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ABSTRACT: In a recent experiment it has been claimed that the Gallavotti and Cohen’s Fluctuation Relation
(FR) is satisied by the fluctuations of power injection in a vibrated granular gas. Anyway, by simple reasoning, it
can be shown that for a granular gas such a relation cannot be true. We have studied numerically and analytically
the fluctuations of power injection in different models. FR never holds. In the case of boundary driving it can
be calculated the behavior at intermediate, observable times, of internal power injection, obtaining quantitative
agreement with the experiment. In the case of homogeneous driving a general theory can be obtained, predicting
the behavior of the large deviation function of the fluctuations of power injected by the thermostat. Finally we
suggest a possible route to define an entropy production, measurable in granular gases, which must satisfy the
FT.

1 INTRODUCTION
1.1 Granular gases
A granular gas is the perfect tool for investigating sta-
tistical mechanics in out-of-equilibrium regimes (1).
It proves to be a simple and rich model, open to an-
alytical and numerical insights, and at the same time
accessible by experiments. From the theoretical point
of view, a granular gas is a collection of hard ob-
jects (rods, disks or spheres), moving in a container,
which lose a fraction of their relative energy in in-
stantaneous binary collisions. In the physical world
it can be found under the form of fluidized sand or
grains of any kind, where the fluidization is usually
provided by a high frequency vibration. When speak-
ing of a granular gas we refer to setups dilute enough,
in order to keep the excluded volume effects small
with respect to the other mechanisms determining the
transport properties. Granular gases display an as-
tonishing plethora of different behaviors, depending
upon the external conditions. A large class of insta-
bilities leading to spontaneous symmetry breakings is
observed, such as clustering and shear, surface waves,
convection rolls and shocks (2). An inelastic gas does
not satisfy the fundamental hypothesis of equilibrium

gases, mainly because of energy dissipation which
implies the presence of an external energy injection
and therefore a non-trivial flow of energy between a
source/thermostat and an energy sink. This leads to
the breakdown of many typical equilibrium assump-
tions: a driven granular gas exhibits non-Gaussian ve-
locity distributions, does not obey to equipartition of
energy (among different degrees of freedom or among
different components of a mixture), and if the en-
ergy driving is modeled as a homogeneous thermo-
stat with temperature Tbath and a granular temperature
Tgran = 〈v2〉/D (D the dimensionality) is measured,
it is usually found Tgran < Tbath.

1.2 The Fluctuation Theorem
Recently, in experiments and numerical simulations,
the validity of the so-called Gallavotti-Cohen Fluctu-
ation Relation (FR), stated for the first time in (3),
has been probed in vibrated granular gases. The FR is
a theorem (4) proved for chaotic dynamical systems
with microscopic reversibility, when the entropy pro-
duction (in the form of the phase space contraction
rate) is measured, and for Markov processes (5; 6)
when the fluctuations of a well suited function of the
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phase space trajectories, taken as a measure of viola-
tion of the detailed balance, i.e. of entropy production,
are measured. FT roughly says that, being στ the mea-
sured fluctuating quantity integrated on a time τ , and
f(στ ) its probability density function, then

ln[f(στ )/f(−στ )] = στ (1)

when τ →∞.
The FT gives a measure of the relative weight of

transient violations of the second principle of thermo-
dynamics, which requires entropy production to be
non-negative (11). The FT has been experimentally
verified in a few setups (12). More recently it has been
verified in an experiment on granular gases (8).

2 The experiment
The experiment performed by Menon and Feitosa (8)
consisted of a 2D box containing N identical grains
of glass, vibrated at frequency f and amplitude A.
The authors observed the kinetic energy variations
∆τ , during windows of time τ , in a central subre-
gion of the system characterized by an almost homo-
geneous temperature and density. They divided this
variation into two contributions:

∆τ = Qτ −Dτ , (2)

where Dτ is the energy dissipated in inelastic colli-
sions and Qτ is the energy flux through the borders,
due to the kinetic energy transported by particles go-
ing in and going out. The authors of the experiment
have conjectured that Qτ , being a measure of injected
power in the sub-system, can be related to the entropy
flow or the entropy produced by the thermostat consti-
tuted by the rest of the gas (which in the steady state is
equal to the internal entropy production). They have
measured its probability density function (pdf) f(Qτ )
and found that

ln
f(Qτ )

f(−Qτ )
= βQτ (3)

with β 6= 1/Tg. Lacking a reasonable explanation for
the value of β, the authors have claimed to have ex-
perimentally verified the FR with an “effective tem-
perature” Teff = 1/β, suggesting it as possible non-
equilibrium generalization of usual temperature.

There is a first major objection to this reasoning: in
the limit of zero inelasticity (i.e. in the case of ideal
elastic grains) the pdf f(Qτ ) becomes symmetric with
respect to the average injected power through the bor-
ders of the central region, which is 0, so that β → 0,
i.e. the effective temperature would diverge instead of
coinciding with the equilibrium temperature. There is
also a more subtle problem in this experiment: from
Equation 2, it can be demonstrated that the large de-
viation function of f(Qτ ) is equal to the large devia-

tion function of f(Dτ ). We recall that when τ → ∞,
f(Qτ ) ∼ exp(τπ(Qτ /τ)) and π(q) is the large devia-
tion function of f(Qτ ). Since Dτ is always positive, it
follows that the relation 3 cannot hold when τ →∞.

