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The general methodology used to construct Internet maps consists in merging all the discovered paths
obtained by sending data packets from a set of active computers to a set of destination hosts, obtaining a
graphlike representation of the network. This technique, sometimes referred to as Internet tomography, spurs
the issue concerning the statistical reliability of such empirical maps. We tackle this problem by modeling the
network sampling process on synthetic graphs and by using a mean-field approximation to obtain expressions
for the probability of edge and vertex detection in the sampled graph. This allows a general understanding of
the origin of possible sampling biases. In particular, we find a direct dependence of the map statistical accuracy
upon the topological propertiessin particular, thebetweenness centralitypropertyd of the underlying network.
In this framework, it appears that statistically heterogeneous network topologies are captured better than the
homogeneous ones during the mapping process. Finally, the analytical discussion is complemented with a
thorough numerical investigation of simulated mapping strategies in network models with varying topological
properties.
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I. INTRODUCTION

In recent years a considerable research effort has been
focused on the field of complex networksf1–3g. The main
reason for this effort finds its rationale in the very pervasive
presence of biological, social, or technological structures that
can be described using the paradigm of complex networks.
At a very abstract level, a network is a system composed of
many elementary agentssnodesd cooperating via relations or
interactions between themslinksd. The physical Internet is
one of the most common examples of complex networks in
the real society. Its growing structure is the result of com-
petitive and cooperative processes, in which individual
choice, optimization criteria, and policy-driven strategies co-
operate with the lack of any centralized control in determin-
ing the self-organized evolution of the systemf4,5g. All these
factors lead to the formation of a complex structure, whose
fabric and topology is largely unknown. In the absence of
accurate Internet maps many research groups have started
large scale projects aimed at the collection of data on the
topology and structure of this network of networksf6–10g.
Investigations can be made at different granularity levels
such as the router and autonomous systemsASd level, with
the final aim of obtaining an abstract representation, where
the set of routers or ASs and their physical connections are,
respectively, the vertices and edges of a graph. Researchers
rely on a general strategy that consists in acquiring local
views of the network from several vantage points and merg-
ing these views in order to get a presumably accurate global
map. Local views are obtained by evaluating a certain num-
ber of paths to different destinations by using specific tools
ssuch as tracerouted or by the analysis of routing tablessthe
so-called border gateway protocolfBGPg tablesd f5–10g.

The importance of traceroutelike mapping processes re-
sides in their simplicity and generality. The traceroute com-

mand sends probessdata packetsd toward a certain Internet
nodesInternet provider addressd, providing the addresses of
the traversed nodes. The merging of the discovered paths
allows the construction of a graphlike representation of the
Internet whose vertices are routers or ASs. By using tracer-
outelike mapping processes, a number of research groups
have generated maps of the Internetf6–10g that have been
used for the statistical characterization of the network prop-
erties. The obtained maps show that the undirectedsparse
graph representing the Internet is asmall world, an essential
property for the efficient functioning of an information net-
work. More strikingly, many studies have reported evidence
for a heavy-tailed behavior of the Internet degree distribu-
tion: in particular, inf11g, a power-law degree distribution
Pskd,k−g with 2øgø2.5 has been found. Several other
studies have collected data from Internet explorations, all
confirming a broad behavior of the degree distribution, at
both the router and AS levelf12–16g. The evidence for a
very heterogeneous topology of the Internet, prompting the
inadequacy of the standard paradigm of homogeneous net-
works, has thus generated a large activity in the field of
network modelingf2,4,5,17,18g.

Despite the flexibility of traceroute-driven strategies, the
obtained maps are undoubtedly incomplete. In addition to
factors causing path distortion and other subtle technical
problemsf19g, the relatively small number of sources from
which the mapping projects are usually run allows combined
views missing a considerable fraction of edges and vertices
f16,20g. In particular, the various spanning trees are espe-
cially missing those links that belong to transversal paths
with respect to the shortest paths toward the targetssthe so
calledlateral connectivityd. Moreover, they sample more fre-
quently nodes and links that are closer to each source, intro-
ducing spurious effects that might seriously compromise the
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statistical accuracy of the sampled graph. Thesesampling
biaseshave been explored in numerical experiments of syn-
thetic graphs generated by different algorithmsf21–24g. In
the case of a single source, it has been shown that apparent
degree distributions with heavy tails may be observed for the
sampled graph even if the underlying real graph is homoge-
neous ssuch as in the classic Erdös-Rényi graph modeld
f21,22g, or that the measure of the exponents of the degree
distribution can be biasedf22,23g. These studies thus point
out that the evidence obtained from the analysis of the Inter-
net sampled graphs might be insufficient to draw conclusions
on the topology of the actual Internet network.

