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We investigate how very large populations are able to reach a global consensus, out of local “microscopic”
interaction rules, in the framework of a recently introduced class of models of semiotic dynamics, the so-called
naming game. We compare in particular the convergence mechanism for interacting agents embedded in a
low-dimensional lattice with respect to the mean-field case. We highlight that in low dimensions consensus is
reached through a coarsening process that requires less cognitive effort of the agents, with respect to the
mean-field case, but takes longer to complete. In one dimension, the dynamics of the boundaries is mapped
onto a truncated Markov process from which we analytically computed the diffusion coefficient. More gener-
ally we show that the convergence process requires a memory per agent scaling as N and lasts a time N1+2/d in
dimension d�4 �the upper critical dimension�, while in mean field both memory and time scale as N3/2, for a
population of N agents. We present analytical and numerical evidence supporting this picture.
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The past decade has seen an important development of the
so-called semiotic dynamics, a field that studies how conven-
tions �or semiotic relations� can originate, spread, and evolve
over time in populations. This occurred mainly through the
definition of language interaction games �1,2� in which a
population of agents is seen as a complex adaptive system
that self-organizes �3� as a result of simple local interactions
�games�. The interest of physicists for language games
comes from the fact that they can be easily formulated as
nonequilibrium statistical mechanics models of interacting
agents: At each time step, an agent updates its state �among a
certain set of possible states� through an interaction with its
neighbors. An interesting question concerns the possibility of
convergence towards a common state for all agents, which
emerges without external global coordination and from
purely local interaction rules �4–6�. In this Rapid Communi-
cation, we focus on the so-called naming games, introduced
to describe the emergence of conventions and shared lexi-
cons in a population of individuals interacting with each
other by negotiations rules, and study how the embedding of
the agents on a low-dimensional lattice influences the emer-
gence of consensus, which we show to be reached through a
coarsening process. The original model �7� was inspired by a
well-known experiment of artificial intelligence called Talk-
ing Heads �8�, in which embodied software agents develop
their vocabulary observing objects through digital cameras,
assigning them randomly chosen names, and negotiating
these names with other agents.

Recently a minimal version of the naming game endowed
with simplified interactions rules �9� was introduced, which
reproduces the phenomenology of the experiments and is
amenable to analytical treatment. In this model, N individu-
als �or agents� observe the same object, trying to communi-
cate its name to one another. The identical agents have at
their disposal an internal inventory, in which they can store
an unlimited number of different names or opinions. At the
initial time, all individuals have empty inventories, with no
innate terms. At each time step, the dynamics consists of a
pairwise interaction between randomly chosen individuals.
Each agent can take part in the interaction as a “speaker” or

as a “hearer.” The speaker transmits to the hearer a possible
name for the object at issue; if the speaker does not know a
name for the object �its inventory is empty�, it invents a
name to be passed to the hearer �10�. In the case where it
already knows more synonyms �stored in the inventory�, it
chooses one of them randomly. The hearer’s move is deter-
ministic: If it possesses the term pronounced by the speaker,
the interaction is a success, and both speaker and hearer re-
tain that name as the right one, canceling all the other terms
in their inventories; otherwise, the new name is included in
the inventory of the hearer, without any cancellation.

The mean-field �MF� case has been studied in �9�: The
system initially accumulates a large number of possible
names for the object since different agents �speakers� ini-
tially invent different names and propagate them. Interest-
ingly, however, this profusion of different names leads in the
end to an asymptotic absorbing state in which all the agents
share the same name.

Although this model leads to the convergence of all
agents to a common state or “opinion,” it is interesting to
note the important differences with other commonly studied
models of opinion formation �4–6�. For example, each agent
can potentially be in an infinite number of possible discrete
states �or words, names�, contrary to the Voter model in
which each agent has only two possible states �6�. Moreover,
an agent can here accumulate in its memory different pos-
sible names for the object, i.e., wait before reaching a deci-
sion. Finally, each dynamical step involves a certain degree
of stochasticity, while in the Voter model, an agent determin-
istically adopts the opinion of one of its neighbors.

