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The naming game is a model of nonequilibrium dynamics for the self-organized emergence of a linguistic
convention or a communication system in a population of agents with pairwise local interactions. We present
an extensive study of its dynamics on complex networks, that can be considered as the most natural topological
embedding for agents involved in language games and opinion dynamics. Except for some community struc-
tured networks on which metastable phases can be observed, agents playing the naming game always manage
to reach a global consensus. This convergence is obtained after a time generically scaling with the population’s
size N as tconv�N1.4±0.1, i.e., much faster than for agents embedded on regular lattices. Moreover, the memory
capacity required by the system scales only linearly with its size. Particular attention is given to heterogenous
networks, in which the dynamical activity pattern of a node depends on its degree. High-degree nodes have a
fundamental role, but require larger memory capacity. They govern the dynamics acting as spreaders of
�linguistic� conventions. The effects of other properties, such as the average degree and the clustering, are also
discussed.
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I. INTRODUCTION

Understanding the origin and the evolution of language or
more generally of communication systems is a fascinating
challenge for the interdisciplinary scientific community �1�,
demanding contributions to researchers in very different
fields, from linguistics to artificial intelligence, from social
sciences to biology, mathematics and physics. Even though a
unitarian view of language as a complex system is still lack-
ing, a number of different approaches has been proposed in
order to get major insights into some specific aspects such as,
for instance, the self-organized processes leading to the
emergence of a shared lexicon �i.e., a communication sys-
tem� in a population of agents. In the past few years, it has
been shown that simple models of interacting agents could
display a collective agreement on a shared mapping between
words and objects �or meanings�, eventually bootstrapping a
shared system of linguistic conventions, even without global
supervision or a priori common knowledge �2–4�. Such
models of “language games,” in which the organization of
language is tackled at a purely semiotic level �neglecting
semantic relations between symbols and meanings�, have
played a pivotal role for the understanding of emergent com-
munication systems. We will restrain ourselves to the case of
the emergence and evolution of a communication system on
short temporal scales compared to those involved in the evo-
lution of language, so that we neglect any darwinian prin-
ciple commonly used in the modelization of language evolu-
tion �5,6�, and focus on simple population dynamics. In this
context, a new field of research called semiotic dynamics has
been recently developed, that investigates by means of
simple models how �linguistic� conventions originate, spread
and evolve over time in a population of agents endowed with
basic internal states and able to perform local pairwise inter-
actions �7�.

The fundamental model of semiotic dynamics is the nam-
ing game �8�, that describes a population of agents trying

to agree on the assignation of names to objects. The emer-
gence of consensus about the object’s name allows to estab-
lish a communication system. Such a model was
inspired by global coordination problems in artificial intelli-
gence and by peer-to-peer communication modeling. A prac-
tical example of this type of dynamics is provided by the
Talking Heads experiment �9�, in which embodied software
agents develop their vocabulary observing objects through
digital cameras, assigning them randomly chosen names and
sharing these names in pairwise interactions. Very recently
�10,11�, models of semiotic dynamics have as well found an
application in the study of a new generation of web-tools
which enable human web-users to self-organize a system
of tags in such a way to ensure a shared classification of
information about different arguments �see, for instance,
del.icio.us or www.flickr.com�.

Statistical physics has been involved in the analysis of
models of emergent collective behavior in interacting par-
ticles systems for a long time. It is, therefore, not a surprise
that, recently, various contributions have come from physi-
cists, in order to shed light on the dynamics of opinion for-
mation through the study of models of social interactions
�12�. The naming game �NG�, as a model of interacting
agents reaching a global consensus through emergent coop-
erative phenomena, can as well be studied through the sta-
tistical physics toolbox that can give insights into the corre-
sponding complex dynamics. As a first natural step, previous
studies have considered, as was the case in the Talking Heads
experiments, that each agent was allowed to interact with all
the others �13�. This mean-field-like scenario can indeed be
realistic when dealing with a small number of agents. More-
over, the case of agents embedded into low-dimensional lat-
tices has as well been investigated �14�, showing that the
global behavior of the naming game strongly depends on the
underlying topology. Recently, however, the growing field of
complex networks �15–17� has allowed to obtain a better
knowledge of social networks �18�, and, in particular, to
show that the typical topology of the networks on which
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agents interact is not regular. The natural step taken in this
paper is thus to consider the naming game for agents embed-
ded on more realistic networks and to study the influence of
various complex topologies on the corresponding dynamical
behavior.

The paper is organized as follows. Sections II and III are
devoted to the definition of the model and to summarize
already known results about the naming game dynamics in
the case of mean-field and low-dimensional lattices. In Sec-
tion IV, we briefly recall the definition of network models
subsequently used in the theoretical and numerical analysis,
whose results are exposed in Section V. Conclusions and
directions for future works are exposed in Section. VI.

II. MODEL DEFINITION

A minimal model of naming game has been put forward
by Baronchelli et al. in Ref. �13� to reproduce the main fea-
tures of semiotic dynamics and the fundamental results of
adaptive coordination observed in the talking heads experi-
ment �9�. In this minimal model, N identical agents observe a
single object, for which they invent names that they try to
communicate to one another through pairwise interactions.
Each agent is endowed with an internal inventory, in which it
can store an a priori unlimited number of names �or opin-
ions�. All agents start with empty inventories. At each time
step, a pair of neighboring agents is chosen randomly, one
playing as ”speaker” the other as ”hearer,” and a negotiation
process takes place according to the following rules �see also
Fig. 1�. The speaker transmits a name to the hearer. If its
inventory is empty, a new word is invented, otherwise it
selects randomly one of the names it knows. If the hearer has

the uttered name in its inventory, the game is a success, and
both agents delete all their words but the winning one. If the
hearer does not know the uttered word, the game is a failure,
and the hearer adds the word to its inventory, i.e., it learns it.