While traceroute probes take into account traffic loads,
differences of bandwidth, policy strategies, failures, and
other factors that can affect the actual path chosen by pack-
ets, the simplest model of traceroute exploration amounts to
consider the collection of shortest paths for a source-target
pair. Indeed, shortest path routing can be considered as a first
approximation to the real probing path and the merging of
several of these views an approximation to the mapping pro-
cess. In this work we focus on the tight relation between
statistical stopologicald properties of a network and tracer-
outelike mapping strategies based upon shortest path routing,
with the purpose of understanding how the different topolo-
gies respond to the sampling process and what are their char-
acteristic signatures in terms of statistical quantities. We
tackle the problem by performing a mean-field statistical
analysis and extensive numerical experiments of shortest
path routed traceroutelike sampling in different network
models. We find an approximate expression for the probabil-
ity of edges and vertices to be detected that exploits the
dependence upon the number of sources and targets and the
topological propertiesssparseness, betweennessd of the net-
works. This expression allows the understanding, at a quali-
tative level, of the efficiency of exploration methods by
changing the number of probes imposed on the graph. More-
over, the analytical study provides a general understanding of
which kind of topologies yields the most accurate sampling.
In particular, we show that the map accuracy depends on the
underlying network betweenness distribution; the heavier the
tail, the higher the statistical accuracy of the sampled graph.

We substantiate our analytical finding with a thorough
analysis of maps obtained by varying the number of source-
target pairs on network models with different topological
properties. The results show that single source mapping pro-
cesses face serious limitations in that also the targeting of the
whole network results in a very partial discovery of its con-
nectivity. On the contrary, the use of multiple sources
promptly leads to a consistent increase in the accuracy of the
obtained maps, where the statistical degree distributions are
qualitatively discriminated even at low values of target den-
sity. A detailed discussion of the behavior of the degree dis-
tribution and other statistical quantities, as a function of the
number of targets and sources, is provided for sampled
graphs with different topologies, and compared with the in-
sight obtained by analytical means.

The paper is structured as follows. In Sec. II we discuss
the theoretical model of traceroutelike processes. In Sec. III,
a mean-field statistical analysis of the model is developed, in
order to obtain analytical predictions of the discovery prob-

abilities. A throughout numerical exploration of several net-
works with different topological properties is provided in
Sec. IV, stressing the agreement between analytical predic-
tions and numerical results.

II. MODELING THE TRACEROUTE DISCOVERY
OF UNKNOWN NETWORKS

As sketched in the Introduction, in a typical traceroute
study, a set of active sources deployed in the network runs
traceroute probes to a set of destination nodes. Each probe
collects information on all the nodes and edges visited along
the path connecting the source to the destination, allowing
the discovery of the networkf19g. By merging the informa-
tion collected on each path, it is possible to reconstruct a
partial map of the networkssee Fig. 1d. While in the Internet
many factors, including commercial agreement and adminis-
trative routing policies, contribute to determine the actual
path, it is clear that, to a first approximation, the route ob-
tained by traceroutelike probes is the shortest path between
the two nodes. This assumption, however, is not sufficient
for a proper definition of a traceroute model in that equiva-
lent shortest paths between two nodes may exist. In the pres-
ence of a degeneracy of shortest paths we must therefore
specify the traceroute model by providing a resolution algo-
rithm for the selection of shortest paths.

For the sake of simplicity, we can define three selection
mechanisms.

s1d The unique shortest pathsUSPd probe. In this case the
shortest path route selected between two nodesi and j is
always the same independently of the sourceS and targetT
sthe path being initially chosen at random among all the
equivalent onesd.

s2d The random shortest pathsRSPd probe. The shortest
path between any node pair is chosen randomly among the
set of equivalent shortest paths. This might mimic the effects
of traffic congestion and administrative policies that can
make independent the paths among pairs of nodes.

s3d The all shortest pathssASPd probe. This procedure
discovers all the equivalent shortest paths between source-
destination pairs. This might happen in the case of probing

FIG. 1. Illustration of the traceroutelike procedure. Shortest
paths between the set of sources and the set of destination targets
are discoveredsshown in full linesd while other edges are not found
sdashed linesd. Note that not all shortest paths are found since the
“unique shortest path” procedure is used.
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repeated in timeslong time explorationd, so that equivalent
paths are discovered in different runs.

