The dynami-
cal rule is as follows: a particle can move to a neighboring
empty site, only if it has strictly less than m neighbors in the
initial and in the final position. Following @12#, we take m
54: this ensures that the system is still ergodic at low den-
sities, while displaying a sharp increase in relaxation times at
a density well below 1. The dynamic rule guarantees that the
equilibrium distribution is trivially simple since all the con-
figurations of a given density are equally probable: the
Hamiltonian is just 0 since no static interaction exists.

In order to mimic a compaction ~or aging! process with-
out gravity, we simulate a ‘‘piston’’ by creating and destroy-
ing particles only on the topmost layer ~of a cubic lattice of
linear size L) with a chemical potential m @31#. More pre-
cisely, each Monte Carlo sweep is divided in the following
steps: ~i! for each of the sites of the topmost layer, add a
particle if the site is empty, and, if it is occupied, withdraw
the particle with probability exp(2bm). ~ii! Try to move
each particle, in random order, according to the dynamical
rule.

B. Gibbs measure

Since the Hamiltonian is 0, the equilibrium ~or Gibbs!
measure corresponds simply to a flat measure over all con-
figurations, without taking into account the dynamical con-
straint. Therefore, the relation between density and chemical
potential is

r5

1

11exp~2bm !
, ~1!

and the exact equilibrium entropy density reads

sequil~r !52r ln r2~12r !ln~12r !, ~2!

with in particular

dsequil

dr
52bm . ~3!

In this model, the temperature 1/b is irrelevant since it ap-
pears only as a factor of the chemical potential and we can
set it to one throughout.

Besides, the equilibrium structure factor defined as the
probability that two sites at distance r are both occupied is
easily seen to be a constant

gequil~r !5r2, r.0. ~4!

No correlations appear since the configurations are generated
by putting particles at random on the lattice. It will therefore
be easy, as already mentioned, to compare small deviations
from gequil(r), a notoriously difficult task to do in glassy
systems. Note that it is also easy to numerically sample

Gibbs’ measure at any given density, by simply generating at
random configurations with fixed number of particles.

C. Nonequilibrium dynamics

The previously described Monte-Carlo procedure allows
to produce equilibrium configurations, even if the dynamical
constraint is enforced, as long as m is low enough. However,
at densities close to rg (.0.88), the particle diffusion be-
comes extremely slow due to the kinetic constraints. In fact,
the diffusion coefficient is well approximated by

D~r !;~rg2r !f, ~5!

with f.3.1 @12#. The equilibrium with r.rg is not reached
by compaction after extremely long times: if a chemical po-
tential m such that r(m).rg is applied, the system falls out
of equilibrium. Moreover, the density obtained at long times
depends on the history: the slower the chemical potential is
raised, the denser the system becomes @31#.

We are here interested in this out of equilibrium dynam-
ics: we therefore perform a compression, starting from low
density, by raising the chemical potential up to a high value
m53. Since the equilibrium density at m53 is much larger
than the jamming density rg , aging and very slow compac-
tion ensue. We record the density r(t), the density of mobile
particles rm(t), and the spatial structure function gdyn(r ,t)
defined as the probability that two sites at distance r are
occupied. Since we work at finite sizes, and since particles
are always added at the same layer, density heterogeneities
do appear between the topmost layer and the rest of the box
if the compression is too fast. To avoid any systematic error,
we use a slow compression (Dt5104 MC sweeps for each
increase of Dm50.01), and we measure the various quanti-
ties in the center of the box only, where we checked that the
system is indeed homogeneous.

We show in Fig. 1 the parametric plot rm(t) versus r(t);
at short times and low density, it follows the equilibrium
curve ~obtained by generating at random configurations of
density r and thus measuring the mean density of mobile
particles for the Gibbs measure!; at low m indeed, the relax-

FIG. 1. Parametric plot of the density of mobile particles versus
the density, for the equilibrium measure ~data obtained by generat-
ing at random configurations of a given density and measuring the
number of mobile particles!, and during two compaction procedures
~with Dm/Dt51025 and 1026).
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ation time of the system is smaller than the rate of increase of
m , so the system has time to equilibrate. As the density ap-
proaches rg however, compaction slows down and rm(t)
gets smaller. At large times the system is approaching (r
;rg ,rm;0).

