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Abstract

In underwater acoustics, the signals received by sensors
are mixtures of different elementary sources, filtered by the
environment. Using blind separation of sources, we can

isolate individual sources from their mixtures without any =

a priori information, except for the assumption of statistical
independence. Two French researchers, J. Herault and C.
Jutten had earlier proposed a neuromimetic solution to the
problem. We obtain promising results by applying this
method to separating linear mixtures of simulated
underwater signals. We next extend the work to separating
convolutive mixtures in a shallow water environment. The
initial results will be presented. Blind separation of sources
can also be applied to reducing self-noise and as a pre-
processing technique for signal classification.

1 Introduction

The blind separation of sources problem arises in many
- fields such as astronomy, astrophysics, communications and
underwater acoustics. In underwater acoustics, the signals
received by hydrophones are mixtures of different
elementary sources, each filtered by the environment. The
sources could be ship signatures, sounds of marine
organisms, ambient noise or self-noise. The environment is
assumed to be isotropically deterministic, stationary and
linear. The propagation of the source signals through the
environment is modelled by passing the signals through
linear time-invariant (LTI) filters. Thus, the signals received
at the hydrophones are convolutive mixtures of the source
signals. The goal of blind separation of sources techniques
is to retrieve the individual source signals from their
convolutive mixtures. :

2 Generation of Convolutive Mixtures

Convolutive mixtures of underwater sources in shallow
water can be produced by a synthetic signal generator. These
signals could be used to test various signal processing
algorithms, including blind source separation. We have
implemented a signal generator, called ANGUS (Artificial

Noise Generator for Underwater Sounds), that could be used
as a tool for simulating realistic underwater signals received
by a hydrophone array placed in shallow water [1].

ANGUS allows the simulation of scenarios invelving
multiple sources with different source and receiver locations.
With multiple sources, the signals received at the
hydrophones are convolutive mixtures of the source signals.
If the channel is treated as a linear time-invariant (LTT)
system, there will be a propagation loss filter, with impulse
response (1), between each source-receiver pair. An :
example of a propagation impulse response and transfer
function is shown in Fig 1. These impulse responses are
generated from GAMARAY, a ray-based model developed -
by E. K. Westwood [2, 3].

A typical shallow water environment is shown in Fig 2.
This environment consists of a shallow water channel with

. a depth of 100m overlaying a fluid half-space. The
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compressional sound velocity is 1500 /s -1 in the water and
1600 ms-! in the bottom. A vertical line array with 9
hydrophones is placed 2km away from the source.

The received signal r(t), j = [1, 2...N] is the sum of the
contributions from eacﬁ the M source sxgnals, s,(t), after
they have propagated through the environment. The
equation for r(7) is given by

M . (1)
ri(t) =D hii(t)@ si(t)

i=1

where ® stands for time-domain convolution. The signal at
the receivers can thus be considered as convolutive mixtures
of the source signals. In the frequency domain, the received
signal is

& M

R;(f) ZHU Si(f) . @

where H(f) is the frequency response of the propaganon
filter between source S; and receiver R;. Hence, in the
frequency domain, the Fourier Transform (FT) of the
receiver signals Rj(f) can be seen as linear mixtures of the
FT of the source signals, S;(f), scaled by the corresponding
Hi(f). The block diagram representation for M =2 and N =
2 1s shown in Fig 3. Although blind source separation can
be applied to more complex systems, our discussions will
be limited to this setup for simplicity.

3 Case Study using Synthetic Signals

The following case study presents a two dimensional
situation. The source signals are synthetic signals
corresponding to submarine noise (signal 1) and broadband
noise containing a pure tone at about 500 Hz (signal 2).
Both signals are mixed using the scheme presented in Fig
3, where the filters H,, and H,, are assumed to be all-pass,
i.e.

Hy(f)=Hyp(f)=1. 3

As shown in Fig 4, the filters /|, and H,, consist of sparse
echoes corresponding to the arrivals of the eigenrays. These
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filters contain information that characterises the propagation
of the source signals through the environment.

The signals at the receivers, r;(£) and r,(¢), are convoluted
mixtures of the source signals, 5,(f) and s,(7) . Treating the
environment as a LTI system, r,(f) and r,(¢) are given by

ri(0) = 51() + 55 () ® hy (), 4

rot) = s3() + 51 () @ by () ®)

Starting from the received signals, r,(t) and r,(?), a
neuromimetic source separation algorithm is used [4].
Fig 5 shows the block diagram representation of this method.
The expressions for the output signals are given by

SO =r)-Cp®50), (©)

52(0) = (1) - Coy ® 54(2), @

where C12 and C21 are the unknown separating filter
coefficients to be estimated.