Actual traceroute probes contain a mixture of the three
mechanisms defined above, though we do not attempt to ac-
count for all the subtleties that real studies encounter. Each
traceroute model provides a test of the possible biases and
we will see that the different mechanisms have only little
influence on the general picture emerging from our results.
On the other hand, it is intuitive to recognize that the USP
model represents the worst case among the three different
methods, since it yields the minimum number of discoveries.
In this perspective, even real mapping should provide very
likely a more optimistic scenario than those determined by
the USP case. For this reason, if not otherwise specified, we
will report the USP data to illustrate the general features of
our synthetic exploration.

More formally, the experimental setup for our simulated
traceroute mapping is the following. LetG=sV,Ed be a
sparse undirected graph withN nodes; we define the sets of
verticesS=hi1, i2, . . . ,iNS

j and T=h j1, j2, . . . ,jNT
j specifying

the random placement ofNS sources andNT destination tar-
gets. For each ensemble of source-target pairsV=hS ,Tj, we
compute the path connecting each source-target pair accord-
ing to the USP method. The sampled graphG=sV* ,E*d is
defined as the set of verticesV* swith N* = uV* ud and edgesE*

induced by considering the union of all the paths connecting
the source-target pairs. The sampled graph is thus analogous
to the maps obtained from real traceroute sampling of the
Internet.

In our study the parameters of interest are the densityrT
=NT/N and rS=NS/N of targets and sources. In general,
traceroute-driven studies run from a relatively small number
of sources to a much larger set of destinations. For this rea-
son, in many cases it is appropriate to work withNS instead
of the corresponding density. On the contrary, the density of
targetsrT allows us to compare mapping processes on net-
works with different sizes by defining an intrinsic percentage
of targeted vertices. In many cases, as we will see in the next
sections, an appropriate quantity representing the level of
sampling of the networks is

e =
NSNT

N
, s1d

that measures the density of probes imposed on the system.
In real situations it represents the density of traceroute
probes in the network and therefore a measure of the load
provided to the network by the measuring infrastructure.

In the following, our aim is to evaluate to what extent the
statistical properties of the sampled graphG depend on the
parameters of our experimental setup and are representative
of the properties of the underlying graphG.

III. MEAN-FIELD THEORY OF THE DISCOVERY BIAS

By means of the following mean-field statistical analysis
of the simulated traceroute mapping, we provide a statistical
estimate for the probability of edge and node detection as a
function ofNS, NT and the topology of the underlying graph.

Let us define the quantitysi,j
sl,md that assumes the value 1 if

the edgesi , jd belongs to the path selected by the traceroute
model between nodesl andm, and 0 otherwise. For a given
set V=hS ,T j, the characteristic function that indicates if a
given edgesi , jd is discovered and belongs to the sampled
graph can then be written as

pi,j = 1 − p
lÞm

S1 − o
s=1

NS

dl,iso
t=1

NT

dm,i t
si,j

sl,mdD . s2d

This function is simplypi,j =1 if the edgesi , jd belongs to at
least one of the paths connecting the source-target pairs, and
0 otherwise. The average over all possible realizations of the
setV=hS ,T j gives us the statistical counterpart of the char-
acteristic function, that is, the discovery probability. In the
following, we will make use of an uncorrelation assumption
that allows an explicit approximation for the discovery prob-
ability. Neglecting correlations between the paths generated
by different source-target pairs, the discovery probability is
thus obtained by considering the edge in an average effective
medium of sources and targets homogeneously distributed in
the network. In this approximation, the average of the prod-
uct can be replaced by the product of the averages, and re-
calling that each nodei has, on average, a probability to be a
source or a target proportional to their respective densities,

Ko
t=1

NT

di,i tL = rT and Ko
s=1

NS

di,isL = rS, s3d

the average discovery probability of an edgeis

kpi,jl = 1 −Kp
lÞm

S1 − o
s=1

NS

dl,iso
t=1

NT

dm,i t
si,j

sl,mdDL
. 1 − p

lÞm

s1 − rTrSksi,j
sl,mdld. s4d

This expression simply states that each possible source-target
pair is weighted in the average with the product of the prob-
ability that the end nodes are a source and a target. The
realization average ofksi,j

sl,mdl is very simple in the uncorre-
lated picture, depending only on the kind of probing model.
In the case of the ASP method, all shortest paths are discov-
ered, so thatksi,j

sl,mdl is just 1 if si , jd belongs to one of the
shortest paths betweenl andm, and 0 otherwise. In the case
of the USP and the RSP, the situation is slightly different
since only one of the possibly multiple shortest paths be-
tweenl andm is discovered. If we denote byssl,md the num-
ber of shortest paths between verticesl and m, and by
xi,j

sl,md the number of these paths going throughsi , jd, it is then
clear that the probability that the traceroute model chooses
a path going through the edgesi , jd between l and m
is ksi,j

sl,mdl=xi,j
sl,md /ssl,md.