3 THE EXPLANATION OF THE EXPERIMENT
We have reproduced the experiment by means of
molecular dynamics simulations of inelastic hard
disks (13), recovering all the experimental results
with a good quantitative agreement. Moreover we
have analytically studied the fluctuations of Qτ . It ap-
pears that the injected power measured in the experi-
ment can be written as

Qτ =
1

2

(

n+
∑

i=1

v2

i+ −

n
−

∑

i=1

v2

i−

)

, (4)

where n− (n+) is the number of particles leaving (en-
tering) the window during the time τ , and v2

i− (v2
i+)

are the squared moduli of their velocities. In order
to analyze the statistics of Qτ we take n− and n+

as Poisson-distributed random variables with aver-
age ωτ , neglecting correlations among particles en-
tering or leaving successively the central region. Sup-
ported by direct observation in the simulation we as-
sume the velocities vi+ and vi− to come from pop-
ulations with different temperatures T+ and T− re-
spectively. Indeed, compared with the population en-
tering the central region, those particles that leave it
have suffered on average more inelastic collisions,
so that T− < T+. Finally we assume Gaussian ve-
locity pdfs (while non-Gaussian tails are quite com-
mon in granular gases (14), we have checked that they
play a negligible role here). We have analytically cal-
culated the generating function of f(Qτ ), obtaining
g(z) = exp(τµ(z)) for any τ , with

µ(z) = ω
(

−2 + (1− T+z)−D/2 + (1 + T−z)−D/2
)

,
(5)

which also automatically coincides with the large de-
viation function of g(z). We recall that the two large
deviation functions µ(z) and π(q) are related by a
Legendre transform. An FR with a slope β implies
that µ(z) = µ(β − z) and this relation is evidently not
satisfied by Eq. 5. Anyway it has been observed (7)
that π(q) − π(−q) ≈ 2π′(0)q + o(q3) at small val-
ues of q. This means that the linear relation 3 with
βeff = 2π′(0) can be observed if the range of Qτ is
small, which is usually the case since in experiments
and simulations the statististics of negative events is
very poor. From equation 5 a formula for the slope β
follows:

βeff = 2
γδ − 1

γ + γδ

1

T−

(6)

with γ = T+/T− and δ = 2/(2 + D). When γ = 1
(i.e. when the gas is elastic) βeff = 0. This formula
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is in good agreement with the slope observed in the
simulations and in the experiment.

We remark that, in order to be consistent with the
second objection given at the end of the introduction,
the assumption of non-correlated velocities in the ex-
pression 4 must be violated at large times τ →∞. The
fact that expression 5 is in good quantitative agree-
ment with the experiment is consistent with the obser-
vation of negative events. We can argue that the exper-
iment and the simulations have considered times large
enough to test the validity of formula 6, but not too
much large, so that correlations may be disregarded.

4 A SIMPLE MODEL OF HOMOGENEOUSLY
DRIVEN GRANULAR GAS

It is natural, in a theoretical research, to focus on sim-
ple models, in order to catch the essential ingredi-
ents of a phenomenon. We have therefore studied one
of the most investigated models of homogeneously
driven granular gases (9). In this model N hard disks
collide inelastically and each particle, between colli-
sions, is coupled to an external thermostat so that its
equation of motion reads

dvi(t)

dt
= Fi(t) (7)

with F a random force with covariance
〈F α

i (t)F β
j (t′)〉 = 2Γδijδαβδ(t − t′). We assume

Molecular Chaos and, in the simulations, we enforce
it through the use of a Direct Simulation Monte
Carlo algorithm (10). The collisions happen with a
restitution coefficient α that takes values between
0 (perfectly inelastic gas) and 1 (elastic gas). The
gas rapidly reaches a stationary state with a granular
temperature Tg = 4D/(1− α2), if the mean free time
is used as a measure unit for time. Our interest (15)
went to the fluctuations of the work exerted by the
thermostat

W(τ) =

∫ τ

0

dt
∑

i

Fi · vi (8)

Again, the equation 2 holds, with Qτ ≡W(τ), so that
the possibility of observing FR, i.e. a linear relation
such as the one in Eq. 3 at large τ , is ruled out. Any-
way we are interested in the way this “violation” of
FR comes out from a direct analysis of the pdf of W
in the model . We started from an extended Liouville
equation for the probability ρ(ΓN ,W, t) that the sys-
tem is in a point ΓN of the N -velocity phase space,
with W(t) = W at time t. The second step is to con-
vert the Liouville equation in terms of the generating
function ρ̂(ΓN , λ, t) =