Note that the time unit is here given by one interaction, in
contrast to most nonequilibrium statistical physics models in
which a time unit corresponds to N interactions. In many
cases, results for the dynamical evolution will therefore be
expressed as a function of the rescaled time t /N.

Although this model can be seen as belonging to the
broad class of opinion formation models, it is interesting to
note the important differences with other commonly studied
such models �12�. In particular, each agent can potentially be
in an infinite number of possible discrete states �or words,
names�, contrarily to the Voter model in which each agent
has only two possible states. Moreover, an agent can here
accumulate in its memory different possible names for the
object, i.e., wait before reaching a decision, and has an a
priori unlimited memory. An interesting question therefore
relates to the actual memory size required by each agent
during the dynamics. Finally, each dynamical step can be
seen as a negotiation between speaker and hearer, with a
certain degree of stochasticity, while in the Voter model, an
agent deterministically adopts the opinion of one of its
neighbors.

Another remark concerns the random extraction of the
word to be uttered from the speaker’s inventory. Previously
proposed models of semiotic dynamics used a more compli-
cated representation of the negotiation interaction assigning
weights to the words in the inventories. In such models
�see �19�, and references therein�, the word with largest
weight is automatically chosen by the speaker and commu-
nicated to the hearer. Communicative success or failures are
translated into updates of the weights: the weight of a word
involved in a successful interaction is increased to the detri-
ment of the other weights �with no deletion process�, while a
failure leads to the decrease of the weight of the word not
understood by the hearer. While such rules are certainly more
realistic than the drastic deletion rule of the minimal naming
game, the latter has been shown to retain the essential fea-
tures of the emergence of a global collective behavior and
corresponds to a much simpler definition.

It is also worth noting that in the minimal naming game
all agents refer to the same single object, while in the origi-
nal experiments the embodied agents could observe a set of
different objects. This is due to the assumption that hom-
onymy is excluded, i.e., it is impossible that two distinct
objects assume the same name. Thus, in the model, all ob-
jects are independent and the general problem reduces to a
set of uncorrelated systems, each one described by the mini-
mal model.

In the rest of the paper all analysis and numerical simu-
lations will deal with this simplified model that can be
rightly seen as the prototype of the naming game.

III. STATE OF THE ART

Most previous studies in semiotic dynamics have focused
on populations of agents in which all pairwise interactions
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FIG. 1. �Color online� Agents’ interaction rules. Each agent is
described by its inventory, i.e., the repertoire of known words. The
speaker picks up at random a name in its inventory and transmits it
to the hearer. If the hearer does not know the selected word the
interaction is a failure �top�, and it adds the new name to its inven-
tory. Otherwise �bottom� the interaction is a success and both agents
delete all their words but the winning one. Note that if the speaker
has an empty inventory �as it happens at the beginning of the
game�, it invents a new name and the interaction is, of course, a
failure.
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are allowed, i.e., the agents are placed on the vertices of a
fully connected graph. In statistical mechanics, this topologi-
cal structure is commonly referred to as “mean-field” topol-
ogy. In the original work on the minimal naming game
model �13�, Baronchelli et al. have studied numerically and
analytically the behavior of the mean-field model, providing
theoretical arguments in order to explain the main properties
of the population’s global behavior. The overall dynamics
has been studied monitoring the temporal evolution of the
total number Nw�t� of words in the system at time t, i.e., the
total memory used by the agents’ inventories, of the number
of different words Nd�t�, and of the average success rate S�t�
�i.e., the probability, computed averaging on many simula-
tion runs, that the interaction at time t is successful�. At the
beginning, many disjoint pairs of agents interact, with empty
initial inventories: they invent a large number of different
words that then start spreading throughout the system,
through unsuccessful interactions. Indeed, in the early stages
of the dynamics, the overlap between inventories is very low
and successful interactions are limited to those pairs which
have been chosen at least twice. Since the number of pos-
sible partners of an agent is of order N, an agent rarely in-
teracts twice with the same partner: the probability of such
an event grows only as t /N2. The consequence, shown in
Fig. 2 �black circles�, is that in this phase the number of
different words Nd invented by the agents grows, reaching a
maximum that scales as O�N�. Nd then saturates �no inven-
tory is empty anymore so that no new words are invented�
and displays a plateau, while the total number Nw of words
keep growing since the various words propagate in the sys-
tem and correlations grow between inventories. The peak of
Nw has been shown to scale as O�N1.5� �13�, which means
that each agent stores O�N0.5� words, and occurs after the

system has evolved for a time tmax�O�N1.5�. The strong cor-
relations built during this time finally lead the system to
consensus in a time tconv of order N1.5. The final state corre-
sponds to the agreement of the agents on the name to be
assigned to a particular object: Nw=N, which means that
each agent possesses a unique word in its inventory, and
Nd=1, which shows that this word is the same for all agents.
The S-shaped curve �black circles� of the success rate in Fig.
2 summarizes the dynamics: initially, agents hardly under-
stand each other �S�t� is very low�; the inventories start to
present significant overlaps, so that S�t� increases until it
reaches 1, and the communication system is completely set
in.