The standard situation we consider is the one in which
rTrS!1 and sinceksi,j

sl,mdlø1, we have

p
lÞm

s1 − rTrSksi,j
sl,mdld . p

lÞm

exps− rTrSksi,j
sl,mdld, s5d

which inserted in Eq.s4d yields

STATISTICAL THEORY OF INTERNET EXPLORATION PHYSICAL REVIEW E71, 036135s2005d

036135-3



kpi,jl . 1 − p
lÞm

fexps− rTrSksi,j
sl,mdldg = 1 − exps− rTrSbijd,

s6d

wherebij =olÞmksi,j
sl,mdl. In the case of the USP and RSP, the

quantitybij is by definition the edge betweenness centrality
olÞmxi,j

sl,md /ssl,md f25,26g, sometimes also refereed to as the

“load” f27g sin the case of ASP, it is a closely related quan-
tityd. The betweenness, a classical nonlocal measure of the
centrality of an edge or vertex in the graph, can be seen, in
this context, as a measure of the traffic load that goes
through an edge or vertex, if the shortest path is used as
defining the optimal path between pairs of vertices.

The edge betweenness assumes values between 2 and
NsN−1d and the discovery probability of the edge will there-
fore depend strongly on its betweenness. In particular, for
vertices with minimum betweennessbij =2 we have

kpi,jl . 2rTrS, s7d

which recovers the probability that the two end vertices of
the edge are chosen as source and target. This implies that, if
the densities of sources and targets are small but finite in the
limit of very large N, all the edges in the underlying graph
have an appreciable probability to be discovered. Moreover,
for a large majority of edges with high betweenness, the
discovery probability approaches 1 and we can reasonably
expect to have a fair sampling of the network.

In most realistic samplings, however, we face a very dif-
ferent situation. While it is reasonable to considerrT a small
but finite value, the number of sources is not extensivefNS

,Os1dg and their density tends to zero asN−1. In this case it
is more convenient to express the edge discovery probability
as

kpi,jl . 1 − exps− eb̄ijd, s8d

wheree=rTNS is the density of probes imposed to the system

and the rescaled betweennessb̄ij =N−1bij is now limited in
the intervalf2N−1,N−1g. In the limit of large networkssN
→`d it is clear that edges with low betweenness have
kpi,jl,OsN−1d, for any finite value ofe. This readily tells us
that in real situations the discovery process is generally not
complete, a large part of low betweenness edges being not
discovered, and that the network sampling is made progres-
sively more accurate by increasing the density of probese.

A similar analysis can be performed for the discovery
probabilitykpil of a vertexi. For each source-target setV we
have that

pi = 1 −S1 − o
s=1

NS

di,is
− o

t=1

NT

di,i tD
3 p

lÞmÞi
S1 − o

s=1

NS

dl,iso
t=1

NT

dm,i t
si

sl,mdD . s9d

wheresi
sl,md=1 if the vertexi belongs to the path selected by

the traceroute model between nodesl and m, and 0 other-
wise. In this formula, it has been considered that vertices

belonging to the set of sources or targets are discovered with
probability 1. The second term on the right hand side, there-
fore, expresses that the vertexi does not belong to the set of
sources and targets and is not discovered by any selected
path between source-target pairs. By using the same mean-
field approximation as previously, the average vertex discov-
ery probability reads as

kpil . 1 − s1 − rS− rTd p
lÞmÞi

s1 − rTrSksi
sl,mdld. s10d

As for the case of the edge discovery probability, the average
considers all possible source-target pairs weighted with prob-
ability rTrS. In the ASP model, the averageksi

sl,mdl is 1 if i
belongs to one of the shortest paths betweenl andm, and 0
otherwise. For the USP and RSP models,ksi

sl,mdl
=xi

sl,md /ssl,md wherexi
sl,md is the number of shortest paths be-

tweenl andm going throughi. If rTrS!1, by using the same
approximations used to obtain Eq.s6d, we obtain

kpil . 1 − s1 − rS− rTdexps− rTrSbid, s11d

where bi =olÞmÞiksi
sl,mdl. For the USP and RSP cases,bi

=olÞmÞixi
sl,md /ssl,md is the vertex betweenness centrality

which is limited in the intervalf0,NsN−1dg f25–27g. For
instance, the leaves of the graph are dangling ends discov-
ered only if they are either a source or a target themselves;
they have betweenness valuebi =0 and, indeed, we recover
kpil.rS+rT.

