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Molecular dynamics simulations of vibrated granular gases
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We present molecular dynamics simulations of monodisperse or bidisperse inelastic granular gases driven by
vibrating walls, in two dimensions (without gravity). Because of the energy injection at the boundaries, a
situation often met experimentally, density and temperature fields display heterogeneous profiles in the direc-
tion perpendicular to the walls. A general equation of state for an arbitrary mixture of fluidized inelastic hard
spheres is derived and successfully tested against numerical data. Single-particle velocity distribution functions
with non-Gaussian features are also obtained, and the influence of various parameters (inelasticity coefficients,
density, etc.) are analyzed. The validity of a recently proposed random restitution coefficient model is assessed
through the study of projected collisions onto the direction perpendicular to that of energy injection. For the
binary mixture, the nonequipartition of translational kinetic energy is studied and compared both to experi-
mental data and to the case of homogeneous energy injection (“‘stochastic thermostat™). The rescaled velocity
distribution functions are found to be very similar for both species.
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I. INTRODUCTION

Due to the intrinsic dissipative character of interparticle
collisions, an energy supply is requested to fluidize a granu-
lar gas. This is often achieved by a vibrating boundary, and
the resulting vibrofluidized beds provide nontrivial realiza-
tions of nonequilibrium steady states. The understanding of
such far from equilibrium systems requires a correct descrip-
tion of the energy exchange between the vibrating piston and
the granular medium, as well as a macroscopic continuum
theory to describe the evolution of the relevant coarse-
grained fields [1-3] (density, temperature, etc.). In particular,
the derivation of an accurate equation of state is a key step in
the hydrodynamic approach.

A simple, fair, and much studied theoretical framework to
capture the inelastic nature of grain-grain collisions in a
rapid granular flow is provided by the inelastic hard sphere
model [4,5]. In this paper, we present the results of extensive
molecular dynamics (MD) simulations of inelastic hard
spheres driven by an energy injection at the boundaries, for
both a one-component fluid (monodisperse case) and a bi-
nary mixture (bidisperse situation). We analyze in detail the
effects of several parameters that may be difficult to tune
experimentally, with a particular emphasis on the profiles of
the hydrodynamic fields.

This paper is organized as follows. In Sec. I, we present
the model and derive an equation of state for an arbitrary
mixture of inelastic hard spheres, going beyond the ideal gas
contribution in view of performing accurate hydrodynamic
tests. The equation of state obtained is a natural generaliza-
tion of its standard counterpart for elastic hard spheres. The
following two sections (Secs. 111 and V) are then devoted to
molecular dynamics simulations for one-component systems
and for binary mixtures. In both cases, we restrict ourselves
to two-dimensional simulations, both for simplicity and for
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comparisons with two-dimensional (2D) experimental data
[6-9]. As in the experiments, the energy loss due to inelastic
collisions is compensated for by an energy injection by vi-
brating or thermal walls, which leads to heterogeneous den-
sity and temperature profiles. The various profiles and veloc-
ity distribution functions are studied and compared with
experiments whenever possible. Moreover, projecting the dy-
namics onto the direction perpendicular to that of energy
injection allows one to assess the validity of the random
restitution coefficient model proposed in Refs. [10,11]. The
influence of various parameters on the nonequipartition of
energy in a binary mixture is studied in Sec. IV, and com-
parison with experimental data and with the case of homo-
geneous energy injection is performed. In this latter case, the
velocity distribution functions are analyzed and shown to be
very similar for the two species. Conclusions are finally pre-
sented in Sec. V.

Il. THE MODEL—COMPUTATION OF AN EQUATION
OF STATE

We consider a mixture of N species of hard spheres in
dimension d, with diameters o; and masses m;, where 1
<is<MNj;. A binary collision between grains of species i and
j is momentum conserving and dissipates kinetic energy. In
the simplest version of the model, the collision i-j is charac-
terized by one inelasticity parameter: the coefficient of nor-
mal restitution «;; . Accordingly, the precollisional velocities
(vi,vj) are transformed into the postcollisional couple
(v{ ,vj), such that

m.
r_ J ~ ~
Ui_vi_mi+mj(1+aij)(o'vij)0'y ey
, m . .
vj:vj+miij(l+aij)(o"vij)0' (2)
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where vi;=v;—v; and o is the center-to-center unit vector
from particle i to particle j. Note that a;;= «;; to ensure the
conservation of total linear momentum m;v; +m;v; .

We also considered an extension of the previous model
allowing for rotations, introducing a coefficient of tangential
restitution (a}j) e[—1;1] [12], see Appendix A: the colli-
sion law for smooth spheres (1), (2) is then recovered for
a}jz —1, while complete reversal of the tangentia compo-
nent of the relative velocity is obtained for a}j =1. Valuesin
between correspond to a decrease of the absolute value of the
tangential relative velocity, with reversal for a}j>0 and
without for aj;<0.

Irrespective of the value of the tangential restitution coef-
ficient !, the linear-momentum change for particle i in a
collision i-j reads

mimj
m; + mj

opi=—op;=— (1+ajj)(o-vj)) 0. 3
In Appendix B, we use this relation to compute an eguation
of state for the homogeneous isotropic mixture, invoking the
viria theorem (the pressure is defined kinetically from the
momentum transfer and does not follow from a statistical
mechanics derivation). The total density is denoted by p and
the partial densities by p;=X;p (the number fractions x; are
such that 3;x;=1). The temperature of speciesi is T;, de-
fined from the mean kinetic energy of subpopulation i: T;
=(mp?)/d. Only for an elastic system is the energy equi-
partition T;=T,Vi recovered [6,13-23]. It is found in Ap-
pendix B that the pressure in dimension d reads

d

m; (og
P=> piTi+pn297 1> xiXi ———(1+ o)) Ti—xii »
Zi piliTpn % i Jmi+mj( alj) |<o_d>X|J
4

independent of «aj;, where oj=(oi+0))/2, (o)
=Eixiaid, n is the packing fraction (e.g. 7=mp(c>)/6 in

=~ [ WorTodo+ 2 [ dodowiawio)

In the following sections, the above equation of state will be
used to test hydrodynamic predictions for a monodisperse
system and for a binary mixture.