In this paper, we study the naming game model on low-
dimensional lattices: the agents, placed on a regular
d-dimensional lattice, can interact only with their 2d nearest
neighbors. Numerical and analytical investigations allow us
to highlight important differences with the mean-field case,
in particular in the time needed to reach consensus, and in
the effective size of the inventories or total memory required.
We show how the dynamics corresponds to a coarsening of
clusters of agents sharing a common name; the interfaces
between such clusters are composed by agents who still have
more than one possible name.
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Relevant quantities in the study of naming games are the
total number of words in the system Nw�t�, which corre-
sponds to the total memory used by the agents, the total
number of different words Nd�t�, and the average rate of
success S�t� of the interactions. Figure 1 displays the evolu-
tion in time of these three quantities for the low-dimensional
models, compared to the mean-field case.

In the initial state, all inventories are empty. At short
times, therefore, each speaker with an empty inventory has to
invent a name for the object, and many different words are
indeed invented. In this initial phase, the success rate is equal
to the probability that two agents that have already played
are chosen again: This rate is proportional to t /E where E is
the number of possible interacting pairs, i.e., N�N−1� /2 for
the mean-field case and Nd in finite dimensions. S�t� grows
thus N times faster in finite dimensions, as confirmed by
numerics. At larger times, however, the eventual conver-
gence is much slower in finite dimensions.

The curves for Nw�t� and Nd�t� display in all cases a sharp
increase at short times, a maximum for a given time tmax and
then a decay towards the consensus state in which all the
agents share the same unique word, reached at tconv. The
short time regime corresponds to the creation of many dif-
ferent words by the agents. After a time of order N, each
agent has played typically once, and therefore O�N� different
words have been invented �in fact, typically N /2�: The total
number of distinct words in the system grows and reaches a
maximum scaling as N. Due to the interactions, the agents
accumulate in memory the words they have invented and the
words that other agents have invented. In MF, each agent can
interact with all the others, so that it can learn many different
words, and in fact the maximal memory necessary for each
agent scales as N�MF with �MF=0.5 �9�, so that the total
memory used at the peak is �N1.5, with many words shared
by many agents, and tmax�N�MF with �MF=1.5. Moreover,
during this learning phase, words are not eliminated �S�t� is
very small� so that the total number of distinct words dis-
plays a long plateau. The redundancy of words then reaches

a sufficient level to begin producing successful interactions
and the decrease of the number of words is then very fast,
with a rapid convergence to the consensus state. In contrast,
in finite dimensions words can only spread locally, and each
agent has access only to a finite number of different words.
The total memory used scales as N, and the time tmax to reach
the maximum number of words in the system scales as N�d

with �1=�2=1 �Fig. 2�. No plateau is observed in the total
number of distinct words since the coarsening of clusters of
agents soon starts to eliminate words.

Furthermore, the time needed to reach consensus, tconv,
grows as N�d with �1�3 in d=1 and �2�2 in d=2, while
�MF�1.5 �Fig. 2�. We will now see how such behaviors
emerge from a more detailed numerical and analytical analy-
sis of the dynamical evolution.

Figure 3 reports a typical evolution of agents on a one-
dimensional lattice, by displaying one below the other a cer-
tain number of �linear� configurations corresponding to suc-
cessive equally separated temporal steps. Each agent having
one single word in memory is presented by a colored point
while agents having more than one word in memory are
shown in black. This figure clearly shows the growth of clus-
ters of agents having one single word by diffusion of inter-

FIG. 1. �Color online� Time evolution in mean-field and finite
dimensions of the total number of words �or total used memory� for
the number of different words in the system, and for the average
success rate. N=1024, average over 1000 realizations. The inset in
the top graph shows the very slow convergence in finite dimensions.

FIG. 2. �Color online� Scaling of the time at which the number
of words is maximal, and of the time needed to obtain convergence,
in one and two dimensions.