As discussed before, the most usual setup corresponds to
a densityrS,OsN−1d and in the largeN limit we can con-
veniently write

kpil . 1 − s1 − rTdexps− eb̄id, s12d

where we have neglected terms of orderOsN−1d and the res-

caled betweennessb̄i =N−1bi is now defined in the interval
f0,N−1g. This expression points out that the probability of
vertex discovery is favored by the use of a finite density of
targets that defines its lower bound.

We can also provide a simple approximation for the ef-
fective average degreekki

*l of the nodei discovered by our
sampling process. Each edge departing from the vertex will
contribute proportionally to its discovery probability, yield-
ing

kki
*l = o

j

f1 − exps− eb̄ijdg . eo
j

b̄i j . s13d

The final expression is obtained for edges witheb̄ij !1. In
this case, the sum over all neighbors of the edge betweenness
is simply related to the vertex betweenness aso jbij =2sbi

+N−1d, where the factor 2 considers that each vertex path
traverses two edges and the termN−1 accounts for all the
edge paths for which the vertex is an end point. This finally
yields

kki
*l . 2e + 2eb̄i . s14d

The present analysis shows that the measured quantities
and statistical properties of the sampled graph strongly de-
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pend on the parameters of the experimental setup and the
topology of the underlying graph. The latter dependence is
exploited by the key role played by edge and vertex be-
tweenness in the expressions characterizing the graph dis-
covery. The betweenness is a nonlocal topological quantity
whose properties change considerably depending on the kind
of graph considered. This allows an intuitive understanding
of the fact that graphs with diverse topological properties
deliver different answer to sampling experiments.

IV. NUMERICAL EXPLORATION OF GRAPHS

Let us consider a sparse undirected graph, denoted byG
=sV,Ed. We will consider two main classes:sid homoge-
neous andsii d heterogeneous graphs. Graphs are considered
to behomogeneousif the degree distributionPskd is peaked

around its average valuek̄. This average is then meaningful
and typical of any given vertex. On the contrary,heteroge-
neousgraphs display degree values ranging over various or-
ders of magnitude, and the average value is not representa-
tive or typical sfor example, the maximum value of the

degree,kmax, is much larger thank̄d. As a prototype of het-
erogeneous graphs, we consider the class ofscale-free
graphs, for which Pskd has a heavy tail decaying as a power
law Pskd,k−g; such graphs are very heterogeneous, with
large fluctuations of the degree, characterized by a variance
of the degree distribution diverging with the size of the net-
work.

Another important characteristic discriminating the topol-
ogy of graphs is the clustering coefficientci which, giving
the fraction of connected neighbors of a given nodei, mea-
sures the local cohesiveness of nodes. The average clustering
coefficientC=s1/Ndoici provides an indication of the global
level of cohesiveness of the graph. This number is generally
very small in random graphs that lack correlations. In many
real graphs, however, the clustering coefficient appears to be
very high and opportune models have been formulated to
represent this property, for both homogeneous and heteroge-
neous graphs. In the following sections we will make use of
those models that can be considered typical examples of the
various classes. The numerical procedure is in all cases the
following: sid we consider a graph with given topological
properties;sii d we choose at randomNS vertices as sources
andNT vertices as targets;siii d we compute the shortest paths
between sources and targets;sivd the properties of the graph
obtained by the merging of the shortest paths are analyzed
and compared to those of the original graph, in particular to
test the predictions of the mean-field analysis.

A. Sampling homogeneous graphs

Our first set of simulations considers underlying graphs
with homogeneous connectivity; namely, the Erdös-Rényi
sERd and the Watts-StrogatzsWSd models.

The classical Erdös-Rényi modelf28g is a typical example
of a homogeneous graph, with degree distribution following
a Poisson law, and very small clustering coefficientsof order
1/Nd. Since an ER graph can consist of more than one con-
nected component, we consider only the largest of these

components. Another homogeneous graph can be obtained
with the construction algorithm proposed by Watts and Stro-
gatz for small-world networksf29g: starting from a regular
network se.g., a one-dimensional lattice with connections to

the k̄ nearest neighbors along the chaind, each link is rewired
with a certain probabilityp. The resulting degree distribution
has a shape similar to the case of Erdös-Rényi graphs,
peaked around its average value. The clustering coefficient,
however, is large if the rewiring probabilityp!1, making
this network a typical example of a clustered homogeneous
network. As for the ER case, it is possible to obtain graphs
consisting of more than one connected component; in this
case we use the largest of these components.