I11. MOLECULAR DYNAMICS SIMULATIONS FOR THE
ONE-COMPONENT SYSTEM

A. Introduction

We have implemented molecular dynamics simulations
with an event-driven algorithm for N spherical particlesin a
two-dimensional L XL box. Periodic boundary conditions
are enforced in the x direction, while the energy loss due to
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three dimensions), and the x;; are the pair correlation func-
tions at contact. The latter (unknown) quantities may be ap-
proximated by their elastic counterparts (see Ref. [24] for a
genera procedure to infer reliable pair correlation functions
in a multicomponent d-dimensional hard-sphere fluid from
the equation of state of the monodisperse system). In the
following analysis, it will turn sufficient to include only the
low-density behavior, x;;=1, to improve upon the ideal
equation of state P=P'%®=3.,.T,, that holds for p—0
only. We emphasize that no approximation has been made on
the single-particle velocity distribution in the derivation of
Eq. (4) (the key assumption is that the two-body distribution
function factorizes at contact in a product of the single-
particle distribution [25]).

It is instructive to check the validity of our equation of
state by considering the elastic limit where a;;=1 and T;
=T. A straightforward calculation (under the reasonable and
often made assumption that x;;= x;;) shows that the mass
ratio simplifies and expression (4) may be cast in the form

iXija )
g

which is the correct result (see, e.g., Ref. [26]). In particular,
for the single-species (monodisperse) problem, we recover
the virial relation P/(pT)=1+29"15y. Note tha Eq. (5)
corresponds to the equation of state put forward in Ref. [27],
which thus neglects the inelasticity of the collisions and the
associated breakdown of kinetic energy equipartition. On the
other hand, our approach fully incorporates these two fea
tures.

We finally generalize Eq. (4) to the situation of a continu-
ous size distribution, with a probability density distribution
W(o) (normalized to 1 so that (o")=fo"W); the tempera-
tureis, in general, a continuous function T(o) of size and

mg: (0'+0',)d
(1+aa'o")T(0-)
m

+m,, WXO’O" . (6)

o

collisions is compensated by an energy injection by two
walls situated at y=0 and y=L (we consider the amplitude
of motion of the walls to be small so that their positions are
considered as fixed [1], which avoids the complication of
heat pulses propagating through the system [28]). We will
refer to the y direction as the ** vertical” one, although we are
interested in regimes for which gravity can be neglected [7]
(i.e., when the shaking is violent enough). The energy can be
injected in two ways:

(1) By thermal walls that impose a given temperature of
order Ty [29]. When a particle collides with the wall, its new
vertical (along y) velocity is extracted at random from the
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FIG. 1. Density profiles for two normal inelasticities and two
densities. In all cases, the number of particlesis N=500. The sym-
bols correspond to the smallest density (the mean packing fraction
averaged over the whole system is 7,=0.015) and the lines are for
a higher density (79=0.04). The ratio 7(y)/ng is aso the ratio
p(y)/po of local density normalized by the mean one.

probability distribution function v/\Toexp[—v¥(2VTo)],
whereas v, is unaffected.

(2) By vibrating walls. For simplicity, we consider walls
of infinite mass moving in a sawtooth manner; all particles
colliding with a wall find it with the same velocity vo>0 at
y=0, —vg @ y=L. The particlewall collisions are consid-
ered elastic. A particle of velocity v with v, <0 colliding
with the bottom wall at y=0 (respectively, v,>0 at the up-
per wall) experiences its velocity change to v’ according to
vy=2vo—vy (respectively, vy=—2v,—v,), whereas the x
component is unaffected (vy=uvy).

In both cases, energy is injected in the vertical direction
only, and transferred to the other degrees of freedom through
interparticle collisions. The vibrating walls being the situa-
tion closer to the experimental one, most of our results will
be presented in this case, and the effect of injection modes
will be briefly discussed.

In this section, we consider the monodisperse case. All
particles have the same mass m(=1), diameter o, and res-
titution coefficients a and «'. Most of the simulations are
done with N=500 particles, and some with N=1000 par-
ticles (low enough to avoid clustering or inelastic collapse).
For our two-dimensional system, the local packing fraction
at height y, where the local density is p(y), is defined as
n(y)=mp(y)o?/4. The global (mean) packing fraction is
denoted 70; 7= J5n(y)dy/L.

Starting from a random configuration of the particles
(with the constraint of no overlap), we let the system evolve
until a steady state is reached. Data on density and tempera-
ture profiles as well as on velocity distributions are moni-
tored as time averages; the various quantities are averaged
along the x direction since the system remains homogeneous
in this direction.

B. Density and temperature profiles

The first observations concern the density and tempera-
ture profiles: Figures 1 and 2 show that the density is lower
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FIG. 2. Density prafiles 5(y)/ 7y (upward curves) and tempera-
ture profiles (downward curves) for a given normal restitution co-
efficient «=0.9 and different tangentia restitutions (N=500 par-
ticles, mean packing fraction 7,=0.015). The temperature is the
total one (including horizontal and vertical degrees of freedom); it
is expressed in arbitrary units but all curves correspond to the same
velocity of the vibrating piston. From top to bottom for the tem-
perature T(y) and from bottom to top for the density, the curves
correspond, respectively, to a'=—1, o'=-0.8, o'=-05, and
a'=0.2.

near the walls, where the temperature is higher as expected
since energy is injected at the walls and dissipated in the
bulk of the system [30]. The profiles are qualitatively similar
for thermal or vibrating boundaries. Moreover, the whole
temperature profile is proportional to the temperature T im-
posed by athermal wall or to the square of the velocity v of
the vibrating boundary, while a change in T or v, does not
change the density profile (not shown). As the mean density
increases or a decreases, the profiles get more heteroge-
neous; as ' is increased, more energy is transferred to rota-
tional degrees of freedom, so that the temperature decreases,
while the density profiles become dlightly more peaked
(Fig. 2).