A first study of the effects of topological embedding on
the naming game dynamics is reported in Ref. �14�. When
the interacting agents sit on the nodes of low-dimensional
lattices, the long-time behavior is still characterized by the
convergence to a homogeneous consensus state, but the evo-
lution of the system changes considerably. Since each agent
can interact only with a limited number of neighbors �2d in a
d-dimensional lattice�, at the local scale the dynamics is very
fast: agents can rapidly interact two or more times with their
neighbors, favoring the establishment of a local consensus
with a high success rate �Fig. 2, red squares for one-
dimensional �1D� and blue triangles for 2D�, i.e. of small sets
of neighboring agents sharing a common unique word. These
“clusters” of neighboring agents with a common unique
word are separated by individuals having a larger inventory
with two or more words, playing the role of “interfaces.” For
one-dimensional systems, it can be proved analytically �14�
that the motion of interfaces is a random walk for which the
diffusion coefficient can be computed. Consequently, the
clusters of unique words grow in time with a law that is
typical of coarsening phenomena �20�, i.e., the competition
among the clusters is driven by the fluctuations of the inter-
faces. The coarsening picture can be extended to higher di-
mensions, where it has been checked numerically. Such an
analysis shows that in low-dimensional structures local con-
sensus is easy but in the long run delays the global consen-
sus, which takes much longer to be reached than in mean
field �see Fig. 2�: for example, O�N3� in dimension 1 vs
O�N1.5� in mean field. However, another important aspect of
the problem concerns the memory used by the agents. In
mean field indeed, each agent needs a memory capacity scal-
ing as O�N1/2�, i.e., diverging with the system size. In con-
trast, the consequence of the embedding in a finite-
dimensional lattice �with a finite number of neighbors�, and
of the subsequent coarseninglike phenomena, with rapid lo-
cal consensus, is that each agent uses only a finite capacity:
the maximum total number of words in the system �maximal
memory capacity� scales linearly with the system size N
�as for the number of different words�. In summary,
low-dimensional lattice systems require more time to reach
the consensus compared to mean field, but a lower use of
memory.

Social interactions, however, take place on networks that
are neither mean-field-like nor regular lattices, but share a
certain number of properties such as the small-world prop-
erty �the average topological distance between nodes in-
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FIG. 2. �Color online� Evolution of the total number of words
Nw �top�, of the number of different words Nd �middle�, and of the
average success rate S�t� �bottom�, for a mean-field system �black
circles� and low-dimensional lattices �1D, red squares and 2D, blue
triangles� with N=1024 agents, averaged over 103 realizations. The
inset in the top graph shows the very slow convergence for low-
dimensional systems.
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creases very slowly—logarithmically or even slower—with
the number of nodes� and the relative abundance of “hubs”
�nodes with very large degrees compared to the means of the
degree distribution P�k��. More precisely, the degree distri-
butions are in many cases heterogeneous, with heavy tails
often of a power-law �or “scale-free”� nature �for a signifi-
cant range of values of k, one has P�k��k−�� �15–17�. More-
over, social networks are often characterized by a large tran-
sitivity, which implies that two neighbors of a given vertex
are also connected to each other with large probability. Tran-
sitivity can be quantitatively measured by means of the clus-
tering coefficient ci of vertex i �21�, defined as the ratio be-
tween the number of edges mi existing between the ki
neighbors of i, and its maximum possible value, i.e., ci
=2mi / �ki�ki−1��. The average clustering coefficient, defined
as C=�ici /N, usually takes quite large values in real com-
plex networks.

In order to investigate to what extent these properties can
affect the local and global dynamics of the naming ame, we
have performed extensive simulations of this model with
agents embedded on the nodes of various paradigmatic
computer-generated network models, whose definitions and
main properties are recalled in the next section.

IV. NETWORKS DEFINITION

While many models with various characteristics have
been proposed in the last years in order to account for vari-
ous detailed properties of real-world networks, our aim in
this paper is to understand the influence on the dynamics of
the naming game of the most salient properties such as het-
erogeneity in the degree distribution, clustering, average de-
gree, and we will therefore concentrate on a few network
models that have become indeed paradigms of complex net-
works.

The prototype of homogeneous networks is the uncorre-
lated random graph model proposed by Erdös and Rényi �ER
model� �22�, whose construction consists in drawing an �un-
directed� edge with a fixed probability p between each pos-
sible pair out of N given vertices. The resulting graph shows
a binomial degree distribution with average �k�	Np, con-
verging to a poissonian distribution for large N. If p is suf-
ficiently small �order 1 /N�, the graph is sparse and presents
locally tree-like structures.

In order to account for degree heterogeneity, other con-
structions have been proposed for random graphs with arbi-
trary degree distributions �23–26�. In particular, we will con-
sider the uncorrelated configuration �UC� model which
yields uncorrelated random graphs through the following
construction: N vertices with a fixed degree sequence taken
from the desired degree distribution, with a cut-off 
N, are
connected randomly avoiding multi-links and self-links.

Since many real networks are not static but evolving, with
new nodes entering and establishing connections to already
existing nodes, many models of growing networks have also
been introduced. We will consider the model introduced by
Barabási and Albert �BA� �27�, which has become one of the
most famous models for complex heterogeneous networks,
and is constructed as follows: starting from a small set of m

interconnected nodes, new nodes are introduced one by one.
Each new node selects m older nodes according to the pref-
erential attachment rule, i.e., with probability proportional to
their degree, and creates links with them. The procedure
stops when the required network size N is reached. The ob-
tained network has an average degree �k�=2m, small cluster-
ing �of order 1 /N� and a power-law degree distribution
P�k��k−�, with �=3.