We have used networks withN=104 nodes,k̄=20 unless
otherwise specified; for the WS model,p=0.1 has been taken
ssee Table Id. Each measurement is averaged over ten real-
izations. For both models, and similarly to the degree distri-
bution, the vertex and edge betweenness distributions are

peaked around their average valuesb̄ and b̄e, respectively.
The node betweenness cumulative distribution is reported in
Fig. 2, confirming the narrowness of the values interval

around the characteristic valueb̄, with maximal values much
smaller thanN, and increasing only slowly withN. Since a
large majority of vertices and edges will have a betweenness
very close to the average value, we can use Eqs.s8d ands12d
to estimate the order of magnitude of probes that allows a

TABLE I. Main characteristics of the graphs used in the numeri-
cal exploration.

ER ER WS BA DMS

N 104 104 104 104 104

uEu 105 53105 105 43104 23104

k̄ 20 100 20 8 4

C 0.002 0.01 0.52 0.006 0.74

kmax 40 140 26 334 346

FIG. 2. Cumulative distribution of the average node between-

nessb̄ in the ER and WS graph models. The insetsin linear-linear
scaled shows the behavior of the average node betweenness as a
function of the degreek.

STATISTICAL THEORY OF INTERNET EXPLORATION PHYSICAL REVIEW E71, 036135s2005d

036135-5



fair sampling of the graph. Indeed, bothkpi,jl and kpil tend

to 1 if e@maxfb̄−1,b̄e
−1g. In this limit all edges and vertices

will have probability to be discovered very close to 1.
At lower value ofe, obtained by varyingrT and NS, the

underlying graph is only partially discovered. We first study
the behavior of the fractionNk

* /Nk of discovered vertices of
degreek, Nk being the total number of vertices of degreek in
the underlying graph, and the fraction of discovered edges
kk*l /k in vertices of degreek. In Fig. 3 we report the behav-
ior of these quantities as a function ofk for the WS modelsa
similar behavior is obtained for ER graphsd. The fraction
Nk

* /Nk naturally increases by augmenting the density of tar-
gets and sources, and it is slightly increasing for larger de-
grees. The latter behavior can be easily understood by notic-
ing that vertices with larger degree have on average a larger
betweennessbskd ssee inset of Fig. 2d. By using Eq.s12d we
have thatNk

* /Nk,1−expf−ebskdg, obtaining the observed in-
crease at largek. On the other hand, the range of variation of
degree and betweenness in homogeneous graphs is very nar-
row and only a large level of probing may guarantee very
large discovery probabilities. Similarly the behavior of the
effective discovered degree can be understood by looking at
Eq. s14d stating thatkk*l /k.ek−1f1+bskdg. Indeed the initial
decrease ofkk*l /k is finally compensated by the increase of
bskd.

A very important quantity in the study of the statistical
accuracy of the sampled graph is the degree distribution. In
Fig. 4 we show the cumulative degree distributionPcsk*

.kd of the sampled graph defined by the ER model for in-
creasing number of sources. The sampled distributions are
only approximating the genuine distribution. In particular,
for NS=1, a power law is obtainedsinset of Fig. 4d, in strik-
ing contrast with the genuine degree distribution of the real

graph, as analytically shown by Clauset and Mooref22g.
However, strong deviations from this power law appear as
soon asNSù2, and the obtained distributions are far from a
true heavy-tail distribution at any appreciable level of prob-
ing. Indeed, the distribution runs generally over a small
range of degrees, with a cutoff that sets in at the average

degreek̄ of the underlying graph. In order to stretch the
distribution range, homogeneous graphs with very large av-

erage degreek̄ must be considered; however, other distinc-
tive spurious effects appear in this case as soon asNSù2. In
particular, since the best sampling occurs around the high
degree values, the distributions develop peaks that show in
the cumulative distribution as plateausssee Fig. 4d. The very
same behavior is obtained in the case of the WS model.
Finally, in the case of RSP and ASP traceroute models, we
observe that the obtained distributions are closer to the real
one since they allow a larger number of discoveries.

Only the particular case1 of NS=1 yields for the sampled
distribution an apparent scale-free behavior with slope −1
sfor all target densitiesrT f22gd. The distribution cutoff is

then consistently determined by the average degreek̄. The
present analysis shows that, in order to obtain a sampled
graph with apparent scale-free behavior on a degree range
varying overn orders of magnitude, we would need very
peculiar sampling of a homogeneous underlying graph with

an average degreek̄.10n; a rather unrealistic situation in the
Internet and many other information systems wherenù2.

B. Sampling heterogeneous graphs

In this section, we extend the analysis made for homoge-
neous graphs to the case of highly heterogeneous graphs. As

1It is worth noting that the experimental setup with a single source
is a limit case corresponding to a highly asymmetric probing pro-
cess; it is therefore badly, if at all, captured by our statistical analy-
sis which assumes homogeneous deployment.

