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Real-Space Application of the Mean-Field Description of Spin-Glass Dynamics
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The out of equilibrium dynamics of finite dimensional spin glasses is considered from a point of view
going beyond the standard “mean-field theory” versus “droplet picture” debate of the past decades. The
main predictions of both theories concerning the spin-glass dynamics are discussed. It is shown, in
particular, that predictions originating from mean-field ideas concerning the violations of the fluctuation-
dissipation theorem apply quantitatively, provided one properly takes into account the role of a spin-glass
coherence length, which plays a central role in the droplet picture. Dynamics in a uniform magnetic field
is also briefly discussed.
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Spin glasses have played a major and inspiring role in
the rapidly developing field of the dynamics of glassy
systems [1]. In particular, important developments have
been achieved in the study of aging phenomena [2], which
are encountered in several microscopic systems. In this
context, two very different dynamic descriptions have
emerged. The “mean-field theory” consists in the exact
solution of the dynamics of fully connected (or equiva-
lently infinite-dimensional) spin-glass models [2]. The
“droplet picture” is more phenomenological but directly
addresses the problem of a real space (as opposed to the
configurational space) description [3].

It is a recurrent theme in the field to interpret numerical
or experimental data as validating one description at the
expense of the other [4]. Technical tools of the dynamic
mean-field theory have been argued to be necessary for a
complete understanding of the aging of finite dimensional
spin glasses [5]. In this Letter, we show that their range of
potential validity is in fact wider than previously thought
(and can apply even when no replica symmetry breaking
is present), provided the theory is supplemented with the
idea of a growing length scale, which we call the “coher-
ence length.” A growing equilibration length, the “domain
size,” is at the heart of the description of aging phenomena
by the droplet picture. Although we cannot give a rigorous
proof of their identity, we argue that these two length scales
have the same physical content. We propose a construc-
tion for the coherence length and show numerically that it
is proportional to the domain size. Last, we argue that the
use of dynamical concepts coming from mean-field ideas
does not necessarily imply the existence of a static replica
symmetry broken phase.

The mean-field description of spin-glass dynamics stems
from the asymptotic solution of the dynamical equations
for models which are statically solved by the Parisi replica
symmetry breaking scheme [2]. The behavior of the sys-
tem is encoded in the autocorrelation function C�t, tw� and
the conjugated response function R�t, tw �. It is shown that
the decay of the correlation involves a complex pattern

of time scales organized in a hierarchical way. This “dy-
namic ultrametricity” is a direct counterpart of the static
Parisi solution for these models [6]. However, this feature
is absent from all known experimental and numerical data
in three dimensions [1,7] which show instead that the slow
decay of the correlation [or the thermoremanent magneti-
zation M�t, tw� in experiments] is a one-time-scale process,
C�t, tw� � C �t�tw� [or M�t, tw � � M �t�tw�], for times
t ¿ tw .

Nontrivial predictions are also made concerning the
relation between R and C which satisfy at equilibrium
the fluctuation-dissipation theorem (FDT), TR�t, tw� �

≠tw
C�t, tw�. A generalization of the FDT is obtained by

introducing the function X�t, tw� through [6]

X�t, tw � � TR�t, tw�

µ
≠C�t, tw�

≠tw

∂21

, (1)

with X�t, tw� � 1 at equilibrium. In mean-field models,
it can be shown that X�t, tw � becomes at long times a
single argument function, allowing the definition of the
“fluctuation-dissipation ratio” (FDR) through [6]

x�q� � lim
t,tw!`

X�t, tw�jC�t,tw��q . (2)

Moreover, this purely out of equilibrium quantity is related
to the spin-glass order parameter P�q�, which measures the
equilibrium distribution function of overlaps [6,8],

x�q� �

Z q

0

dq0 P�q0� . (3)

It has been further argued that Eqs. (2) and (3) are
true for finite dimensional glassy systems [8]. The ex-
istence of a FDR of the form (2) has been numerically
investigated in finite dimensional models [9] through the
study of the physically accessible quantities C�t, tw� and

x�t, tw � �
R

t

tw
dt0 R�t, t0�. Equation (2) is then graphically

checked by representing the variations of x as a function
of C parametrized by the time difference t 2 tw , since
Eq. (2) implies at large times
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x�t, tw� �

1

T

Z 1

C�t,tw�
dq x�q� , (4)

i.e., the obtained x�C� relation is independent of the time
[6]. At equilibrium, x � 1 and thus x � �1 2 C��T .
Numerically [9], a x�C� parametric curve is ob-
tained for a large tw and compared to S�C, L� �
R

1

C dq
R

q

0 dq0 P�q0, L�, where P�q, L� is the Parisi function
computed in a system of linear size L as large as possible.
The coincidence of these curves was used to argue that
both quantities were close to their limit, tw , L ! `, and to
deduce information on the nature of the low-temperature
phase [9].

A somewhat different picture has been put forward in
Ref. [10] and checked in the case of the 2D XY model: A
real space view of the aging behavior as an equilibration
process taking place on a growing coherence length ��tw�
leads to a generalization of relations (3) and (4) at finite
times and sizes:

Tx�t, tw� � S�C�t, tw �, ��tw�� . (5)

Equation (5) states that the off-equilibrium properties of
the infinite aging system at finite-time tw are connected
to the equilibrium properties of a system of finite-size

��tw� [11], independently of the tw , L ! ` limits. In other
words, the system is quasiequilibrated up to a length scale
��tw�. For the 2D XY model, the coherence length is thus
proportional to the dynamic correlation length ��tw� �
j�tw� [10,11].

Inspired by dynamical mean-field theory, Eq. (5) pos-

tulates the existence of a growing coherence length ��tw�
which represents the spatial extent to which the system is
equilibrated at time tw . Interestingly, this is the basic as-
sumption of the droplet picture that the spin-glass dynam-
ics is governed by large-scale excitations, whose size j
increases with time tw during the aging as j�tw� 	
�lntw�1�c [3]. Thus, we expect ��tw� 	 j�tw�.

Numerically, j�tw� can be extracted from a four-point
correlation function [9,12–14]. Its relevance for the
scaling properties of various physical quantities has been
demonstrated in Refs. [14]. Experimentally, j�tw� was
extracted through the scaling behavior of the Zeeman
energy [15]. All these 3D investigations indicate a power
law growth, j�tw� 	 ta�T�

w
, with a�T� � 0.2T�Tg .

We now investigate numerically the validity of Eq. (5)
and then discuss its important consequences for the theo-
retical description of spin glasses. Our aim is to demon-
strate its wide range of applicability, independently of the
existence of replica symmetry breaking, in the context of
which it was first proposed [6,8]. For this purpose, we
consider the low (but finite) temperature dynamics of the
two-dimensional Edwards-Anderson model, for which the
spin-glass transition is at Tc � 0 [16]. At low tempera-
ture, the relaxation time becomes so large that the aging
dynamics is very similar to the 3D case, including the
power law growth j�tw� � t0.2T

w [13]. The model is de-
fined by H �

P


i,j� Jijsisj, where si �i � 1, . . . , N � are

N � L 3 L Ising spins located on the sites of a square
lattice of linear size L. The sum 
i, j� runs over pairs of
nearest neighbors. The Jij are random Gaussian variables
of mean 0 and variance 1.

To compute the autocorrelation function C�t, tw� �

N21
P

i 
si�t�si�tw�� (
· · ·� indicates an average over initial
conditions and · · · over realizations of the disorder), and
the susceptibility x�t, tw�, a very large system, L � 400,
is quenched at the initial time tw � 0 from a disordered
state to T [ �0.2, 1.0�. The susceptibility x�t, tw� is
measured after applying a random magnetic field hi (taken
from a Gaussian distribution of mean 0 and variance h

2
0)

between times tw and t in each site. In the linear response
regime (we used 0.02 # h0 # 0.05), one gets x�t, tw� �

h
22
0 N21

P

i 
hisi�t��. The equilibrium P�q, L� is computed
independently by equilibrating (using parallel tempering
[17]) samples of sizes L [ �6, 24� and temperatures
T [ �0.2, 1.2�. By definition, P�q, L� is the disorder-
averaged histogram of the overlap q � N21

P

i s
a
i s

b
i

between two equilibrated copies �a, b� of the system. For
the sizes and temperatures investigated, P�q, L� has its
common nontrivial structure [5], with a peak around an
L-dependent value of the “Edwards-Anderson parameter,”
and a tail extending towards q � 0 values, although we
know that limL!`P�q, L� � d�q� at all temperatures
T . 0.