The BA networks have small clustering, in contrast with
social networks. It turns out that growing networks can as
well be constructed with a large clustering. In Ref. �28� in-
deed, Dorogovtsev et al. have proposed a model
�DMS model� in which each new node connects with the two
extremities of a randomly chosen edge, forming therefore a
triangle. Since the number of edges arriving to any node is,
in fact, its degree, the probability of attaching the new node
to an old node is proportional to its degree and the preferen-
tial attachment is recovered. The degree distribution is, there-
fore, the same as the one of a BA model with m=2, and the
degree-degree correlations are as well equal. However, the
clustering coefficient is large and approximately equal to
0.73 �29�. In order to tune the clustering, we can consider a
generalization of this construction, in the spirit of the Holme-
Kim model �30�: starting from m connected nodes �with m
even�, a new node is added at each time step; with probabil-
ity q it is connected to m nodes chosen with the preferential
attachment rule �BA step�, and with probability 1−q it is
connected to the extremities of m /2 edges chosen at random
�DMS-like step�. The one-node and two-node properties �i.e.,
degree distribution and degree-degree correlations� are the
same as the ones of the BA network, while the clustering
spectrum, i.e., the average clustering coefficient of nodes of
degree k, can be computed as C�k�=2�1−q��k−m� /
�k�k−1��+O�1/N� �29,31�: changing m and q allows to tune
the value of the clustering coefficient.

Since the ER model also displays a low clustering, we
consider, moreover, a purposedly modified version of this
random graph model �clustered ER, or CER model� with
tunable clustering. Given N nodes, each pair of nodes is con-
sidered with probability p; the two nodes are then linked
with probability 1−Q while, with probability Q, a third node
�which is not already linked with either� is chosen and a
triangle is formed. The clustering is thus proportional to Q
�with p�O�1/N� we can neglect the original clustering of
the ER network� while the average degree is approximately
given by �k�	�3Q+ �1−Q��pN	�2Q+1�pN �43�.

The next section contains the results of simulations of the
minimal naming game with agents embedded on ER and BA
networks. Our simulations have been carried out on networks
of sizes ranging from 103 to 5�104 nodes, with results av-
eraged over 20 runs per network realization and over 20
network realizations. Since the BA model has some particu-
lar hierarchical structure due to its growing construction, we
have compared the corresponding results with the case of
networks created with the UC model, in which the exponent
of the degree distribution can moreover be varied. It turns
out that the obtained behavior is very similar, so that we will
display results for the BA model. The effect of clustering will
be discussed using the mixed BA-DMS and the CER net-
work models.
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V. RESULTS

In this section we expose the main results on the dynam-
ics of the naming game on complex networks. Before enter-
ing into the details of the analysis, it is worth noting that the
minimal naming game model itself, as described in Sec. II, is
not well-defined on general networks. Indeed, the two neigh-
boring agents chosen to interact have different roles: one �the
speaker� transmits a word and is thus more “active” than the
other �the hearer�. One should, therefore, specify whether,
when choosing a pair, one chooses first a speaker and then a
hearer among the speaker’s neighbors, or the reverse order. If
the agents sit on either a fully connected graph or on a regu-
lar lattice, they have an equivalent neighborhood so the order
is not important. On a generic network with degree distribu-
tion P�k�, however, the degree of the first chosen node and of
its chosen neighbor is distributed, respectively, according to
P�k� and to kP�k� / �k�. The second node will, therefore, have
typically a larger degree, and the asymmetry between
speaker and hearer can couple to the asymmetry between a
randomly chosen node and its randomly chosen neighbor,
leading to different dynamical properties �this is the case, for
example, in the Voter model, as studied by Castellano �32��.
This is particularly relevant in heterogeneous networks for
which a neighbor of a randomly chosen node is a hub with
relatively large probability. We, therefore, can distinguish
more possibilities for the definition of the naming game on
generic networks.

�i� A randomly chosen speaker selects �again randomly� a
hearer among its neighbors. This is probably the most natural
generalization of the original rule. We call this strategy direct
naming game. In this case, larger degree nodes will prefer-
entially act as hearers.

�ii� The opposite strategy, here called reverse naming
game, can also be carried out: we choose the hearer at ran-
dom and one of its neighbors as speaker. In this case the hubs
are preferentially selected as speakers.

�iii� A neutral strategy to pick up pairs of nodes is that of
considering the extremities of an edge taken uniformly at
random. The role of speaker and hearer are then assigned
randomly with equal probability among the two nodes.

Figure 3 allows us to compare the evolution of the direct
and the reverse naming game for a BA network of N=104

agents and �k�=4. In the case of the reverse rule, a larger
memory is used although the number of different words cre-
ated is smaller, and a faster convergence is obtained. This
corresponds to the fact that the hubs, playing principally as
speakers, can spread their words to a larger fraction of the
agents, and remain more stable than when playing as hearers,
enhancing the possibility of convergence. Depending on the
network under study, and similarly to the Voter model case
�32�, the scaling laws of the convergence time can even be
modified, as our preliminary study shows. A detailed analysis
of this behavior remains, however, beyond the scope of our
present study and we leave it for future work �see also �33��.
From the point of view of a realistic interaction among indi-
viduals or computer-based agents, the direct naming game in
which the speaker chooses a hearer among its neighbors
seems somehow more natural than the other ones. In the

remainder of this paper therefore, we will focus on the direct
naming game, mentioning, where necessary, the correspond-
ing behavior for the other two rules.