FIG. 3. �Color online� Typical evolution of a one-dimensional
system �N=1000�. Black corresponds to interfaces �sites with more
than one word�. The other colors identify different single state clus-
ters. The vertical axis represents the time �1000�N sequential
steps�; the one-dimensional snapshots are reported on the horizontal
axis.
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faces made of agents having more than one word in memory.
The fact that the interfaces remain thin is, however, not ob-
vious a priori: An agent having, e.g., two words in memory
can propagate them to its neighbors, leading to possible clus-
ters of agents having more than one word.

In order to rationalize and quantify such evolution, we
consider a single interface between two linear clusters of
agents: In each cluster, all the agents share the same unique
word, say A in the left-hand cluster and B in the other. The
interface is a string of length m composed of sites in which
both states A and B are present. We call Cm this state
�A+B�m. A C0 corresponds to two directly neighboring
clusters �¯AAABBB¯ �, while Cm means that the interface
is composed by m sites in the state C=A
+B �¯AAAC¯CBBB¯ �. Note that, in the actual dynam-
ics, two clusters of states A and B can be separated by a more
complex interface. For instance a Cm interface can break
down into two or more smaller sets of C states spaced out by
A or B clusters, causing the number of interfaces to grow.
Numerical investigation shows that such configurations are,
however, eliminated in the early times of the dynamics.

Bearing in mind these hypotheses, an approximate expres-
sion for the stationary probability that two neighboring clus-
ters are separated by a Cm interface can be computed in the
following way. In a one-dimensional line composed of N
sites and initially divided into two clusters of A and B, the
probability to select the unique C0 interface is 1 /N, and the
interacting rules say that the only possible product is a C1

interface. Thus there is a probability p0,1=1/N that a C0

interface becomes a C1 interface in a single time step; other-
wise it stays in C0. From C1 the interface can evolve into a
C0 or a C2 interface with probabilities p1,0=3/2N and p1,2
=1/2N, respectively. This procedure is easily extended to
higher values of m. The numerics suggest that we can safely
truncate this study at m�3. In this approximation, the prob-
lem corresponds to determining the stationary probabilities
of the Markov chain reported in Fig. 4 and defined by tran-
sition matrix

M =�
N−1

N
1
N 0 0

3
2N

N−2
N

1
2N 0

1
N

3
2N

N−3
N

1
2N

1
N

1
N

3
2N

N−4
N + 1

2N

� , �1�

in which the basis is 	C0 ,C1 ,C2 ,C3
 and the contribution
1/2N from C3 to C4 has been neglected �see Fig. 4�. The
stationary probability vector P= 	P0 , P1 , P2 , P3
 is computed
by imposing P�t+1�−P�t�=0, i.e., �MT− I�P=0, which
gives P0=133/227�0.586, P1=78/227�0.344, P2
=14/227�0.062, P3=2/227�0.0088. Direct numerical
simulations of the evolution of a line ¯AAABBB¯ yields
P0�0.581, P1=0.344, P2=0.063, P3=0.01, thus clearly
confirming the correctness of our approximation.

Since our analysis shows that the width of the interfaces
remains small, we assume that they are punctual objects lo-
calized around their central position x: In the previously ana-
lyzed case, denoting by xl the position of the rightmost site
of cluster A and by xr the position of the leftmost site of
cluster B, it is given by x= �xl+xr� /2. An interaction involv-
ing sites of an interface, i.e., an interface transition Cm
→Cm�, corresponds to a set of possible movements for the
central position x. The set of transition rates are obtained by
enumeration of all possible cases: Denoting by W�x→x±��
the transition probability that an interface centered in x
moves to the position x±�, in our approximation only three
symmetric contributions are present. We obtain

W�x → x ±
1

2
 =

1

2N
P0 +

1

N
P1 +

1

N
P2 +

1

2N
P3,

W�x → x ± 1� =
1

2N
P2 +

1

2N
P3,

W�x → x ±
3

2
 =

1

2N
P3.

Using the expressions for the stationary probability
P0 ,… , P3, we finally get W�x→x±1/2�=319/454N, W�x
→x±1�=8/227N, and W�x→x±3/2�=1/227N.