We are now in position to compare the x�C� curves ob-
tained in the aging situation, with S�C, L�. Our results are
summarized in Fig. 1. We show first in Fig. 1a the para-
metric curves for the same large waiting time, tw � 104,
and different temperatures. The dynamic curves are quali-
tatively similar to the 3D case (to our knowledge, no such
data are available in 2D). At short times �1 2 C ø 1�,
the curves follow the equilibrium FDT relation, which they
smoothly leave at longer times.

The validity of Eq. (5) is demonstrated in two steps.
Figure 1a shows first that the dynamic curves follow,
within our numerical precision, the curves of S�C, L�
obtained by the double integration of P�q,L�, for a
given value of L. Note that the coincidence of these two
independently computed functions on their whole support
is a very strong requirement which unambiguously defines
the coherence length, ��tw� � L. The time evolution of
��tw� is then followed for T � 0.4 in Fig. 1b which shows
that dynamic curves for increasing tw coincide with static
curves for increasing sizes. For all temperatures investi-
gated, we find a growth law for ��tw� consistent with the
2D growth laws reported in Ref. [13] for j�tw�, showing
that ��tw� ~ j�tw�. Physically, the coincidence between
dynamic and static data means that, at time tw, the system
is locally equilibrated up to a coherence length ��tw�.
The precise link between ��tw� and j�tw� is, however, a
tricky point since the static P�q, ��tw�� is sensitive to the
boundary conditions [5]. We use here (as is usual [9])
periodic boundary conditions which lead to the estimate
��tw� � 2j�tw�. The equality ��tw� � j�tw� would proba-
bly be obtained computing P�q, L� in a box of size L
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FIG. 1. Susceptibility-correlation parametric curves obtained
in the aging regime (circles) and from the static S�C, L� (solid
lines). The dashed line is the equilibrium FDT. (a) Constant
waiting time, tw � 104, T � 0.6, 0.5, 0.4, 0.3, and 0.2 (from top
to bottom). (b) Constant temperature, T � 0.4, and tw � 102,
3 3 103 , and 3 3 104 (from bottom to top). Equilibrium data:
L � 8, 10, and 18 (from bottom to top).

inside a much larger system, as proposed in Ref. [18].
This is, of course, much more computationally demanding.

At very low temperature �T & 0.3�, we find that the
agreement between statics and dynamics is not as good,
with slightly different shapes for static and dynamic data.
This is probably because, even at very large times, the co-
herence length is very small �� � 1 3�, so that the regime
where Eq. (5) becomes valid is not reached. However, a
similar trend has been observed in Ref. [10], attributed to
the role of topological defects. No data are available yet
in 3D or 4D spin glasses at very low temperature [9], and
this point should be checked.

The dynamic data of Fig. 1a obtained at different
temperatures can be collapsed using the scaling variables
A � xT12F and B � �1 2 C�T2F, with F a free
parameter chosen to get the best collapse of the curves in
Fig. 2. For 1 2 C ø 1 (short times), the FDT implies
B � A, while we obtain at large times the power law
B 	 A121�F � A0.565, i.e., F � 2.3. This scaling behav-
ior has been proposed in Ref. [9] as a dynamic analog
for the so-called Parisi-Toulouse approximation used in a
mean-field static context. The relation B 	 A0.41 has been
numerically found in 3D and 4D spin glasses, and com-

FIG. 2. Scaling behavior of the dynamic curves of Fig. 1a with
F � 2.3, guessed from the Parisi-Toulouse approximation. The
dashed lines are the relations B � A and B 	 A0.565.

pared to an expected mean-field behavior B 	 A0.5 [9].
That the scaling works also in 2D explicitly shows that it is
not necessarily connected to an underlying replica symme-
try breaking, and weakens the evidence presented in other
numerical works.