We have also measured the dynamical structure function
gdyn(r ,t), displayed in Fig. 2; induced and spontaneous dis-
placements were measured and compared in @32#, and these
data will be displayed and used in Sec. III F.

D. The auxiliary model

We introduce an ‘‘auxiliary model’’ which will allow us
to define the Edwards measure for the KA model. In this
model particles have energy equal to one if the dynamic rule
of the KA model allows them to move, and to zero other-
wise. The Hamiltonian is therefore highly complicated, in-
volving next-nearest neighbor interactions. We can however
introduce an auxiliary temperature 1/baux associated to the
auxiliary energy Eaux ~equal to the number of particles that
are able to move! and perform a simulated annealing, at fixed
number of particles: at low baux all configurations are
sampled uniformly, while, as baux grows, the sampling is
restricted to configurations with vanishing fraction of mov-
ing particles. The Monte Carlo procedure uses non-local
moves @accepted with a standard Metropolis probability
min$1,exp(2bauxDEaux)%] which allow for an efficient sam-
pling: these non-local moves have nothing to do with the true
dynamics of the original model, and therefore the auxiliary
model is not glassy.

In this way, we obtain the equilibrium energy density of
the auxiliary model, eaux(baux ,r) and its entropy density
saux(baux ,r) by thermodynamic integration:

saux~baux ,r !5sequil~r !1baux eaux~baux ,r !

2E
0

baux
eaux~baux8 ,r ! dbaux8 , ~6!

where we set

saux~0,r !5sequil~r ! ~7!

since the limit baux→0 corresponds to the equilibrium mea-
sure. In Fig. 3 we show a subset of data concerning the
energy and entropy densities of the auxiliary model. ~The
energy has been computed in the range rP@0.65,0.95# with
a step in density Dr50.005 and for bauxP@0,20# with step
Dbaux50.1).

We also evaluate the structure function of the auxiliary
model gaux(r ,baux) which is shown in Fig. 4 for a density
r50.87. It is clear here as well as in Fig. 3 that the limit
baux→` considered in the next subsection is already ap-
proached for baux.5.

FIG. 2. Dynamic structure function obtained in a very slow
compression, at different times, i.e., different values of m; at m
51.5 the system is still at equilibrium and the correlation function
is therefore equal to gequil , but stronger and stronger deviations are
observed as m is raised.

FIG. 3. Thermodynamical properties of the auxiliary model. ~a!

Energy density eaux vs inverse temperature baux at different particle
density r . ~b! Entropy density saux as obtained from thermody-
namic integration of the energy data.

FIG. 4. Structure function obtained in the auxiliary model at
different values of the temperature baux and for a density r50.87.
The data for baux55, 10, and 20 are indistinguishable.
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E. Edwards’ measure

To evaluate the observables with Edwards’ measure, i.e.,
the set of configurations where all particles are unable to
move, we consider now the limit baux→` of the observables
computed in the auxiliary model. For example, the Edwards
entropy is then obtained as

sEdw~r ![ lim
baux→`

s~baux ,r !

5sequil~r !2E
0

`

eaux~baux8 ,r ! dbaux8 , ~8!

since

lim
baux→`

baux eaux~baux ,r !50. ~9!

In Fig. 5 we plot the Edwards and the equilibrium entropy as
a function of the particle density.

Comparison of Fig. 5 with Fig. 1 shows that the most
typical blocked configurations (r;0.75) are irrelevant as far
as the compaction dynamics is concerned.

Since the relation between chemical potential, tempera-
ture and entropy density at equilibrium is given by Eq. ~3!,
the natural definition for Edwards’ temperature is

TEdw
21

52

1

m

dsEdw~r !

dr
. ~10!

However we work here at fixed density for Edwards’ mea-
sure, and we therefore compute

TEdw5

dsequil~r !

dr

dsEdw~r !

dr

. ~11!

Similarly, the Edwards measure structure function,
gEdw(r), is obtained as

gEdw~r !5 lim
baux→`

gaux~r ,baux! ~12!

and displayed in Fig. 6 for various densities.
Two remarks are in order.
As the density approaches 1, almost all particles become

blocked even for Gibbs’ measure; more precisely,
limr→1rm

Gibbs
50; thus, Edwards’ and Gibbs’ measures get

closer, which is seen in Fig. 5 by the fact that the curves for
sequil and sEdw get very close, and limr→1TEdw5TGibbs51.
Similarly, gEdw(r) deviates less from gequil as r increases,
as is shown in Fig. 6.