FIG. 3. FrequencyNk
* /Nk of detecting a vertex of degreek stop

leftd and proportion of discovered edgeskk*l /k sbottom leftd as a
function of the degree in WS graphs. The figures on the right show
the frequencyNb

* /Nb of detecting a vertex of betweennessb and the
effective average degreekk*l as a function of the betweenness cen-
trality, in order to provide a direct comparison with the predictions
of Eqs. s12d and s14d. The exploration setup considersNS=2 and
increasing probing levele obtained by progressively higher density
of targetsrT.

FIG. 4. Cumulative degree distribution of the sampled ER graph

with k̄=20 and 100, for USP probes. The figure shows sampled
distributions obtained withrT=0.1 and varying number of sources
NS. The solid lines are the degree distributions of the underlying
graphs. In the inset we report the peculiar caseNS=1 which pro-
vides an apparent power-law behavior with exponent −1 at all val-
ues ofrT. The inset is in linear-log scale to show the logarithmic
behavior of the corresponding cumulative distribution.
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typical examples, we consider the Barabási-AlbertsBAd and
the Dorogovtsev, Mendes, and SamukhinsDMSd models,
which are both scale-free graph models.

The prototype of a scale-free graph is the original grow-
ing network model by Albert and Barabásif30g. The prefer-
ential attachment mechanismseach new node is connected to
already existing nodes chosen with a probability proportional
to their degreed yields a connected graph with a power-law
degree distribution and small clustering coefficient. Another
growing model has been introduced by Dorogovtsev,
Mendes, and Samukhinf31g: at each time step, a new node is
introduced and connected tothe two extremities of a ran-
domly chosen edge, thus forming a triangle. A given node is
thus in fact chosen with a probability proportional to its de-
gree, which corresponds to the preferential attachment rule.
The resulting graphs have a large clustering coefficient
s<0.74d along with a power-law degree distribution.

We have used networks of sizeN=104 with k̄=8 for the

BA and k̄=4 for the DMS model, and averaged each mea-
surement over ten realizationsssee Table Id. Both models
have a scale-free distributionPskd,k−g with g=3. Since the
degree distribution is heavy tailed with fluctuations diverging

logarithmically with the graph size, the average degreek̄,
though well defined, is not a typical value in the network and
there is an appreciable probability of finding vertices with
very high degree. Analogously, the betweenness distribution
is heavy tailedf27,32g, allowing for an appreciable fraction
of vertices and edges with very high betweenness. In particu-
lar it is possible to show that in scale-free graphs the site
betweenness is related to the vertices degree asbskd,kb,
whereb is an exponent depending on the modelf32g. Since
in a heavy-tailed distribution the allowed degree is varying
over several orders of magnitude, the same will occur for the
betweenness values. In such a situation, even in the case of
small e, vertices whose betweenness is large enoughfbskde
@1g have kpil.1. Therefore, all vertices with degreek
@e−1/b will be detected with probability 1. This is clearly
visible in Fig. 5, where the discovery probabilityNk

* /Nk of
vertices with degreek saturates to 1 for large degree values.
Consistently, the degree value at which the curve saturates
decreases with increasinge. A similar effect is appearing in
the measurements concerningkk*l /k. After an initial decay
ssee Fig. 5d the effective discovered degree is increasing with
the degree of the vertices. This qualitative feature is captured
by Eq. s14d which giveskk*l /k.ek−1f1+bskdg. After an ini-
tial decay the termk−1bskd,kb−1 takes over and the effective
discovered degree approaches the real degreek. Figure 5 also
displays the frequencyNb

* /Nb and the discovered degree of
vertices with betweennessb, showing in a more direct way
the qualitative agreement with the analytical predictions of
Eqs. s12d and s14d. It is worth stressing that the results ob-
tained for the DMS model show the very same behavior as
those obtained in the case of the BA model.

It is evident from the previous discussions that, in scale-
free graphs, vertices with high degree are efficiently sampled
with an effective measured degree that is rather close to the
real one. This means that the degree distribution tail is fairly
well sampled while deviations should be expected at lower

degree values. This is indeed what we observe in numerical
experiments on BA and DMS graphs. In Fig. 6 we report the
degree distribution obtained for the DMS model. Similar
plots are obtained in the case of the BA model with the same
level of probing. Although both underlying DMS and BA
graphs have a small average degree, the observed degree
distribution spans more than two orders of magnitude. The
distribution tail is fairly reproduced even at rather small val-

FIG. 5. FrequencyNk
* /Nk of detecting a vertex of degreek stop

leftd and proportion of discovered edgeskk*l /k sbottom leftd as a
function of the degree in the BA model. The figures on the right
show the frequencyNb

* /Nb of detecting a vertex of betweennessb
and the effective average degreekk*l as a function of the between-
ness centrality, in order to provide a direct comparison with the
predictions of Eqs.s12d and s14d. The exploration setup considers
NS=2 and increasing probing levele obtained by progressively
higher density of targetsrT.