Figure 3 clearly shows another feature resulting from the
energy injection into the vertical direction: the temperature is
anisotropic, i.e., (vf)#(vi), with T,>T>T,. The anisot-
ropy A(y)=(T,—T,/(2T) is larger a the boundaries,
where energy is fed into the vertical direction, decreases due
to interparticle collisions, and reaches a plateau in the middle
of the dab. The plateau value decreases for increasing num-
ber of particles or increasing densities (not shown), as in
experiments [ 8]; the global anisotropy profile and the plateau
values are comparable to experimental values [8].

C. Equation of state and hydrodynamics

The equation of state derived in Sec. Il reduces, in the
case of atwo dimensional one-component homogeneous sys-
tem, to the relation

P=pT[1+(1+a)nx], )

where y, the pair correlation function at contact, depends on
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T T

FIG. 3. Temperature profile for «=0.9 and 7y=4%. The hori-
zontal temperature T, , vertical temprature Ty, and the total tem-
perature T=(T,+T,)/2 are shown. The inset shows the anisotropy
factor A=(T,—T,)/(2T) as afunction of height.

the packing fraction z. We will use the form y=(1
—77/16)/(1— 7)2, which has been shown to be accurate for
elastic hard-disk liquids [31].

The hydrodynamic equations (see Appendix C and Ref.
[1]) lead to 9,P=0 in the absence of aflow field. We check
in Fig. 4(a) the constancy of P with y by plotting the ideal
gas contribution p(y) T(y) (lines) and P(y) given by Eq. (7)
(i.e., ideal gas contribution plus Enskog correction). While,
at small enough densities (not shown), p(y)T(y) is constant
in the bulk (y €[0.2L,0.8L]), the Enskog correction is nec-
essary for the densities used in Fig. 4 (note that the density
can be quite larger in the middle of the system than at the
boundaries). We also note that the inelasticity term (1+ «) is
relevant, although small at the densities presented [the pro-
files of pT(1+2nx), not shown, display a less uniform
shape with y, the effect being stronger at larger densities]. In
al cases, boundary layers (y<<0.2L and y>0.8L) are ob-
served [1] in which the pressure decreases. This discrepancy
can be related to the anisotropy described in the preceding
section (pressure and temperature are most anisotropic near
the walls).

0.6 r
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The comparison with hydrodynamics may be improved as
follows. The pressure tensor P is diagona in the present
no-flow situation, but has different xx and yy components,
and the homogeneity along the x direction implies that the
condition of vanishing flow field V-P=0 reduces to d,P,,
=0. We therefore check in Fig. 4(b) that the y-y component
of the pressure tensor, given by the equation of state (7) with
the total temperature T=(T,+ T,)/2 replaced by its vertical
component Ty, is uniform in the whole system. With Enskog
correction, the corresponding profiles are remarkably flat.
This result could be tested in experimental situations in
which both T, and T, are measured. Such an analysis vali-
dates both the hydrodynamic picture and the equation of
state proposed by automatically sampling several densitiesin
asingle run.

At low densities, assuming the ideal gas equation of state
to hold, the hydrodynamic study of Ref. [1] (recalled in Ap-
pendix C), leads to the following analytical prediction for the
temperature profile:

y &+sinh§cosh(&n—¢)
L £n+sinhé, ’
Cbn, \/7 £m
§—?_cosh 1( T—Ocosh7), 8

where T, is the temperature at the boundaries and &,, is
proportional to the total number of particles. The correspond-
ing fits of the temperature profiles are shown in Fig. 5; a
good agreement is obtained, especially at lower densities as
expected [since the ideal gas equation of state is a crucial
ingredient in the derivation of Eg. (8)]. We use one fitting
parameter &, to obtain T/T,, [32]. Figure 4 showed that con-
sideration of the “vertical” pressure Py, led to a better
agreement with hydrodynamic predictions than the total
Pxx* Pyy . A similar conclusion is incorrect for the tempera-
ture profiles. the transport equation for the temperature is
scalar [see Eq. (C2)], and Eg. (8) holds for the total T, not for
the vertical T, .

0.6 |~

04 |

02 |

(b)

0.6 0.8 1

0 02 0.4 .
y/L

FIG. 4. Pressure given by the equation of state (7). (a) The symbols correspond to P=p(y)T(y)[ 1+ (1+ @) n(y) x(y)] (see text), where
T isthe total temperature. The lines immediately below a given set of symbols show the ideal gas contribution p(y) T(y) only. For the three
situations investigated, the mean density is the same (7= 0.04). (b) Same figure with the vertical temperature T, instead of T inserted in
the equation of state, yielding therefore the yy component of the pressure tensor.
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FIG. 5. Fits of the temperature profiles measured in MD with
the analytical expression (8). The fits are shown with continuous
curves while the symbols stand for the MD measures. For clarity,
the fits are restricted to heights L/2<y=<0.8L.

D. Velocity distributions

Because of the energy injection through the walls, the
velocity distributions are anisotropic, and a priori depend on
the distance to the walls. The vertical velocity distribution
also depends on the nature of the walls as shown in Fig. 6. A
smooth distribution is obtained in the vicinity of a thermal
wall, while the incoming and outcoming particles yield two
separated peaks for vibrating walls (see aso Ref. [1]).