Edwards’ measure is precisely defined as a sampling over
configurations with vanishing fraction of mobile particles.
We mention here for completeness the straightforward gen-
eralization of Edwards’ measures as the set of configurations
with fraction of mobile particles smaller than e ~cf. the qua-
sistates of @23#!; we then can use the knowledge of
eaux(baux ,r) to define be as the value of the auxiliary tem-
perature such that eaux(be,r)5e , and thus define

sEdw
e ~r ![s~baux5be,r !

5sequil~r !1e be
2E

0

be

eaux~baux ,r ! dbaux .

~13!

It is clear that sEdw
1

5sequil , while sEdw
0

5sEdw . We can also
measure the structure factors ge(r)[g(r ,be).

F. Comparing the measures

We are now in a position to compare the long-time results
of the out of equilibrium dynamics with those obtained with
the different measures. Section II C has already made clear
that the equilibrium measure is not able to describe these
results. Figure 7 shows a plot of the mobility

x~ t ,tw!5

1

3N (
a51

3

(
k51

N
d^rk

a~ t !2rk
a~ tw!&

d f
, ~14!

obtained by the application of random forces to the particles
~see @32# for details!, vs the mean square displacement

FIG. 5. Edwards entropy density of the Kob-Andersen model vs
density ~full curve!. For comparison we also show the equilibrium
entropy ~dashed curve!. At high enough density the curves are in-
distinguishable, and join exactly only at r51. The slope of the
tangent to sEdw(r) for a generic r allows to extract TEdw(r) from
the relation TEdw(r)(dsEdw /dr)5dsequil /dr .

FIG. 6. Edwards structure function gEdw(r) obtained as limit of
the gaux(r ,baux) for baux→` . As the density increases the devia-
tion from gequil gets less pronounced.
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B~ t ,tw!5

1

3N (
a51

3

(
k51

N

^@rk
a~ t !2rk

a~ tw!#2&, ~15!

testing in the compaction data the existence of a dynamical
temperature Tdyn @32#. (N is the number of particles and a
runs over the spatial dimensions.! One first remarks the ex-
istence of a dynamical temperature Tdyn . Furthermore the
agreement between Tdyn and TEdw , obtained from the
blocked configurations as in Fig. 5, for the density at which
the dynamical measurement were made, is clearly excellent.

In Fig. 8 we plot the long-time dynamical gdyn(r ,t), the
equilibrium gequil(r)5r2, and the Edwards’ gEdw(r) struc-
ture factors, for the same density r;0.87. While gequil(r) is

flat, the system has developed during its dynamical evolution
some structures, which seem to be reproduced rather well by
gEdw(r). Note that using the generalized Edwards’ measures
does not improve the agreement in a clear-cut way because
of the rather large error bars on the dynamical data.

To summarize, during the compaction, the system falls
out of equilibrium at high density, and is therefore no more
described by the equilibrium measure. It turns out that Ed-
wards’ measure, constructed by a flat sampling of the
blocked configurations at the dynamically reached density,
reproduces the physical quantities measured at large times,
and in particular predicts the correct value for the dynamical
temperature.

III. TETRIS MODEL

In this section we extend the results obtained for the KA
model to another class of models, the so-called Tetris model
~TM! @13#. We proceed as before by constructing explicitly
Edwards’ and Gibbs’ measures, together with the corre-
sponding entropy and expectation values of some observ-
ables, and comparing both sets of data with those obtained
with an irreversible compaction dynamics. Notice that in this
case the equilibrium measure is by no means trivial and it
has to be computed numerically, using an auxiliary model as
for the construction of Edwards’ measure.

A. Model definition

The essential ingredient of the TM @13# is the geometrical
frustration that for instance in granular packings is due to
excluded volume effects arising from different shapes of the
particles. This geometrical feature is captured in this class of
lattice models where all the basic properties are brought by
the particles and no assumptions are made on the environ-
ment ~lattice!. The interactions are not spatially quenched but
are determined in a self-consistent way by the local arrange-
ments of the particles. It is worth noticing how in this class
of models the origins of the randomness and of the frustra-
tion coincide because both are given in terms of the particle
properties.

Despite the simplicity of their definition, these systems
are able to reproduce many general features of granular me-
dia: the very slow density compaction @13#, segregation phe-
nomena @35#, dilatancy properties @36# as well as memory
@37# and aging @38,34#.