A. Global quantities

We first study the global behavior of the system through
the temporal evolution of three main quantities: the total
number Nw�t� of words in the system, the number of different
words Nd�t�, and the rate of success S�t�. All these quantities
are averaged over a large number of runs and networks real-
izations. In Fig. 4, we report the curves of Nw�t� and Nd�t� for
ER �left� and BA networks �right� with N=103, 104, and 5
�104 nodes and average degree �k�=4. The corresponding
data for the mean-field case �with N=103� are displayed as
well for reference. The curves for the average use of memory
Nw�t� show a rapid growth at short times, a peak, and then a
plateau whose length increases as the size of the system is
increased �even when the time is rescaled by the system size,
as in Fig. 4�. The time and height of the peak, and the height
of the plateau, are proportional to N. These scaling properties
are systematically studied in Fig. 5, which also shows that
the convergence time tconv scales as N1.4 for both ER and BA.
The apparent plateau of Nw does, however, not correspond to
a steady state, as revealed by the continuous decrease of the
number of different words Nd in the system: in this reorga-
nization phase, the system keeps evolving by elimination of
words, although the total used memory almost does not
change.

The scaling laws observed for the convergence time is a
general robust feature that is not affected by further topologi-
cal details, such as the average degree, the clustering, or the
particular form of the degree distribution. We have checked
the value of the exponent 1.4±0.1 for various �k�, clustering,
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and exponents � of the degree distribution P�k��k−� for
scale-free networks constructed with the uncorrelated con-
figuration model. All these parameters have instead an effect
on the other quantities such as the time and the value of the
maximum of memory �see Sec. V D�.

Figures 2, 4 and 5 allow for a direct comparison between
the networks investigated and both the mean-field �MF� to-

pology and the regular lattices. Thanks to the finite average
connectivity, the memory peak scales only linearly with the
system size N, and is reached after a time O�N�, in contrast
with MF �O�N1.5� for peak height and time� but similarly to
the finite-dimensional case. The MF plateau observed in the
number of different words, and corresponding to the building
of correlations between inventories, with an increasing used
global memory, and almost no cancellation of words, is re-
placed here by a slow continuous decrease of Nd with an
almost constant memory used. With respect to the slow
coarsening process observed in finite-dimensional lattices, on
the other hand, the small-world properties of the networks,
i.e., the existence of short paths among the nodes, speeds up
the convergence towards the global consensus �see also
�34��. Therefore, complex networks exhibiting small-world
properties constitute an interesting trade-off between mean-
field “temporal efficiency” and regular lattice “storage opti-
mization.”

Figure 6 displays the success rate S�t� for BA networks
with N=103 �red full line�, and 104 �blue dashed line� agents
and �k�=4. The behavior for ER networks is similar. The
success rate for the mean-field �N=103� is also reported
�black dotted lines�. The success rate increases linearly at
very short times �bottom plot of Fig. 6� then, after a plateau
similar to the one observed for Nw, increases on a fast time
scale towards 1. At short times most inventories are empty,
so that the success rate is equal to the probability that two
agents interact twice, i.e., t /E, where E=N�k� /2 is the num-
ber of possible interacting pairs �i.e., the number of links in
the network�, as shown in Fig. 6 for BA networks where
linear fits to S�t� give slopes in agreement with the theoreti-
cal prediction 2/ �k�N. Note that this argument as well ex-
plains that in mean-field the initial success rate is much
lower than for finite �k�, since there E=N�N−1� /2=O�N2�.
When t�O�N�, no inventory is empty anymore, words start
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spreading through unsuccessful interactions and S�t� displays
a bending.

B. Clusters statistics

We now turn our attention to a complementary aspect of
the dynamics of the naming game: the behavior of clusters of
words. We call “cluster” any set of neighboring agents shar-
ing a common unique word. In the case of agents embedded
in low-dimensional lattices, it has indeed been shown �14�
that the dynamics of the naming game proceeds by formation
of such clusters, that grow through a coarsening phenom-
enon: the average cluster size �respectively, the number of
clusters� increases �respectively, decreases� algebraically
with time. On generic networks, a different behavior can be
expected. As shown indeed in Fig. 7 for the BA model �the
behavior is very similar for the ER model� the number of
clusters reaches very rapidly a plateau that lasts up to the
convergence time at which it suddenly falls to 1. Moreover,
the normalized average cluster size remains very close to
zero �in fact, of order 1 /N� during the plateau, and converges
to one with a similar sudden transition. This transition be-
comes steeper when the average degree increases �and also
when the size of the system increases�, as also emphasized
by sharper peaks in the variance of the cluster size.

In the same spirit, it is interesting to monitor the number
of agents with a certain number of words: agents with only
one word are parts of clusters while agents using more
memory are propagating words from one part of the system
to another. Figure 8 shows the temporal evolution of the
fractions of nodes with 1, 2, and 3 words. As for Nw and the
cluster size, these quantities display plateaus whose length
increases with the system size �even in rescaled time units
t /N�, and converge, respectively, to 1 and 0 abruptly at tconv.
Moreover, n1 is much lower than what would be observed in

a coarsening process in which agents with more than one
word are only found at the interfaces.

The emerging picture is very different from the coarsen-
ing obtained on finite-dimensional lattices, although the ini-
tial formation of small clusters of agents reaching a local
consensus through repeated interactions is similar. While a
majority of nodes soon compose small clusters, the fraction
of nodes with more words is not negligible and decreases
only at the end of the evolution. Therefore, the dynamics
cannot be seen as a coarsening or growth of clusters but as a
slow process of correlations between inventories, in a way
much more similar to what is observed in mean field �13�.

C. Effect of the degree heterogeneity

In regular topologies, as well as in mean field, all agents
face an identical environment. Complex networks are differ-
ent in that respect, and strong differences in behavior can be
expected for agents sitting on nodes with large or small de-
grees. Global properties of dynamical processes are often
affected by the heterogeneous character of the network to-
pology �16,17�. The previous subsection, has shown that,
similarly to what happens for the Voter model �35�, the dy-
namics of the naming game is similar on heterogeneous and
homogeneous networks. Nonetheless, a more detailed analy-
sis reveals that agents with different degrees present very
different activity patterns, whose characterization is neces-
sary to get additional insights on the naming game dynamics
�37�.