On the other hand, the rescaled horizontal velocity distri-
bution P(c,) (with cy=v,/\T,) is remarkably independent
of the distance from the walls (outside the boundary layers),
even if the temperature changes with y, at small enough den-
sities (this result was also obtained in Ref. [29]). At larger
densities, P(c,) becomes dlightly dependent on vy, as also
seen in recent similar MD simulations [33]. Figure 7 shows
clearly non-Gaussian features similar to the experimentally
observed ones [7,13,34], with in particular overpopulated
both small-velocity and high-velocity regions. A slight de-
pendence on the parameters is obtained: P(c,) broadens if
the inelasticity increases (i.e., if a decreases), if o' increases,
or if g or N increase. Experimentally, the dependence on
density or material properties is weak and difficult to mea-
sure [ 7] but seems to exist, in particular as far as N is varied
[9]. The angular velocity distributions, also displayed in Fig.
7, share a similar non-Gaussian character and the same de-
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&
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FIG. 6. Probability distribution function of the vertical velocity
component ¢, =v, /\/T, for different heights. By definition, (c?)
=1, whatever the dtitude y. Here, n,=0.04, N=500, «=0.9, and
a'=0.

pendence with the parameters.

As density or inelasticity are further increased, clustering
phenomena may occur, leading to heterogeneities along the x
direction, with the coexistence of colder, denser regions with
hotter, less dense ones. The average over the x direction then
leads to artificialy broad P(c,).

Finaly, as a generd rule, thermal walls lead to dlightly
broader velocity distributions than vibrating walls.

E. Effective restitution coefficients

We now turn to the study of the effective inelasticities
introduced in the context of a random restitution coefficient
(RRC) model [10,11]: even if the restitution coefficient « is
constant, the energy is injected in the vertical direction and
transferred to other degrees of freedom through collisions, so
that the effective restitution coefficient for collisions pro-
jected onto the x direction,

!
U12x

C)

X1d= )
U12x

may be either smaller or larger than 1 (see Ref. [3] for a
related discussion).
Values of a4 have been experimentally measured [9,11]

FIG. 7. (a) Probability distri-
bution function of the rescaled
horizontal velocity component ¢,
=v,/\T,, on a linear-log plot.
Here 7,=0.015, N=500, «=0.9

(pluses), 0.8 (stars), and a'=0.
The solid line is the Gaussian with
unit variance, the circles corre-
spond to experimental data [7,9]
for steel beads. (b) Probability dis-

tribution function of the angular

velocities for the same param-
eters.
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FIG. 8. Probability distribution function of effective one-
dimensional restitution coefficients a,4. The MD results are com-
pared to the experimental measures of Feitosa and Menon [9] on
steel and glass samples (for which the nominal restitution coeffi-
cient may be considered close to 0.9).

and shown to display a broad probability distribution w(a44)
very similar for various materials and densities. We have
measured «,4 for many collisions and thus obtained its dis-
tribution, displayed in Fig. 8 together with experimental data
for steel and glass beads. A remarkable agreement is found
[35], with a broad range of possible values for a;4. Our
study shows, in particular, that w(a,4) displays a a{dz tail
for a,4>1, irrespective of a, !, and density.

The importance of the correlations between a4 and the
relative velocity g=v4,//2T of the colliding particles has
been emphasized in Ref. [11] and is reveaed by the compu-
tation of u(a14/0y), the distribution of ay4 being condi-
tioned by a given value of g,; athough no precise experi-
mental determination of the conditional w(a44/gy) could be
achieved in Ref. [11], strong evidences for a sharp cutoff
«1/g, a large values of a1y were provided and the form
p(a1dlgy) = expl—(a1qg)/R] a large aiq has been pro-
posed. The conditional wu(aq4|gy) Obtained in the present
MD simulations confirm the above picture; they are dis-
played in Fig. 9 and show an exp[ —(a;40,)%/R] decrease for
the case of vibrating walls (closer to the experimental situa-
tion), and a broader form exp[ —(ay49,)/R’] for thermal walls.
Moreover, although u(a4q) is not sensitive to the various
parameters, the cutoff R increases [i.e., leads to broader
u(ar4l9y)] if @ decreases, and if o' or 7, increases.
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p(B)

FIG. 10. Probability distribution function of energy restitution
coefficients 8. Various tangential restitution coefficients o' are con-
sidered for = 0.9 and 7,=1.5%. The circles represent the experi-
mental data for steel grains [9].

Finally, the energy restitution coefficient

v/
_lois o
|012|

may also be viewed as arandom variable that can take values
larger than unity due to energy transfers between rotational
and trandational degrees of freedom [9,11]. Figure 10 dis-
plays the probability distribution function (PDF) p(B) ob-
tained in the MD simulations for various values of «!, to-
gether with the experimental data of Refs. [9,11] for steel
beads. p(8) becomes wider as a' is increased, but the ex-
perimental distribution is broader, which may be traced back
to the fact that in the experiments mentioned above, the
beads can rotate in three dimensions, whereas our simula-
tions are limited to 2D rotations.

The evolution with the parameters of the distributions u,
p, and of the velocity PDF P(c,) are clearly linked in our
simulations: broader conditional w(a14|gy) corresponds to
broader velocity distributions; for instance, both broader w
and P(c,) are obtained if « decreases, or, at fixed param-
eters, if vibrating walls are replaced by therma walls. This
connection is in agreement with the phenomenology put for-
ward in the context of the effective RRC model [10,11]. In
the RRC approach, the d-dimensional system with energy
injection along a preferential direction is replaced by a

FIG. 9. (a) Conditiona PDF
of a9 for a given value g, of
order unity. Note the different
shapes for therma and vibrating
walls. (b) Same, but as a func-
tion of (apg)? (and gy
=0.2,05,1.0,1.5,2.0,3.0,4.0,5.0)
for vibrated walls with «=0.9,
a'=0, and 7,=0.015.
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10 . . .
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FIG. 11. (a) The symbols show the pressure calculated from the complete equation of state for a binary mixture (11) including Enskog
correction, while the lines immediately below display the ideal gas contribution p,(y) T1(y) + p2(y) T2(y) to the pressure. The three sets of
curves correspond to: upper set, 7,=0.015, @;,=0.9, a,=0.8, @»=0.7, m;=5m,; middle set, 7,=0.04, @1;=0.9, @1,=0.8, @y
=0.7, m;=3m,; lower set, 7,=0.04, a1;=0.7, a1,=0.8, a»=0.9, m;=3m,. (b) Same curves, where the temperatures are the vertical
ones (T; ) instead of the total T;=(T; «+T; ,)/2, yielding therefore the yy component of the pressure tensor.