Let us recall briefly the definition of the model, which
includes, like in the real computer game Tetris, a rich variety
of shapes and sizes. On a lattice each particle can be sche-
matized in general as a cross with 4 arms ~in general the
number of arms is equal to the coordination number of the
lattice! of different lengths, chosen in a random way. An
example of particle configuration on a square lattice is shown
in Fig. 9.

The interactions among the particles obey the general rule
that one cannot have superpositions. For instance one has to
check that for two nearest-neighbor particles the sum of the
arms oriented along the bond connecting the two particles is
smaller than the bond length. It turns out that in this way the
interactions between the particles are not fixed once for all

FIG. 7. Einstein relation in the Kob-Andersen model: plot of the
mobility x(t ,tw) vs the mean-square displacement B(t ,tw) ~data
shown as circles!. The slope of the full straight line corresponds to
the equilibrium temperature (T51), and the slope of the dashed
one to Edwards’ prescription obtained from Fig. 5 at r(tw)
50.848.

FIG. 8. Structure functions g(r)2r2 at density r.0.87 com-
puted with the equilibrium, Edwards’ and dynamical measure of the
Kob-Andersen model. The three sets of data come from indepen-
dent Monte Carlo simulations. The dynamic structure function
~circles! is obtained after a very slow compression by raising the
chemical potential from m51 to m53 with an annealing rate of
1026 Monte Carlo sweeps. The Edwards’ structure function ~open
squares! is obtained from the auxiliary model. Although the equi-
librium value of g(r)2r2 is exactly 0, we also obtain it by a Monte
Carlo simulation ~full squares! in order to show that the difference
in the short distance behavior is not an artifact of the numerical
simulation. The size of the typical error bar on dynamical data is
shown at r53.
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but they depend on the complexity of the spatial configura-
tion.

The extreme generality of the model definition allows a
large variety of choices for the particles. While the original
model deals with simple rods, the fact that these rods can
arrange in an antiferromagneticlike configuration of density
1 has motivated the use of random shapes to avoid this path-
ology. In this study, on the other side, we will use the so-
called ‘‘T’’-shaped particles defined in such a way that three
arms have length equal to 3

4 d and the fourth one zero length.
d sets the bond size on the square lattice. With this definition
one has four types of particles corresponding to the four
possible orientation of the ‘‘T’’s on a square lattice. Our
choice has the following advantages: on the one hand, no
averaging over the disorder is needed; on the other hand, the
process of applying a chemical potential together for par-
ticles of various sizes could produce a ‘‘filtering’’ effect that
would dynamically lead to an artificially dense system with
only small particles. With the above given rules one can
define the allowed configurations. One can easily realize how
the maximal allowed density is equal to rmax5

2
3 which cor-

responds to a number of possible configurations proportional
to the linear size of the lattice, L ~due to the possible trans-
lations and symmetries!. Figure 10 shows two possible con-
figurations with r5rmax .

B. Equilibrium measure

The equilibrium measure is obtained with an annealing
procedure. We can introduce a temperature T51/b associ-
ated with an energy E defined as the total particle overlaps
existing in a certain configuration. For each value of T one
allows the configurations with a probability given by e2bE.
Starting with a large temperature T ~a very small b) one
samples the allowed configurations by progressively decreas-
ing T ~increasing b). As T is reduced E decreases and only at

T50 ~no violation of constraints allowed! the energy is pre-
cisely zero. The exploration of the configuration space can
be performed in two ways.

~1! Working at constant density by interchanging the po-
sitions of couples of particles. This procedure is used to com-
pute E(b ,r) and e(b ,r) ~energy density!, from which one
can compute the equilibrium entropy density by the expres-
sion

sequil~r ![sequil~b5` ,r !5sequil~b50,r !2E
0

`

e~b ,r !db .

~16!

For the choice made for the particles one has

sequil~b50,r !52r ln r2~12r !ln~12r !1r ln 4,
~17!

which is easily obtained by counting the number of ways in
which one can arrange rL2 particles of four different types
on N5L2 sites;

~2! working at constant chemical potential m by adding
and removing particles. In this case the density fluctuates and
one measures E(b ,m).