Let us first consider the average success rate Sk�t� of
nodes of degree k. At the early stages of the dynamics it can
be computed following the arguments of Sec. V A. The prob-
ability of choosing twice the edge i-j is

t

N
� 1

ki
+

1

kj
� , �1�

i.e., the probability of choosing first i �1/N� then j �1/ki� or
vice versa. Neglecting the correlations between ki and kj, one
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can average over all nodes i of fixed ki=k, obtaining

Sk�t� 	
t

N
�1

k
+  1

k
�� . �2�

Figure 9 shows that, on uncorrelated scale-free networks
�UC model�, the data �circles� obtained by numerical simu-
lations are in qualitative agreement with the direct calcula-
tions of the expression in Eq. �2� �crosses�. These data to-
gether with Eq. �2� show that, at the very beginning, the
success rate grows linearly but the effect of the degree het-
erogeneity is partially screened by the presence of the con-
stant term �1/k�. The same argument can be used to predict
that the success rate should be essentially degree indepen-
dent for larger times. S�t� is indeed always given by two
terms, of which only that referring to the node playing as
speaker contains an explicit dependence on 1/k. The argu-
ment is only approximate since the multiplicative prefactors
contain non-negligible correlations due to the overlapping
inventories. More precisely, these arguments are correct for a
neutral naming game rule, but they should hold also for the
direct naming game in which the constant term, coming from
the activity of nodes as hearers, is much more relevant for
high degree nodes.

Another interesting point concerns the height of the
memory peak. Looking at classes of nodes of a given degree,
we get that the height of the memory peak is larger for nodes
of a larger degree, as shown in Fig. 10. This can be under-
stood by the fact that hubs act more frequently as hearers and
therefore receive and collect the different words created in
the various “area” of the network they connect together �44�.
In fact, the maximal memory used by a node of degree k is
proportional to 
k �see bottom panel in Fig. 10�. For the
mean-field case, all agents have degree k=N−1 and the
maximal value of the total memory Nw scales indeed as
N
k=N3/2. Note, however, that in the general case, the esti-

mation of the peak of Nw is not as straightforward. This peak
is indeed a convolution of the peaks of the inventory sizes of
single agents, that have distinct activity patterns and may
reach their maximum in memory at different temporal steps.

The knowledge of the average maximal memory of a
node of degree k is not sufficient to understand which degree
classes play a major role in driving the dynamics towards the
consensus. More insights on this issue can be obtained ob-
serving the behavior of the total number of different words in
each degree class. Figure 11 shows the evolution of the num-
ber Nd�k , t� of different words in the class of nodes with
degree k, for various values of k in a BA network with size
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N=104 and �k�=4. Two competing effects take part in deter-
mining the differences between nodes: high-degree nodes re-
quire more memory than low-degree nodes �Fig. 10�, but
their number is much smaller. As a result, low-degree classes
have, in fact, overall a larger number of different words �as
shown in Fig. 11�. This is due to the fact that during the
initial phase, in which words are invented, low-degree nodes
are more often chosen as speakers and invent many different
words. The hubs need each a larger memory but they, in fact,
retain a smaller number of different words. After the peak in
memory, the dynamical evolution displays a relatively fast
decrease of Nd�k , t� for small k while a plateau is observed at
large k: words are progressively eliminated for low-k nodes
while the hubs, which act as intermediaries and are in contact
with many agents, still have typically many words in their
inventories. The role of the hubs, then, is that of diffusing
words throughout the network and their property of connect-
ing nodes with originally different words helps the system to
converge. On the other hand, however, playing mostly as
hearers, the hubs are not able to promote actively successful
words, and their convergence follows that of the neighboring
low-degree sites. In fact, once the low-degree nodes have
successfully eliminated most of the different words created
initially, the system globally converges on a faster time scale.
We note that the average memory Nw�k , t� /Nk converges
slightly faster than Nd�k , t� �and that Nd�k , t� converges faster
for larger k�, showing that the very final phase consists in the
late adoption of the consensus by the lowest degree nodes, in
a sort of final cascade from the large to the small degrees.

D. Effect of the average degree and clustering

Social networks are generally sparse graphs, but their
structure is often characterized by high local cohesiveness,
that is the result of a very natural transitive property of many
social interactions �18�. The simplest way to take into ac-
count these features on the dynamics of naming game is that
of studying the effects of changing the average degree and
the clustering coefficient of the network.

The effects of increasing the average degree on the behav-
ior of the main global quantities are reported in Fig. 12. In
both ER �left� and BA �right� models, increasing the average
degree provokes an increase in the memory used, while the
global convergence time is decreased. Note also that, while
the behavior of the convergence time with N �i.e., a power-
law N� with ��1.4� is very robust, the linear scaling for the
memory peak properties �Nw

max�N� and tmax�N� with �=1�,
are slightly altered by an increase in the average degree �not
shown�. Increasing �k� at finite N brings indeed the system
closer to the mean-field behavior where the scaling of these
quantities is nonlinear ��MF=1.5�; for fixed �k� however, the
linear scaling is recovered at large enough sizes.

Moreover, for larger average degree, the number of nodes
having only one word decreases �not shown�; i.e., the system
needs a more complicated reorganization phase that involves
a larger number of agents with many words, but induces a
faster convergence. In fact, the larger possibilities of interac-
tion given by the larger number of connections allows for a
better sharing of common words and for a more efficient

correlation of inventories, thus favoring a faster conver-
gence.