FIG. 6. Cumulative degree distribution of the sampled DMS
graph for USP probes. The top figure shows sampled distributions
obtained withNS=2 and varying density targetrT. The figure on the
bottom shows sampled distributions obtained withrT=0.1 and
varying number of sourcesNS. The solid line is the degree distri-
bution of the underlying graph.
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ues ofe. The data show clearly that the low degree regime is
instead undersampled, resulting in a bending of the curves or
an apparent change in the exponent of the degree distribu-
tion, as already noticed by Petermann and De Los Rios in the
case of single source mapping proceduresf23g.

According to the present analysis, graphs with heavy-
tailed degree distribution allow a better qualitative represen-
tation of their statistical features in sampling experiments.
Indeed, the most important properties of these graphs are
related to the heavy-tail part of the statistical distributions
that are indeed well discriminated by the traceroutelike ex-
ploration.

V. CONCLUSIONS AND OUTLOOK

The presented statistical mean-field analysis of explora-
tion techniques based on shortest-path routing provides a
general interpretative framework for the results obtained in
numerical experiments on graph models. The sampled graph
clearly distinguishes the two situations defined by homoge-
neous and heterogeneous topologies, respectively. This is
due to the exploration process which statistically focuses on
high betweenness nodes, thus providing a very accurate sam-
pling of distribution tails. Therefore, the main topological
features of heavy-tailed networks are more easily discrimi-
nated, being the relevant statistical information primarily
contained in the fairly well-captured degree distribution tail.
The sampling of homogeneous graphs appears more cumber-
some, but surprising effects such as the existence of apparent
power laws are found only in very peculiar cases. According
to our theoretical approach, multisource exploration proce-
dures generally provide sampled distributions with enough
signatures to distinguish at the statistical level between
graphs with different topologies.

This evidence might be relevant in the discussion of real
data from Internet mapping projects. Up to now available
data indicate the presence of heavy-tailed degree distribu-
tions at both the router and AS levels. The upper degree
cutoff at the router and AS level runs up to 102 and 103,
respectively. Then, in the light of the present discussion, it is
very unlikely that this feature is just an artifact of the map-
ping strategies. Indeed, a homogeneous graph should have an
average degree comparable to the measured cutoff; this
means that for the Internet to be a homogeneous graph it
would require that nine routers out of ten would have more
than 100 links to other routers, something quite unrealistic.
In addition, the majority of mapping projects are multi-
source, a feature that we have shown to readily wash out the

presence of spurious power-law behavior. On the contrary,
power-law tails are easily sampled with enough accuracy for
the large degree part at all probing levels. As a natural con-
sequence, the heavy-tail behavior observed in real mapping
experiments should be, very plausibly, a genuine feature of
the Internet. On the other hand, it is very important to stress
that, at the quantitative level, some properties, such as aver-
age degree, distribution exponent and clustering, might ex-
hibit considerable deviations from their true values. In addi-
tion, degree correlation properties have been found in
Internet maps that exhibit a disassortative cahracterf33,34g.
This implies that large degree vertices tend to be connected
to small degree ones, and vice versa for small degrees verti-
ces; it would also be interesting to understand how such
properties may affect the sampling. The models we used do
not show any particular correlation structure and a prelimi-
nary numerical analysis does not appear to introduce spuri-
ous correlation effects in the sampled graph. Further tests on
specific models with stronger correlations are beyond the
scope of this paper but might provide interesting results in
our understanding of the mapping process. In these respects,
it is of major importance to define strategies in order to op-
timize the accuracy of the various parameters and quantities
of the underlying graph.

In conclusion, in this paper we have proposed a statistical
theory of the shortest-path probing of large information net-
works such as the Internet. We unveil, by means of a simple
mean-field approximation, the relations between the statisti-
cal observables of the discovered graph and general topo-
logical properties of the unknown underlying networkssuch
as the betweenness centralityd. It is worth remarking that the
property of centrality plays an important role in many dy-
namical processes occurring on networks, such as, e.g., epi-
demic spreading where the most central nodes are crucial in
the propagation pattern. The relation between our capacity of
measuring the structure of networks and the biases intro-
duced by the vertices centrality may therefore be interesting
in the forecast of computer virus epidemics and other digital
attacks. Finally, we stress that the quantitative optimization
of large network sampling is a more difficult and technical
problem that calls for further detailed work aimed at a more
precise assessment of the mapping strategies on both the ana-
lytic and numerical sides.
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