In both cases one can measure the particle-particle corre-
lation function ~equivalent to the void-void correlation func-
tion! gequil(r). Since, working at constant m the density fluc-
tuates, we have always measured directly the ensemble
average ^„gequil(r)2r2…& in order to make the data obtained
with the two different methods comparable. One can then
compare the correlation function obtained at constant m
~which corresponds to a certain average density! with the
correlation function obtained working at constant density.
The results of both methods are equivalent.

Figures 11 and 12 report the results for e(b ,r) and
sequil(r) as obtained from Eq. ~16!.

Figure 13 reports the results for ^„gequil(r)2r2…& for dif-
ferent values of r . The correlation functions g (gequil or
gEdw or gdyn) actually display oscillations around r2, whose
origin can be easily understood: if a particle occupies a site,
the exclusion rules decrease the probability that a neighbor-
ing site will be occupied. We therefore plot in the figures
^„g(r)2r2…&2 in order to show the exponential decay of the
correlations.

FIG. 9. Sketch of a local arrangement of particles in the Tetris
model: each particle can be schematized in general as a cross with
4 arms of different lengths, chosen in a random way.

FIG. 10. Two possible configurations of the Tetris model con-
sidered with the maximal density r5rmax52/3.
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C. Edwards’ measure

Edwards’ measure is obtained with an annealing proce-
dure at fixed density. This means that one samples the con-
figurational space by interchanging the positions of couples
of particles without violations of constraints. In this way one
is sampling the configurational space corresponding already
to T50. In order to select only the subset of configurations
contributing to the Edwards’ measure we introduce an aux-
iliary temperature Taux ~and the corresponding baux
51/Taux) and, associated to it, an auxiliary energy Eaux
which, for each configuration, is equal to the number of mo-
bile particles, in the same way as for the KA model. A par-
ticle is defined as mobile if it can be moved according to the
dynamic rules of the original model.

Let us describe in detail how the measurements are per-
formed. Since for each given density one is interested in the
subset of the equilibrium configurations with a reduced par-

ticle mobility, we start with an annealing procedure precisely
identical to the one used for the equilibrium measure. This
procedure allows us to reach a starting configuration with a
given density and no constraints violated. At this stage we
perform a Monte Carlo procedure which exchanges the po-
sitions of couples of particles without violation of con-
straints: this procedure accepts the non-local moves with a
standard Metropolis probability min„1, exp(2bauxDEaux)…
which allow for an efficient sampling. These non-local
moves define an auxiliary dynamics which has nothing to do
with the true dynamics of the original model, and therefore
the auxiliary model is not glassy.

As for the equilibrium we have performed a certain set of
measures.

In particular we have measured Eaux(baux ,r), i.e., the
decrease of the auxiliary energy at fixed density. In order to
do this one performs an annealing procedure increasing pro-
gressively baux and monitoring for each baux the corre-
sponding configurational energy Eaux(baux ,r). From this
measure one can compute the Edwards’ entropy density de-
fined by

sEdw~r ![saux~baux5` ,r !

5sequil~r !2E
0

`

eaux~baux ,r !dbaux , ~18!

where eaux(baux ,r) is the auxiliary Edwards’ energy density
and we put sequil(r)5saux(baux50,r).

Figure 14 reports the results for sEdw(r) as obtained from
Eq. ~18! compared with sequil(r).

For the computation of the particle-particle correlation
function we have to use a different strategy. Always starting
from a configuration with a given density and no constraints
violated one performs a Monte Carlo procedure, at baux
fixed, which exchanges the positions of pairs of particles
without violation of constraints. Each single simulation uses
r and baux as input parameters. In practice one is trying to

FIG. 11. e(b51/T ,r) for various values of r . From top to
bottom the density decreases monotonically from r50.6 to r
50.1.

FIG. 12. Entropy density in equilibrium sequil(r) and, for ref-
erence, entropy density at Taux5` . sequil(r) goes to zero at r

5
2
3 .

FIG. 13. ^„gequil(r)2r2…&2 for various values of r . From top to
bottom the density decreases monotonically from r50.64 to r
50.1.
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sample all the configuration of density r and with a particle
mobility defined by baux . In this context the Edwards’ pre-
scription should correspond to the limit baux→` . In this
way we have computed ^„gEdw(r)2r2…& for several values
of baux and we report the results in Fig. 15. As one can see
the limit baux→` is attained already for baux of the order
of 6.