The source signals, s,(f) and s4(%), are independent. This
implies that the outputs of a successful source separation
algorithm, §,(¢) and $,(¢), should also be independent. The
goal of the blind source separation algorithm is to derive a
set of output signals that are as independent as possible. In
our implementation, the independence criteria (INDEP) is
chosen as the cross fourth order moment. Both the
independent criteria and the separating filter coefficients,
C,, and C,,, are estimated adaptively using a Robbins-
Monro type algorithm. The independence criteria is used
as the cost function for updating the output signals at each
step of the algorithm. The algorithm can be summarised
with the following lines of pseudocode.

For all samples

Begin

Estimate the independence criteria (INDEP).
Update all the coefficients using:

Ci(t+1) =Cy(?) + u- INDEPF.

Estimate the output signals.

End :

The resulting output signals are independent and related to
the true sources through a linear filter. In this example, this

- filter is equal to 1 for better visual interpretation of the
results.

Fig 6 shows the power spectrum density (PSD) of both
sources, S,(f) and S,(f), the received signals, R,(f) and R,(f)
and the results obtained using separating filters with 30 taps.
The bandwidth of the signals is 1 kHz and the signal duration

- is 5 seconds. As shown in the figure, the main characteristics
of the source PSDs have been recovered at the outputs. The
. PSD is estimated using 2000 data points and takenasa 512-
point Welch periodogram with 50% overlap.

Fig 7 shows the cross-coherence function between the
received signals, ,(#) and r,(t), and the cross-coherence
function between the output signals, 5,(f) and s,(t). By
definition, the cross-coherence between two independent
signals is zero. The estimated outputs show this
characteristic up to 500 Hz. This frequency range contains
the main portion of the source signal power. The cross-
coherence functions are estimated using 2000 data points
and taken with a 64-point FFT with 50% overlap.

Although the preliminary results obtained are promising,
some issues have to be addressed before the algorithm could
be applied to real underwater signals. As illustrated in Fig
1, the main problem encountered concerns the large number
of filter coefficients to be estimated. To include all the
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eigenray arrivals, the filter impulse response has to be
sufficiently long. Otherwise, eigenrays that arrive at a later
time may be excluded and the propagation channel would
not be properly characterised. For a problem involving more
than two dimensions, this factor may become critical to the
convergence of the algorithm.

4. Future Work

The setup of the blind source separation model, shown in
Fig 3, consists of two sources S, and S, and two receivers,
R, and R,. In general, there should be four propagation loss
filters, H,,(f), H,(f ), Hy,(f) and Hy(f ). However, this only
allows the separation of the sources up to a filter term. To
simplify the model, we assumed that H,,(f) = H,(f) = 1.
This assumption is valid if S, is very close to R, and S, is
very close to R,. However, for a hydrophone array placed
in shallow water, the sources are typically far away from
the receivers. A better assumption is to let H,,(f) = H5(f)
and H, (f) = Hx(f). This is reasonable provided that the
path taken by the signal from S, to R, is similar to the path
taken by S, to R,. The same argument holds for R,. Applying
to a shallow water receiver array, this means that the
hydrophones, R, and R,, must not be physically too far apart.

As stated in the previous section, the length of the
propagation impulse responses also poses a problem to the
implementation of the blind source separation algorithm.
Blind source separation could still work with long impulse
responses but the algorithm may take too long to converge.
However, it is possible to obtain an efficient representation
of the impulse response. As shown in Fig 1, the impulse
response is zero most of the time. Non-zero values only
exist at or near the points corresponding to the arrival of
the eigenrays. It may be adequate to represent the
propagation impulse response with only the positions and
magnitudes of the peaks in the graph. This encodes sufficient
information about the channel for an accurate simulation
and at the same time, enables the algorithm to converge
more efficiently.

5 Conclusions

We describe a study on the application of blind source
separation techniques to underwater signals in shallow
water. The algorithm assumes noa priori knowledge about
the signals except that they are statistically independent.
From simulated mixtures of underwater signals, the
algorithm is able to retrieve the original source signals.
Constraints imposed by the shallow water environment are
highlighted. The initial results are promising and future work
will address some of the current problems encountered.
Blind source separation can be used as a preprocessing step.
for signal classification as well as a technique for self-noise
reduction. '
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Fi%ure 1: Impulse response and transfer function of a shal-
low water propagation loss filter .
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Figure 2: Example of a shallow water environment
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Figure 3: Modelling of shallow water transmission as a
linear time-invariant system
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Figure 4: Propagation loss impulse responses used in case study of synthetic signals
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Figure 5: Block diagram representation of the blind source separation algorithm
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Figure 6: Spectra of source signals, receiver mixtures and output signals
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Figure 7: Cross-coherence functions of receiver signals and output signals
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