(d—1)-dimensional projected effective system in which the
restitution coefficient is a random variable [10] correlated
with the relative velocities of the colliding particles [11]. In
the present situation, d=2 and the effective model is one
dimensional. Although the real projected collisions are not
stochastic, one effectively injects at each collision a restitu-
tion coefficient randomly chosen from the distribution
w(aglgy). Taking u as an input for the model, close to the
experimental data, one obtains velocity distributions as out-
put, in good agreement with the experimental ones. The link
between u and P(c,) can be studied [11], and broader con-
ditional distributions w(aq4|gyx) yield broader P(c,) (at
large ¢, , compared to the Gaussian), as in our more realistic
simulations.

IV. MOLECULAR DYNAMICS SIMULATIONS FOR THE
BINARY MIXTURE

In this section, we investigate the properties of vibrated
binary mixtures, such systems have recently attracted much
attention, both on the experimental [6,13,14] and theoretical
sides [15—23,36,37]. In particular, the breakdown of energy
equipartition between the two constituents of the mixture has
been thoroughly investigated.

The main difference with previous studies consists here in
the realistic character of both MD simulations (as opposed to
Monte Carlo methods) and the energy injection mechanism
at the boundaries; the setup is the same as in the preceding
section, with, however, two types of particles, with masses
my, m,, and sizes o4, o,. The three normal restitution co-
efficients (corresponding to the three possible types of colli-
sions) are a1, @12=ay, ay. IN the context of a forcing
mechanism through a random external force [25,38], it has
been shown that the influence of size ratio on the tempera-
ture ratio measuring the energy nonequipartition was rather
weak [17] compared to that of inelasticity parameters or
mass ratio. We shall conseguently limit our study to identical
sizes g,= 0, in two dimensions, which corresponds to the
experimental situation we will refer to [6,9]. For simplicity,
the tangentia restitution coefficients a} j are also taken equal.

As in the monodisperse case, we measure density
and temperature profiles, velocity distributions, as well
as the temperature ratios y(y)=To(Y)/Ti(y), vx(Y)
=Tox(Y)/T1x(Y), vy(¥) =Toy(y)/T1y(y). Some compari-
son with experimental data [6,9] will be proposed whenever
possible.

A. Equation of state

We first test the equation of state (4) in Fig. 11. Asin the
monodi sperse case, the Enskog correction is clearly relevant,
even at low global densities, since the density profiles reach
relatively high values for y=L/2. It is, however, sufficient to
truncate the equation of state at second viria order, which
amounts to taking the low-density limiting value ;=1 for
the pair correlation functions at contact:

2

P=p T+ pyTo+ 5 [(1+ a11)pim,Ty

mo
2(my+m
+(1+ ag)p1pa(My T+ myTy) + (14 @) pom To].
(12)

Moreover, the boundary layer in which the anisotropy is
strong is still apparent if the global temperatures T, and T,
are used, while use of the vertical ones (T1y and T,,), sug-
gested by the anisotropy of temperatures and pressure as in
the monodisperse case, leads to a uniform yy component of
the pressure tensor in the whole system. The functional de-
pendence of pressure upon densities is therefore accurately
reproduced by the equation of state (11).

Although we have not extended the hydrodynamic ap-
proach of Brey etal. [1] to binary mixtures (it would be
possible making use of the Navier-Stokes-like equations de-
rived in Ref. [36] where only the overall temperature asso-
ciated with both species serves as a hydrodynamic field, but
where the transport coefficients explicitly depend on tem-
perature ratio), we see in Fig. 12 that the temperature profiles
can be fitted, at low density, by the form (8). We emphasize
that there is no fundamental reason for the agreement. The
quality of the fit is much better for the less massive particles
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o T, n;=0.01 0,=0.9.0.80.7
0 T, 1,=0.01 0,=0.9 0.8 0.7
+T, =001 0,=0.70.80.9
0.85 I x T, 1,=0.01 0,,=0.7 0.8 0.9

T(y), T(y)

O0.0-0©

0.45

FIG. 12. Temperature profiles for an equimolar granular mix-
ture, driven by vibrating walls. The symbols show the MD mea
sures, and the lines are fits to the analytical expression derived for
the single-component case. In all cases, the particle 1 (the heaviest)
has mass m;=3m,; its temperature T, corresponds to the two
lower sets.

whose density is more homogeneous across the system (see
the following). For simplicity, we have used the shorthand
notation «;;=0.7,0.8;0.9 for the situation where a;,=0.7,
a15=0.8, and ay»=0.9.

B. Nonequipartition of trandational kinetic energy

The density and temperature profiles are displayed for
various values of the parameters in Figs. 13 and 14. The
more massive particles (labeled 1), which display a more
heterogeneous profile and are denser in the middle of the
cell, have typicaly larger kinetic energies than the lighter
ones; generically, y=T,/T, is smaler than 1, as in homo-
geneous mixtures [16,17]. The study of the y dependence of
v shows that y increases from the boundaries to the center of
the system, and is constant across a wide range of y even if
T, and T, vary significantly. As also experimentally shown
in Ref. [6], y is very close to 1 if m;=m,, even if the

1

o O’QQ—OWGUD'D‘O’D’O‘S'QQO\O\O o
O " ~

08 > ¥ N
06 |
0.4

027f

PHYSICAL REVIEW E 66, 051303 (2002)

0 0.2 04 0.6 0.8 1
y/L

FIG. 14. Density profiles and temperature ratio profiles (binary
mixture, vibrating walls). The lines correspond to «j
=0.7;0.8;0.9, whereas the symbols are associated with “reverse”
inelagticities «;;=0.9;0.8;,0.7. The other parameters are a'=0,
my=3My, 710= 720, and no=27,,=0.015. The upper flatter
curves (dashed line and stars) show the temperature ratio. Asin Fig.
13, the density of heavy particles p; (thick continuous curve and
circles) is more peaked and denser in the middle of the cell than that
of light grains (thin continuous curve and squares).

inelasticities of the particles are different. It decreases if the
mass ratio increases (Fig. 13), but displays only a very weak
(but strikingly similar to experimental data) sensitivity on the
global density (Fig. 15) as well as on the relative densities of
heavy and light particles; moreover, y may increase or de-
crease as 7710/ 72 is increased (see Fig. 16), depending on
the relative inelasticities.