D. Irreversible compaction dynamics

We now turn to the out of equilibrium dynamics of com-
paction, simulated by starting from an empty lattice and per-
forming N steps of attempted particle additions followed by
M steps of attempted particle diffusions. Figure 16 reports
the results for the density increase and for the fraction of
mobiles particles as a function of the density for N51, M
51 and N510, M51. While the limit N5fixed M→`
should coincide with the equilibrium, it is clear that the sys-

tem, at finite M, is not able to approach its maximum density
and falls out of equilibrium. Here again the density at which
the number of blocked configurations is maximal is smaller
than the one achieved by compaction.

It is particularly interesting to notice that in the out-of-
equilibrium configurations visited during the irreversible dy-
namics the fraction of mobile particles rmob at fixed density
is systematically smaller than the corresponding value in
equilibrium. This suggests the possibility of distinguishing
between equilibrium and out-of-equilibrium configurations
by looking at the spatial organization of the particles in both
cases. We have then measured, during the compaction dy-
namics, the particle-particle correlation function at fixed den-
sity. In the next section we shall compare these results with
those obtained on the basis of the equilibrium and Edwards’
measures.

E. Comparing different measures

We are now able, as for the KA model, to compare Gibbs’
and Edwards’ measures with the results of the out-of-
equilibrium dynamics at large times.

In Fig. 17 we plot the deviations of the particle-particle
correlation functions from the uncorrelated value r2. In par-
ticular we compare ^„gdyn(r)2r2…&2 obtained during the ir-
reversible compaction (N51, M51) with the corresponding
functions obtained with the equilibrium and Edwards’ mea-
sures. It is evident that the correlation function, as measured
during the irreversible compaction dynamics, is significantly
different from the one obtained with the equilibrium mea-
sure. On the other hand the correlation functions obtained
with Edwards’ measure are able to better describe what hap-
pens during the irreversible dynamics. In particular what is
observed is that the correlation length seems to be smaller
for configurations explored by the irreversible dynamics than
in the equilibrium configurations. This aspect is captured by
Edwards’ measure which selects, the better the larger baux ,
configurations with a reduced particle mobility. In practice

FIG. 14. Edwards’ entropy density, sEdw(r), and equilibrium
entropy density, sequil(r). Both go to zero at r5

2
3 .

FIG. 15. ^„gEdw(r)2r2…&2 for r50.58; baux51,2,4,6. The be-
havior seems to saturate to a limit that should correspond to baux

→` already for baux of the order of 6.

FIG. 16. rmob vs r for two irreversible dynamics with N51,
M51 and N510, M51. For reference is plotted the equilibrium
curve.
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one can summarize the problem as follows: given a certain
density, one can arrange the particles in different ways. The
different configurations obtained in this way differ in the
particle mobility and this feature is reflected by the change in
the particle-particle correlation properties.

Also in this case, as in the KA example, it turns out that
Edwards’ measure, constructed by a flat sampling of the
blocked configurations, is able to reproduce the physical
quantities measured at large times. Investigations are cur-
rently running to check also in the Tetris model whether the
temperature predicted with the Edwards’ approach coincide
with the dynamical temperature Tdyn as defined for the KA
model.

IV. THE THREE-DIMENSIONAL RANDOM FIELD ISING
MODEL AT LOW TEMPERATURE

In this section, we consider a case in which Edwards’
ensemble does not give good results: the low temperature
domain growth dynamics of a 3D Ising model in a weak
random magnetic field. This model has been applied in many
different contexts @14#, and in particular in relation with
glasses @39#. The logarithmic relaxations it displays at low
temperature, as well as the dependence on its thermal history
~like the influence of the cooling rate! can also induce com-
parisons with granular compaction.

The model is defined as usual: N5L3 Ising spins (s i5

61) sitting on the sites of a regular lattice of linear size L,
interact ferromagnetically, in a random external field. The
Hamiltonian is

H52J(
^i , j&

s is j2(
i

h is i , ~19!

where the sum runs over pairs of nearest neighbors.

The strength of the ferromagnetic interaction J can be set
to 1, and the distribution of the random fields h i will be
taken as bimodal h i56h0. At high temperature, the system
is in a paramagnetic phase; at low temperature and weak
magnetic field, there exists a ferromagnetic phase ~see @14#!.
The typical equilibrium configurations are therefore magne-
tized.