We discuss now different important implications of the
finite-time/finite-size connection described by Eq. (5).
From a pragmatic point of view, first, this relation implies
that numerical studies of large aging systems or small equi-
librated systems potentially contain the same information.
In our opinion, this fact has been largely underestimated
in the spin-glass literature, which often tries to overcome
the difficulty of obtaining thermalized samples of large
sizes by using large times in dynamical simulations. We
exemplify this point by discussing the behavior of spin
glasses in a uniform magnetic field. Various static tests
of the existence of a spin-glass phase give inconclusive
results [P�q, L� in a field differs from its mean-field shape,
Binder cumulants do not cross in a field [5] ], while the
dynamic behavior in a field has been claimed to clearly
demonstrate the existence of a replica symmetry broken
phase, in 3D and 4D [19]. This intriguing fact led us to
perform in 2D the simulations of Refs. [19]. We have
computed different values of the overlap, qmin and 
q� �R

dq0 P�q0,L�q0 which, according to the mean-field shape
of P�q, L � `� in a field, should be different [19]; qmin

is obtained dynamically as the infinite time extrapolation
of the overlap between two independently aging copies
of the system [19]. Figure 3 shows that, as in 3D and
4D, the two values differ at low enough T . Taken at face
value, this result would lead to the erroneous conclusion
that a replica symmetry breaking transition occurs at
Tc�h � 0.4� � 0.5 [20]. This shows that dynamic stud-
ies, using the same computer resources, are in fact probing
the same length scales as equilibrium ones and therefore
have to be taken with the same care. Much larger times
(in dynamics) and sizes (in statics) should be used to show
that there is no transition in a field in 2D.

The validity of Eq. (5) implies that the same excitations
of length ��tw� are governing the dynamics, i.e., the decay
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FIG. 3. Temperature dependence of the overlaps 
q� and qmin,
in a uniform magnetic field h � 0.4.

of the correlation as C�t, tw� � C �����t����tw����, and are
contributing to the low-q part of P�q, L�, i.e., to the
non-FDT part of the parametric curves in Fig. 1. We
emphasize that Eq. (5) would not be satisfied at finite time
during the coarsening in a pure ferromagnet (below Tc)
where the domain walls governing the aging are absent in
the static situation with usual boundary conditions. (See
the related discussion of the role of vortices in Ref. [10].)
Hence, we preferred the name coherence length to domain
size, since these two names refer to qualitatively different
physical situations. Our results give no indication on
the structure of the relevant excitations in spin glasses,
but emphasize the relevance (and the need) of finite-T
equilibrium studies of large-scale excitations for the
description of aging. It is not established, in particular,
that the description [3] in terms of compact droplets is
correct [21].

From a fundamental point of view, our results give
support to the picture of aging in spin glasses as the
successive equilibration of excitations of increasing length
scales, recently put forward to interpret temperature-
cycling experiments [22]. We speculate that the absence
of ��tw� in mean-field theory and, hence, of the resulting
multi-length-scale dynamics, is “compensated” by the
dynamic ultrametricity [6]. This results in the inability of
the theory of correctly predicting the simple t�tw scaling
of dynamic functions. Note that the reported growth laws
are inconsistent with the logarithmic law predicted by
scaling arguments [3,22], which would anyway lead to the
unobserved logt� logtw scaling. A thorough investigation
of this law seems necessary, and current experiments and
simulations [23] should clarify this point.

Note, finally, that the extremely slow growth of the co-
herence length implies that the length scales involved in the
dynamics are relatively small, even at experimental times.
The provocative idea that the thermodynamic limit might
be of no practical importance directly follows. This also
implies that Eq. (5) should apply in experiments, leading
to results quantitatively similar to Fig. 1.
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