Note that the clustering is slightly changing when chang-
ing the average degree, but its variation is small enough for
the two effects to be studied separately. Here we use some
other mechanisms to enhance clustering, summarized in the
following two models that have been defined in Sec. IV:
CER random graphs, and mixed BA-DMS model.

Figure 13 shows the effect of increasing the clustering at
fixed average degree and degree distributions: the number of
different words is not changed, but the average memory used
is smaller and the convergence takes more time. Moreover,
the memory peak at fixed k is smaller for larger clustering
�not shown�: it is more probable for a node to speak to two
neighbors that share common words because they are them-
selves connected and have already interacted, so that it is less
probable to learn new words. Favored by the larger number
of triangles, cliques of neighboring nodes learn from the start
the same word, causing a slight increase in the fraction of
nodes with only one word as reported in Fig. 14 for both
homogeneous and heterogeneous networks. At a fixed aver-
age degree, i.e., global number of links, less connections are
moreover available to transmit words from one part of the
network to the other since many links are used in “local”
triangles. The enhanced local coherence, therefore, is in the
long run an obstacle to the global convergence. We note that
this effect is similar to the observation by Holme et al. �36�
that, at fixed �k�, more clustered networks are more vulner-
able to attacks since many links are “wasted” in redundant
local connections.

E. Effect of hierarchical structures

In the previous sections we have argued that networks
with small-world property have fast �mean-field-like� con-
vergence after a reorganization phase whose duration de-
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pends on other properties of the system. The small-world
property holds when the diameter of the network grows
slowly, i.e., logarithmically or slower, with its size N. This
ensures that every part of the network is rapidly reachable
from any other part, in contrast to what happens with regular
lattices. Such property, therefore, generically enhances the
possibility of creating correlations between the inventories of
the agents and of finally converging to a consensus. In this
subsection, we show that this line of reasoning bears, surpris-
ingly at first sight, some exceptions.

The first �and easiest to apprehend� exception is given by
the scale-free trees, obtained by the preferential attachment
procedure with m=1. In this case, as shown in Fig. 15, the
convergence is reached very slowly, with Nw�t� /N−1 de-
creasing as a power law of the time. This is in contrast with
the generic behavior, i.e., a plateau followed by an exponen-
tial convergence, as shown also for reference in Fig. 15, but
similar to the finite-dimensional lattices �the average cluster
size as well grows as a power-law, in contrast with the data
of Fig. 7�. This is reminiscent of what happens for the Voter
model �35�, in which a power law instead of exponential
decrease of the fraction of active bonds is observed, and can
be understood through the tree structure of the network. In-
deed, from the viewpoint of the dynamics, a tree is formed
by two ingredients: linear structures on which the interfaces
between clusters diffuse as in one-dimensional systems and
branching points at which interfaces may be pinned and their
motion slowed. In fact, we have checked that similar �slow�
power-law behaviors are also obtained for the naming game
on a Cayley tree �i.e., in which every node has the same

degree� or for scale-free trees with different degree distribu-
tions �obtained through the generalized linear preferential at-
tachment model�.

The slowness of this dynamical behavior is, however,
rooted in a slightly more subtle consideration. As Fig. 15
indeed shows, the naming game displays power-law conver-
gence in other heterogeneous networks that are not at all
tree-like, such as the DMS model with m=2 �28�, in which at
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each step a triangle is created, the deterministic scale-free
networks of Barabási, Ravasz, and Vicsek �BRV� �38�, or the
Apollonian and random Apollonian networks �RAN� �39,40�.
Let us briefly recall how these networks are constructed.

�1� For the DMS model with m=2, one adds at each step
a new node which is connected to the extremities of a ran-
domly chosen edge.

�2� For the deterministic scale-free BRV networks, one
starts �step 1� with two nodes connected to a root. At each
step n, two units �of 3n−1 nodes� identical to the network
formed at the previous step are added, and each of the bot-
tom 2n nodes are connected to the root.

�3� The random Apollonian networks are embedded in a
two-dimensional plane. One starts with a triangle; a node is
added in the middle of the triangle and connected to the three
previous nodes; at each step, a new node is added in one of
the existing triangles �chosen at random� and connected to its
three corners, replacing the chosen triangle by three new
smaller triangles.
All these networks share a very important and hard to quan-
tify property: they are hierarchically built. This is particu-
larly clear for the BRV case, since at each step the new
network is formed by three identical sub networks. In the
RAN as well, hierarchically nested units can be identified
with the triangles, each of which contains other smaller tri-
angles. Finally, in the DMS case, one can identify a unit at a
certain scale as an edge and the set of nodes that have been
attached to the extremities of this edge or of the edges sub-
sequently created in this unit. Because of these particular
network organizations, each node belongs, in fact, to a given
sub-hierarchical unit and, to go from one node to another
node in another subunit, a hierarchical path has to be fol-
lowed. The trees represent a particular class of such struc-
tures, in which there exist only one path between two given
nodes. In this sense, such networks, although being small-
world, present a structure which renders communication be-
tween different parts of the network more difficult. Each sub-
unit can, therefore, converge towards a local consensus
which renders the global consensus more cumbersome to
achieve.

Such results show that the small-world property, in fact,
does not by itself guarantee an efficient convergence of dy-
namical processes such as the naming game, and that
strongly hierarchical structures, in fact, slow down and ob-
struct such convergence.