∫

dW exp(−λW)ρ. We are in-
terested in the largest eigenvalue µ(λ) of the evolution
operator for ρ̂, which is the generating function for the
cumulants of W(t)/t. The eigenvalue equation is then

projected onto the one-particle subspace, which cou-
ples to the two-particle subspace, as the Boltzmann
equation limit λ → 0 already features. By means of
a molecular-chaos like closure procedure we arrive at
an equation for both the eigenvalue µ and its related
eigenfunction. The we are able to show that the large
deviation function of W = wt has tails given by

π(w → 0+) ∼ −w−1/3, π(w → +∞) ∼ −w (9)

with, as expected, no w < 0 contribution. While the
w → 0+ regime looks thermostat-dependent, the ex-
ponential right tail of P (W, t) seems to be a robust
property related to the presence of a branch cut in
the complex λ plane for µ(λ). Moreover, using that
d4µ
dλ4 = 〈W4〉c/t we could compare W’s first cumu-
lants with their numerical estimates, obtaining good
quantitative agreement.

In an experiment, i.e. in this case in a numerical
simulation, it is extremely difficult to gather a decent
statistics for negative events, so that one is obliged to
use not too high values of τ , usually not much larger
than the mean free time which is the characteristic
time of the dynamics. Again this leads to an appar-
ent agreement with FR: a linear relation such as the
one in Eq. 3 is obtained. It appears that in this model
β ≈ 1/Tg when α is near 1. As α is decreased the
linear relation is still observed, with a slope slightly
larger (and growing as α gets smaller and smaller)
than 1/Tg. Such a slope would be consistent with a
Gaussian pdf of W (centered in 〈W〉 6= 0), but the
pdf’s show clear deviations from the Gaussian also in
the interested region. We are investigating the possi-
bility of reproducing this slope through a reasoning
similar to the one already sketched in the previous
section.

5 DETAILED BALANCE FOR A TAGGED PAR-
TICLE

Up to now we have shown that, even if simulations
and experiments, due to limited resolution, suggest
the contrary, the Gallavotti-Cohen FR cannot hold for
the fluctuations of power injection in a granular gas.
A question remains about the possibility of finding a
quantity playing the role of entropy production in sta-
tionary granular gases and therefore satisfying the FR.
In the derivation of FR for stochastic systems given
by Lebowitz and Spohn (6) it has been put in evi-
dence that, if one knows the transition probabilities
of the Markovian process governing the dynamics,
then it can be defined a functional W (τ) of the tra-
jectories of length τ which can be identified with the
Gibbs entropy flow. Anyway, to follow this path, some
kind of “reversibility” is needed, i.e. for each possible
jump in the space of phases its reversed jump must be
possible (of course with different probability). This
is not the case for granular gases, as a consequence
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of inelastic collision rules. If two particles have col-
lided, doing the transition (v1,v2) → (v′

1,v′

2) there is
not any collision such that (v′

1,v′

2) → (v1,v2). Sim-
metry is restored only when α = 1, i.e. when the gas
is elastic. To circumvent this problem, we have con-
jectured that a tagged particle may be representative
of the mixing properties of the whole gas. We imag-
ine that the gas, made of N � 1 particles, is in contact
with the same thermostat modeled in Eq. 7, while the
tagged particle is not. It simply collides inelastically
with the gas particles without perturbing its station-
ary state. The velocity pdf of the tagged particle is
well described by a linear-Boltzmann equation. Then
it is possible to describe the dynamics of the parti-
cle as a Markov chain of successive collisions. Each
jump v → v′ has a transition probability K(v,v′) and
the inverse jump v′ → v is always possible, thanks
to fact that the collision-mate degree of freedom has
been integrated out. Following the recipe of Lebowitz
and Spohn (6), we are able to obtain an explicit ex-
pression for the entropy production W (τ) associated
to the tagged particle. It of course depends upon the
particular stationary velocity pdf of the gas, which is
usually different from a Gaussian. It is interesting to
observe that the inelastic tagged particle model has a
simple solution in the case that the gas has a Gaussian
velocity pdf: the tagged particle has exactly a Gaus-
sian velocity pdf with a temperature different from the
one of the gas (16). In this case the Markov process
followed by the tagged particle satisfies the detailed
balance with respect to this Gaussian measure and the
entropy production is zero. As soon as the velocity
pdf of the gas deviates from the Gaussian (which is
the most physical situation) then the detailed balance
is violated, W (τ) assumes positive as well as negative
values, and the Fluctuation Relation holds.

6 CONCLUSIONS

We have studied by numerical simulations and analyt-
ical calculations the fluctuations of injected power in
driven granular gases in different experimental setup,
driven at the boundaries or homogeneously. This has
proved to be useful in order to understand the real
possibility of probing the large time limit of the inte-
gral of these fluctuations in experiments. It seems that
such limit is almost impossible to be obtained and that
the information at the available times may be mislead-
ing. Mainly a “false” verification of the Gallavotti-
Cohen Fluctuation Relation can be observed. We have
concluded suggesting a route to define an entropy pro-
duction in driven granular gases.
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[1] T. Pöschel and S. Luding (eds.), Granular

Gases, Lecture Notes in Physics, Vol. 564,
Springer, Berlin (2001); T. Pöschel and
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