The knowledge of these transition probabilities allows us
to write the master equation for the probability P�x , t� to find
the interface in position x at time t, which, in the limit of
continuous time and space (i.e. writing

P�x,t + 1� − P�x,t� � �t
�P
�t

�x,t� ,

while

P�x + �x,t� � P�x,t� + �x
�P
�x

�x,t� +
��x�2

2

�2P
�x2 �x,t� ,

reads

�P�x,t�
�t

=
D

N

�2P�x,t�
�x2 ,

where D=401/1816�0.221 is the diffusion coefficient �in
the appropriate dimensional units ��x�2 /�t�.

FIG. 4. �Color online� Truncated Markov process associated
with interface width dynamics-schematic evolution of a C0 interface
¯AAABBB¯, cut at the maximal width m=3.
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These results are confirmed by numerical simulations as
illustrated in Fig. 5 where the numerical probability P�x , t� is
shown to be a Gaussian around the initial position, while the
mean-square distance reached by the interface at the time t
follows the diffusion law �x2�=2Dexp t /N with Dexp�0.224
�D. The dynamical evolution of the naming game on a one-
dimensional lattice can then be described as follows: At short
times, pairwise interactions create O�N� small clusters, di-
vided by thin interfaces �see the first lines in Fig. 3�. We can
estimate the number of interfaces at this time with the num-
ber of different words in the lattice, which is about N /2. The
interfaces then start diffusing. When two interfaces meet, the
cluster situated in between the interfaces disappears, and the
two interfaces coalesce. Such a coarsening leads to the well-
known growth of the typical size � of the clusters as t1/2. The
density of interfaces, at which unsuccessful interactions can
take place, decays as 1/�t, so that 1−S�t� also decays as
1/�t. Moreover, starting from a lattice in which all agents
have no words, a time N is needed to reach a size of order 1,

so that in fact � grows as �t /N �as also shown by the fact that
the diffusion coefficient is D /N�, which explains the time
tconv�N3 needed to reach consensus, i.e., �=N.

This framework can be extended to the case of higher
dimensions. The interfaces, although quite rough, are well
defined and their width does not grow in time, which points
to the existence of an effective surface tension. The numeri-
cal computation of equal-time pair correlation function in
dimension d=2 �not shown� indicates that the characteristic
length scale � grows as �t /N �a time O�N� is needed to
initialize the agents to at least one word and therefore to
reach a cluster size of order 1�, in agreement with coarsening
dynamics for nonconserved fields �11�. Since tconv corre-
sponds to the time needed to reach �=N1/d, we can argue
tconv�N1+2/d, which has been verified by numerical simula-
tions in d=2 and d=3. This scaling and the observed coars-
ening behavior suggest that the upper critical dimension for
this system is d=4 �11�.

In conclusion, the study of the low-dimensional naming
game using statistical physics methods provides a deeper un-
derstanding of the macroscopical collective dynamics of the
model. We have shown how it presents a very different be-
havior in low-dimensional lattices than in mean field, indi-
cating the existence of a finite upper-critical dimension.
Low-dimensional dynamics is initially more effective; less
memory per node is required, preventing agents from learn-
ing a large part of the many different words created. The
dynamics then proceeds by the growth of clusters by coars-
ening, yielding a slow convergence to consensus. In contrast
with other models of opinion dynamics �e.g., the Voter model
�12,13��, the naming game presents an effective surface ten-
sion that is reminiscent of the nonequilibrium zero-
temperature Ising model �11�. In this respect, it seems inter-
esting to investigate the dynamics of the naming game in
other topologies, such as complex networks in which each
node has a finite number of neighbors combined with “long-
range” links �14�.
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FIG. 5. �Color online� Evolution of the position of an interface
¯AAABBB¯. Top, evolution of the distribution P�x , t�. Bottom,
evolution of the mean-square displacement, showing a clear diffu-
sive behavior �x2�=2Dexp t /N with a coefficient Dexp�0.224 in
agreement with the theoretical prediction.
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