The anisotropy in the temperatures yield an anisotropic v;
we obtain, y,>y>v,, asin experiments [9], also with dif-
ferent shapes. y, decreases from the walls to the center while
y and vy, increase (Fig. 15). All these results are in very good
agreement with the existing experimental results for two-
dimensional vibrated mixtures [6,9]. We summarize in
Tables | and Il some of the effects reported here.

1

08 r 00009000020 0000A000, |
o - = fe)

-

086

04

0.2

FIG. 13. (a) Verticd profiles for a binary mixture with m;=3m,, 79=0.015, «;;=0.85, N=500, and equal mean densities 7,
= 17,0 (excitation by vibrating walls). From bottom to top: temperature profiles of both species, density profiles 7,(y)/(27,) and
m(y)/(270). Since o1= o, the packing fraction #; is proportional to the local density p; of speciesi. The upper dashed curve shows the
temperature ratio y=T,/T; as a function of height, and the circles show the same quantity for a nonequimolar mixture where 7,

=81,0. (b) Same with a higher mass ratio m;=5ms,.
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0.6 07
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FIG. 15. Effect of density on the temperature ratio for m;=3mj,, «;;=0.9;0.8,0.7 (vibrating walls). (a) shows the total ratio T, /T, and
(b) shows the ratio of horizontal temperatures T, /T4 . In both cases, the corresponding experimental measures are shown in the insets for
a steel-glass mixture (at different densities, but with a density ratio of 2, close to that of the MD simulations 0.04/0.015=2.6). The purpose
is to show that the changes induced by density in MD are qualitatively the same as in the experiments.

When rotations are included (and thus a'>—1), v de-
creases. Moreover, the ratio of rotational kinetic energies vy,
can then be measured. As shown in Tables | and Il, vy, takes
values of the same order as y. This quantity may also be
computed from experimental data, although measures of ro-
tational velocities are a priori more difficult than that of
translational ones.

The measured values of y are of the same order as the
experimental data. We do not however try to obtain a precise
numerical agreement for the following reasons:

(i) In the experiments of Ref. [6], the beads can rotate in
three dimensions, whereas the simulated spheres rotate in
two dimensions only. Since o' has a strong effect on v, we
suspect that this difference between experiments and simula-
tions may affect y. Moreover, the experimental value of o' is
not known, and the precise validity of the inelastic hard-
sphere model with a tangential restitution coefficient should
be assessed

(i) Different energy injection mechanisms (thermal vs vi-
brating walls, homogeneous driving vs injection at the

9800%

0.8 ¢ o e
----'_':.-_'—- ——— T - mmy
06 _41‘3__:{!-_H.++++++H+H+++++-l+++"+++4-+++l—_;.+_|_+;__r+:_”_
> 7 — 0,=070809,N=N, m=3m, >
04 | * 0,=0.7 0.8 0.9, N;=8N, m,=3m,
-- ¢,=090.80.7,N,=N, m=3m,
® 0,=0.9 0.8 0.7, N;=8N, m;=3m,
02 - 0=090807N=N, m=5m,
+ 0,;=0.9 0.8 0.7, N,=8N, m,=5m,
o L L L L
0 02 04 06 08 1

y/L

FIG. 16. Influence of number fraction on the temperature ratio
T,/T,. The total number of particles is N=N;+ N,=500 (vibrat-
ing walls). Given that o;=0,, N;/N,=8 corresponds to 7,
=81720-

boundaries) lead to different values of . Even if the energy
injection by vibrating walls is reasonably realistic, such a
sensitivity of y renders its precise numerical prediction elu-
sive.

Nonetheless, the qualitative very good agreement, even
for subtle effects (see, e.g., Fig. 15), between numerics and
experiment, and the possibility to change the various param-
eters in the simulations allow us to make some predictions
on the effect of various parameters. For example, increasing
the mass ratio should yield smaller values of y (Fig. 13).
Moreover, Fig. 14 makesit clear that the value of vy, at given
mass ratio, is smaller for inelasticities «;;=0.9;0.8;0.7 than
with “reverse” inelagticities «;;=0.7;0.8;0.9. This effect
was already noted in Ref. [17] and has the following intuitive
interpretation: when the more massive particles are more in-
elagtic, they lose more energy, their temperature decreases,
which results in a higher y. We therefore predict that in the
context of the experiments reported in Ref. [6], a mixture of
steel and auminum (agee~ 0.9, ~0.83,Mgee~3My))
should yield a smaller value of vy than the brass-glass mix-
ture (aprass™ 0.8,@g1ass™ 0.9,My; 456~ 3My) a55) fOr which the
measured vy is close to 0.6—0.7. The dependence of y upon
number fraction x;=p;/p may, on the other hand, be coun-
terintuitive: at a given mean density pg, an increase of the
relative fraction x, of heavy particles leads to an increase of
v when the heavy particles are the more elastic (see Fig. 16).

TABLE I. Values of vy, vy, v, in the middle of the system for
N=500, a;;=0.85, 710=7,9, M=3m, (first three lines), and
m;=5m, (last three lines).

t

o Y Yx Yr
-1 0.88 0.92
—-05 0.825 0.89 0.83
0 0.79 0.86 0.8
-1 0.79 0.845
-05 0.7 0.78 0.69
0 0.65 0.74 0.66

051303-9



A. BARRAT AND E. TRIZAC

TABLE Il. Values of vy, y,, 7, in the middle of the system for
N=500, «;;=0.9,0.8,0.7 (first three lines), and «;;=0.7,0.8,0.9
(l%t three Iines), m1:3m2, 71,0~ 72,0-

t

a Y Yx Yr
-1 0.735 0.775
-05 0.69 0.735 0.735
0 0.665 0.72 0.72
-1 0.95 10
-05 0.89 0.99 0.84
0 0.85 0.96 0.81

This effect was also clearly observed for the homogeneously
heated mixture [17]. On the other hand, an increase of x;
leads to a relatively weak decrease of y when the heavier
particles are the less elastic, whereas the opposite (albeit also
quite weak) trend could be observed in Ref. [17].