VI. DISCUSSION AND OUTLOOK

In this paper, we have studied the dynamical properties of
the minimal naming game model �13� in populations of
agents interacting on complex topologies, focusing on homo-
geneous and heterogeneous networks �represented, respec-
tively, by the Erdös-Rényi random graph model and by the
Barabási-Albert scale-free model�. Social networks indeed
are typically neither fully connected graphs nor regular lat-
tices. We have considered the effects of various network
characteristics such as the heterogeneity, the average degree,
and the presence of clustering.

The main characteristic of the studied networks is the
small-world property �the average hopping distance between

two nodes scales only logarithmically with the size of the
network�. After an initial phase during which words are cre-
ated, the small-world property ensures their propagation out
of the local scale, boosting up the spreading process contrar-
ily to what happens in low-dimensional lattices where
words’ spreading is purely diffusive �see Secs. V A and
V B�. As already suggested in Ref. �34�, we argue that the
small-world property allows inhomogeneous and sparse net-
works to recover the high temporal efficiency observed in the
mean-field system. For both the ER and BA network models
we get a scaling law for the convergence time tconv with the
size N of the system of the type tconv�N�SW, with the expo-
nent approximately �SW	1.4. The discrepancy with the
mean-field exponent ��MF	1.5� may be due to logarithmic
corrections that are unlikely to be captured using numerical
scaling techniques. Moreover, small-world networks have
higher memory efficiency than the mean-field model, since
the peak in the total number of words scales only linearly
with the size N. This is due to the fact that these networks are
sparse, i.e., their average degree �k� is small compared to N.

The detailed analysis of the naming game dynamics
shows distinct activity patterns on homogeneous and hetero-
geneous networks. In homogeneous networks all nodes have
a similar neighborhood and therefore similar dynamical evo-
lution, while in heterogeneous networks classes of nodes
with different degrees play different roles in the evolution of
the game. The role of the hubs is better understood thanks to
the degree based analysis of the number of words and differ-
ent words. High-degree nodes, indeed, are more likely cho-
sen as hearers and, consequently, they have larger inventory
sizes. At the beginning, because of the pair choosing strategy
�direct naming game�, low-degree nodes are much more in-
volved in the process of word generation than the hubs. Lo-
cal consensus is easily reached and a large amount of locally
stable different words get in touch with higher-degree nodes.
The latter start to accumulate a large number of words in
their inventories, playing as spreaders of names towards less
connected agents and finally driving the convergence. From
this viewpoint, the convergence dynamical pattern of the
naming game on heterogeneous complex networks presents
some similarities with more studied epidemic spreading phe-
nomena �41�. A more detailed comparison of the activity
pattern for the direct and reverse naming game is left for
future work �37�.

The relation between topological properties and the dy-
namical evolution of the system are further characterized by
a detailed study of the effects of varying the average degree
and clustering coefficient. These effects are equivalent on
homogeneous and heterogeneous networks. While any in-
crease of the average degree provokes a larger memory peak
and a faster convergence, the growth of clustering coefficient
leads to the decrease of the necessary memory but the fast
obtention of local consensus delays in the long run the global
convergence. The latter effect is particularly relevant for real
social networks in which local cohesiveness is an important
feature that cannot be neglected. Another important ingredi-
ent of real networks that we have not addressed here is the
presence of degree correlations in the network topology. It
would indeed be interesting to know in what measure posi-
tive or negative degree correlations affect the negotiating
processes of the agents.
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In summary, as other models of opinion formation �12�,
the naming game shows a nonequilibrium dynamical evolu-
tion from a disordered state to a state of global agreement.
However, with respect to most opinion models, in which the
agents may accept or refuse to conform to the opinion of
someone else, the naming game gives more importance to
the bilateral negotiation process between pairs of agents that
is a cornerstone in the evolutionist theory of language �1�.
For this reason the naming game should be regarded as an
independent attempt to model the ultimate emergence of a
globally accepted linguistic convention or, in other terms, the
establishment of a self-organized communication system. In
contrast with other nonequilibrium models, as those based on
zero-temperature Glauber dynamics or the voter model
�35,42�, we do not find any signature of the occurrence of
metastable blocked states in any relevant topology with
quenched disorder. While the total number of words displays
a plateau whose length increases with the system size during
the reorganization phase, indeed, the number of different
words is continuously decreasing, revealing that the conver-
gence is not a matter of fluctuations due to finite-size effects,
but the result of an evolving self-organizing process. Such
behavior makes the naming game a robust model of self-
coordinated communication in any structured population of
agents. A noticeable exception concerns the case of agents
sitting on networks with strong community structures, i.e.,
networks composed of a certain number of internally highly
connected groups interconnected by few links working as
bridges. Figure 16 reports the behavior of the naming game
on such a network, composed of fully connected cliques,
each of c nodes, the various cliques being connected to each
other with only one link. From simulations it turns out that,
not only the total number of words, but even the number of
different words display a plateau whose duration increases
with the size of the system. The number of different words in
the plateau equals the number of communities, while the
corresponding total number of words per node is about one,
proving the existence of a real metastable state in which the
system reaches a long-lasting multi-vocabulary configura-
tion. Indeed, each community reaches internal consensus but
the weak connections between communities are not sufficient
for words to propagate from one community to the other.

In conclusion, populations of agents with fixed complex
topology do evolve towards a homogeneous state of consen-
sus and efficient communication, except for somehow artifi-
cial network structures, the detailed topological properties
affecting only the convergence pattern and time scale. Future
work will address the important issue of a possible interplay
between topology and dynamics in populations in which the
agents are free of rearranging their connectivity patterns in
relation to local �or global� information on the dynamical
evolution of the system. It would for example be interesting
to verify if such interplay may allow for a natural emergence
of community structures and multi-language cohabitation.
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