In the absence of random fields, the low temperature dy-
namics is the well known coarsening of domains of plus or
minus spins, whose typical size grows as a power of time. In
the case of the RFIM, the domain walls are pinned by the
field, and the dynamics proceeds by thermal activation. The
size of the domains therefore grows only logarithmically
with time. Moreover, the fact that thermal barriers are easier
to overcome at not too low temperatures induces a strong
dependence on the cooling rate. As above, we are interested
in the limit of low but nonzero temperatures.

In a large system, the long-time configurations obtained
dynamically are intertwined domains of ‘‘up’’ and ‘‘down’’
spins having similar volumes, the global magnetization being
zero. This is quite different from the equilibrium configura-
tions at the same energy, which are magnetized. In fact, an
easy way to show that the long-time dynamical configura-
tions differ from the equilibrium ones is to look at the dis-
tribution of the magnetizations P(M ) in both cases: at equi-
librium Pequil(M ) is peaked around 6M (T), with M (T)
.0, while for the dynamics one obtains at any finite time for
Pdyn(M ) a single peak around M50: in this domain growth
dynamics, the system does not choose at any finite time be-
tween the two basins of attractions of the two ground states
@40#.

The dynamics proceed by thermal activation; therefore
the long-time configurations are ‘‘blocked,’’ in the sense
that, at zero temperature, the system would be unable to es-
cape from them. The question in the present context is now
whether these ‘‘blocked configurations’’ are typical, i.e., if
their characteristics are well reproduced by a flat sampling of
all blocked configurations of the same energy. We have
therefore considered the corresponding auxiliary model, in
order to obtain this flat sampling.

Since we want to study the configurations at a given en-
ergy, the auxiliary model has two terms: the first one is qua-
dratic, constraining the energy ~19! around a given E0, and
the second one is the number of spins not aligned with their
local field, i.e., the number of spins that can flip without
thermal activation:

Eaux5b1S 2J(
^i , j&

s is j2(
i

h is i2E0D
2

1b2(
i

Q~2s iHi!,

~20!

where Q is the Heavyside function, and Hi5J( ^ j ,i&s j1h i is
the local field at site i. The two auxiliary inverse tempera-
tures b1 and b2 are used to perform an annealing, starting
from a random initial configuration of high energy. We use a
single-spin flip Metropolis algorithm, accepting the moves
with probability min„1, exp(2DEaux)…. E0 is taken negative
and slightly larger than the ground state mean energy EGS
526JN , in order to look at configurations having the same

FIG. 17. Comparison between the correlation functions obtained
with the equilibrium measure, the Edwards measure (baux56) and
the irreversible dynamics (N51, M51). In all cases the system is
considered at a density of r.0.58.
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energy than the long time dynamics configurations ~the evo-
lution of the energy during the dynamical evolution is dis-
played in Fig. 18!.

The first, simplest observable to look at is the distribution
of the magnetization, PEdw(M ), averaged over realizations
of disorder. Typical results are displayed in Fig. 19, for the
P(M ) obtained dynamically or with a sampling of the
blocked configurations, for a system of 203 spins, and for
E0525.4JN and 25.2JN ~we have also simulated systems

of 303 spins!. While the dynamical Pdyn(M ) consists in a
single peak around M50 ~getting narrower for larger system
sizes!, the distribution PEdw(M ) is clearly bimodal, present-
ing two peaks around two symmetric values of the magneti-
zation. The precise values of the peaks depend on E0 ~de-
creasing for increasing E0: it is clear that, for too high values
of E0, the configurations are less magnetized!, and their
width depends on system size, getting narrower for larger
systems.

It appears therefore that the configurations dominating
Edwards’ distribution are magnetized. ~Note that a similar
result was obtained in @41# for the low-energy metastable
states for a ferromagnet on random thin graphs!. At variance
with the previously studied models ~KA and Tetris!, Ed-
wards’ distribution is therefore unable to describe the typical
configurations obtained dynamically.

The example of the RFIM clearly underlines the differ-
ence with the inherent structure construction of Kob et al.
On the one hand, we have seen that Edwards’ measure does
not reproduce the dynamic results. On the other hand, it is
clear that different thermal histories, just as those considered
in @27#, would yield domain configurations with essentially
the same shapes if the end energy is the same, and zero
magnetization, contrary to the typical configurations at that
energy.