C. Velocity distributions

As in the monodisperse case, we have measured the
single-particle velocity distributions, which are anisotropic
as expected. The vertical velocity distributions are similar to
those shown in Fig. 6, and the horizontal velocity distribu-
tions show strong non-Gaussian features, as in the monodis-
perse case. Moreover, it appears in Fig. 17 that the rescaled
velocity distributions P,(c,) and P,(c,) are very close
(even if not equal, see also Ref. [23]) for both types of par-
ticles. The differences between P,(c,) and P,(c,) increase
if the inelasticities or the mass ratio increase. P;(c,) depend
dlightly on the various parameters, in the same way as the
velocity distributions of the monodisperse situation; this de-
pendence would probably be very difficult to measure in an
experiment, which would probably lead to the conclusion
that P;(c,)~Py(cy) -

10°

FIG. 17. Probability distribution functions of the rescaled hori-
zontal velocity components ¢; ,=v; ,/\/T; , for an equimolar mix-
ture. Squares are for P, (heavy grains) and circles for P, (light
grains). Here 7,=0.015, N=500, «;;=0.9,0.8,0.7, m;=3m,, and
a'=0. The solid line is the Gaussian with variance 1.
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V. CONCLUSION

In this study, we have considered vibrated granular gases
outside the Boltzmann limit of (very) low densities. The mo-
lecular dynamics simulations performed are free of the ap-
proximations underlying the usua kinetic theory or hydrody-
namic approaches. Taking due account of the first correction
to the ideal gas contribution in the equation of state (second
virial order), we, however, found a remarkable constant yy
component of the pressure tensor over the whole cell, for
monodisperse or bidisperse systems, despite the strong den-
sity and temperature heterogeneities due to the realistic en-
ergy injection mechanism.

The study of the velocity distributions along the horizon-
tal direction (perpendicular to the energy injection) has re-
vealed non-Gaussian features similar to experiments, which
depend weakly on the various parameters involved in the
model.

The projection of the dynamics onto the horizontal direc-
tion has alowed us to gain insight into the correlations be-
tween the effective restitution coefficient @4 and the relative
velocities g, of colliding particles. The measured conditional
probability distributions u(a14/gy) are in agreement with
the forms proposed in Ref. [11], based upon partial experi-
mental data. The link between w(aq4/0y) and the velocity
probability distribution functions [11] has been confirmed.

In the case of binary mixtures we have analyzed the ratio
of granular temperatures as a function of the various param-
eters, and found a very good qualitative agreement with ex-
periments. The velocity distributions of the two components
have, moreover, been shown to be very similar.
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APPENDIX A: INCLUSION OF A TANGENTIAL
RESTITUTION COEFFICIENT

In this appendix we give the collision rules when a tan-
gential restitution coefficient is introduced (see aso Ref.
[12]). The two colliding particles labeled (1) and (2) have
masses m;, diameters o;, and moment of inertia I,
= miqaizl4 (with g=1/2 for disks and 2/5 for spheres). The
precolliding velocities are v;,w;, and postcolliding veloci-
ties are denoted with primes.

The normal unit vector is defined as

A~ I’l— rz
o= (AD
[r—r2]
The relative velocity of the contact point,
(oX] (0] ~
Jg=v1—Uy 7(014'?(02 X o, (AZ)

has normal component g,=(g- o) & and tangential compo-
nent g,=g—g, (this defines the tangential unit vector t
=0i/|gl.
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The postcollisional velocities can be expressed simply in
terms of the precollisional velocities through the introduction
of the linear momentum change of particle (1),

AP=my(v;—vy)=—my(v,—vy). (A3)

Indeed, the change of angular momentum is

%Iii(w{ w)=—oXxAP. (A4)
One obtains
vi=v,t i]—lj, (A5)
vézvz_rAn—}:' (A6)
o = oy — %&x AP. (A7)

The normal and tangential components of AP are then com-
puted using the definition of the normal and tangential coef-
ficients of restitution:

Oh=—agn, (A8)
o =—a'g. (A9)

Since g,= v,)- olo, the first relation leads to

[(v1—

m;m;

AP~0'=—m +m2(1+a)(v1—v2)-0'. (A10)

Using the definition of g;, and with Ii=miqai2/4, one also

obtains

Ns

PHYSICAL REVIEW E 66, 051303 (2002)

+AP ! + ! 1+1 (A11)
g =0 U, " my, ql’
where AP,=(AP-1)t. Finaly,
Ap=— a2 Lo A12
=T m, (1+a)gy+ T 1Y) (A12)

APPENDIX B: EQUATION OF STATE FOR A
POLYDISPERSE INELASTIC MIXTURE

In this appendix, we adopt a kinetic definition of the total
pressure and compute this quantity for an arbitrary homoge-
neous mixture of species i, with number fraction x;=p;/p.
Invoking the virial theorem, the excess pressure P®=P
— P9 =p_3. 5T, is related to the collisional transfer of
linear momentum: the partial excess pressure of species i
reads (see, e.g., Ref. [39])

11
P¥=lim—— =~
tﬂmdv t j,collisional partner of i

| 11
=11M-=
_aVv t j, collisional partner of i M+ M;

(1+a|J)

0'i+0'j

2

X(&'-vij)aij where Oij= (BZ)
In these equations, it is understood that the summation runs
over all the callision events involving a particle of typei and
an arbitrary partner j, in a large volume of measure V. The
collisional transfer appearing in Eq. (B2) isreadily computed
within Enskog-Boltzmann kinetic theory, where the velocity
distribution functions ¢;(v) obey the set of nonlinear equa-
tions,

1
0t¢i(vlyt):j§=:1 Xija-?j ' Jd02J d0’® 0' 012)(0' v1) 2‘P|(”1)<P1(Uz) <P|(Ul)<P1(Uz) (B3)

aij

where ® denotes the Heaviside distribution and (v7 ,v%) are the precollisiona velocities converted into (v,,v,) by the

collision rules (1) and (2). Equation (B2) may be rewritten as

1 Ns

i Zd Z Xijo |] fdvldUZJ dO’@(O’ Ulz)(ﬂ' U]_2)(P|(U]_)QDJ(U2)m +m (1+a|1)(0' 1)12)0'”. (84)

Summing the contributions of all species, the total excess pressure follows:

ZdEX'JU nin;

B 1 2 q m;m; 1
~2d & XijUijninjm+mj( + ajj)

<1+a.,)f dvldvzf 4606 v1)(&-012) %01 (01) 9, (02) (B5)

fd&@(,}.alz)(&.{,lz)ZUdvldvz(u§+ug)goi(vl)goj(vz), (B6)
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where v 1, is the unit vector along v4,, and where the con-
tribution from the dot product v4- v, vanishes by symmetry

in the last integral. The integral over the solid angle o is
related to the volume V4 of a sphere with diameter 1:

dr2

dr'(d/2)

=20"1vy,
(B7)

f do O (0 v1,) (0 v1)%=

where I is the Euler function and it is understood that v 1,
denotes an arbitrary unit vector in Eg. (B7). The volume V4
is itself related to the packing fraction #n through #
=pVy(a%). From the definition of kinetic temperatures
Jv2pi(v)dv=dT;/m;, we get

m;m; T T\ o
& od-2 | l L —
_ iXiXi ——— (1t aj))| —+ —|—4-
P pnz IZJ XI]XIXJ m|+m](1 al])(mi mj)<o_d>1
(BY)

from which we deduce the equation of state (4). In this last
step, no approximation (e.g., Gaussian, etc.) is made con-
cerning ¢; . On the other hand, the computation of any other
moment (o v1,)P than p=2 requires the detailed knowl-
edge of the velocity distributions [25]. It is also noteworthy
that the decoupling of velocities v, and v, in Eqg. (B6) isa
specific property of the momentum transfer, which signifi-
cantly simplifies the calculation.

APPENDIX C: HYDRODYNAMICS

In this appendix, we recall the hydrodynamical approach
considered by Brey et al. [1], and adapt it to the case of
energy injection at both boundariesy=0 and y=L. The situ-
ation investigated in Ref. [1] is that of a vibrating wall at y
=0 and a reflecting wall a y=L, so that the temperature
and density gradients vanish at y=L. In our no-flow con-
figuration with two vibrating walls, the gradients vanish by
symmetry in the middle of the cell (y=L/2), so that restrict-
ing to ye[0,L/2] alows us to use directly the expressions
derived in Ref. [1] (which amounts to the formal identifica-
tion y—2y and N—2N). For completeness and clarity, we
will, however, adapt the argument to our geometry.

In the case of a stationary system without macroscopic
velocity flow, the hydrodynamic equations reduce to

(Cy

2
p—dv-q+Tg=o. (C2)

Here P is the pressure tensor, q is the heat flux, and ¢ the
cooling rate due to the collisional energy dissipation. In the
Navier-Stokes approximation for alow-density gas described
by the Boltzmann equation modified to account for the in-
elastic nature of collisions [40],

PHYSICAL REVIEW E 66, 051303 (2002)

P=PI, (C3

q=—«VT—uVp, (C4)

where P is the ideal gas pressure P=pT. The explicit ex-
pressions of the heat conductivity «, the transport coefficient
., and cooling rate £ may be found in Ref. [1]. The impor-
tant ingredient is that u is proportional to T¥%p and « to
JT, while ¢ocp//T, with coefficients depending on the in-
elagticity .

The system is considered homogeneous in the x direction,
so that only gradients along the y direction are taken into
account. We emphasize that the ideal gas equation of state
(P=pT) is assumed, and this simplification is an important
ingredient in the following derivation. The previous equa
tions then reduce to

£=o, (C5)
ay

2A(a) 9 aT

i W(ﬁa—y)—pﬁw. (C6)

In order to simplify the eguation on the temperature, it is
convenient to introduce a new variable ¢, defined by

d
dé=a(a) ——=Co" 1a(a)p(y)dy,

Ny) €7

where A (y)=[Co9 !p(y)]"! is the mean free path (C
=22 for d=2), and a(«) includes al the dependence in
a. Equation (C6) now reads

(C8)

(92
ST

The variable ¢ takes values between 0 and &, with &,
«N. Then T=A exp(— & +Bexp(&), where A and B depend
on the boundary conditions. In the case of two vibrating
walls, the solution is symmetric with respect to y=L/2 (or
E=¢1/2). With T(0)=T(&,,)=Tg, one obtains

To . :
T(§)= : [sinh(ém— &) +sinh £]%. (C9)

sinh?

It is possible to integrate dé=Co% t\a(a)n(y)dy
=Co% 1\a(a)pdy/T(y) to obtain y(£) and P:
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P= (§mt+sinhéy), (C10)

2CoY 1L \/a(a)coshz?m

y ¢&+sinh§cosh(én—§)
L E+snhé,

(C11)

Those equations are the same as for the case of one vibrating
wall [1], but with £,,—2¢,, and L— 2L, as expected on the

PHYSICAL REVIEW E 66, 051303 (2002)

basis on the symmetry argument proposed above. It is pos-
sible to invert T(£) and therefore to obtain the profiles y(T)
(two symmetric branches):

-
£= %tcosh_l( \EO cosh %) (c12)
y_ &+snh & cosh(é,— €) (C13)
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