V. ‘‘CHAOTICITY’’ PROPERTIES

We have shown two models for which Edwards’ con-
struction gives a good approximation, and one for which it
does not. What is the distinguishing feature between them?
A distinction one can make, suggested by glass theory @42–
44,23#, is obtained by studying their ‘‘chaoticity’’ properties
as follows: after aging for a time tw , two copies ~clones! are
made of the system, and allowed to evolve subsequently with
different realizations of the randomness in the updating pro-
cedure. The question is then whether the trajectories diverge
or not. Note that for this criterion to make sense, it should
always be applied at nonzero ~though weak! tapping or
shearing.

The results summarized below seem to indicate that the
condition of chaoticity is necessary. It is however not suffi-
cient: Bouchaud’s ‘‘trap model’’ @18# is chaotic but its
fluctuation-dissipation properties are not directly related to
the density of states @45#.

For the three models discussed in this paper, we have
measured the normalized average overlap Q tw

(t) defined as
follows.

For the KA model

Q tw
~ t !5K

1

N (
i

n i~ t !n i
clone~ t !2r~ t !•rclone~ t !

r~0 !2r2~0 !
L ,

~21!

where n i ~respectively n i
clone) is 1 if there is a particle on the

site i for the original model ~respectively for the clone!, and
0 if the site is empty.

FIG. 18. Energy versus time for the dynamics of the RFIM at
inverse temperatures 3, 4, and 5. The energy decreases slower for
larger b because the dynamics is activated. For one given sample
E(t) would be a succession of plateaus; here the curves correspond
to an average over 64 realizations of the random field.

FIG. 19. Histograms of the magnetization of the visited configu-
rations during the low temperature dynamics @full line: Pdyn(M ) for
L520, b54, i.e., the energy per site of the system is between
25.2 and 25.4; the finite width of the peak comes from the rela-
tively small size of the sample# and for Edwards’ measure at E0

525.2 and 25.4 @dotted, dashed, long-dashed, and dot-dashed
lines: PEdw(M ) for L520 and b254 and 6; E0525.4 corre-
sponds to the peaks at higher M ]. The dynamics samples configu-
rations with low magnetization, while the typical blocked configu-
rations are magnetized.

BARRAT, KURCHAN, LORETO, AND SELLITTO PHYSICAL REVIEW E 63 051301

051301-12



For the Tetris model

Q tw
~ t !5K

1

N (
i , j

A i , j~ t !2

r~ t !•rclone~ t !

4

rclone~ t !2

rclone~ t !2

4

L , ~22!

where A i , j(t) is a function that gives one if on the site (i , j)
the two copies present the same particles and zero otherwise.
We have four types of particles in the system and this is the
reason for the factors 4 in Eq. ~22!.

For the RFIM

Q tw
~ t !5K 1

N (
i

s i~ t !s i
clone~ t !L . ~23!

The brackets indicate an average over different realizations
of the randomness.

Figures 20 and 21 report the results for Q tw
(t) for several

values of tw , respectively for the Tetris and the KA model. It
is clear that in both cases the two copies of the system al-
ways tend to diverge. This is at variance with what happens
in the domain growth dynamics @44#, and in particular for the
RFIM, where we have checked that the two copies retain a
finite overlap at all the times studied.

VI. CONCLUSIONS

In summary, we have proposed a simple and systematic
procedure to construct a flat sampling of the ‘‘blocked con-

figurations,’’ i.e., to calculate averages with Edwards’ mea-
sure. We have shown, for two representative finite-
dimensional models, that this measure gives different results
than the equilibrium measure, and is able to reproduce the
dynamical sampling of the out-of-equilibrium compaction
dynamics for various observables. The connection of Ed-
wards’ ensemble with the dynamical FDT temperature im-
mediately suggests experiments to check the validity of these
ideas, for example by studying diffusion and mobility of dif-
ferent tracer particles within driven granular media.

At present, the correspondence between Edwards’ distri-
bution and the long-time dynamics is at best checked but
does not follow from any known principle. Now that several
concrete examples have lent credibility to Edwards’ con-
struction, an effort to understand why it does in some cases
work and what is its range of validity has become worth-
while.

There remains the question of generalizing Edwards’
measures in two directions: by considering a fraction e.0 of
mobile particles, and by conditioning the flat measure to
more macroscopic observables in addition to density and
energy.

Note added in proof. Recently, we became aware of the
papers by Brey et al. @46# and Lefèvre and Dean @47# in
which Edwards’ measure is found for trapped one-
dimensional models.
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