Next: About this document
Up: No Title
Previous: Other properties of
References
- 1
-
A. Alekseev, D. Gluschenkov and A. Lyakhovskaya,
Regular representation of the quantum group
(q is a root
of unity),
St. Petersburg Math. J., Vol 6, N5, p 88-114 (1994)
- 2
- D. Arnaudon,
Fusion Rules and R-matrices for representations of
at roots of unity,
hep-th/9203011
- 3
-
V.Chari, A.Pressley,
A guide to Quantum Groups,
Cambridge University Press (1994)
- 4
- A. Connes
NonCommutative Geometry and Reality,
IHES/M/95/52
- 5
- A. Connes,
Gravity coupled with matter and foundation of non-commutative geometry,
hep-th/9603053
- 6
-
A. Connes and A. Chamseddine,
The spectral action principle, hep-th 9606001
- 7
-
R. Coquereaux, G. Esposito-Farese and G. Vaillant,
Higgs fields as Yang-Mills fields and discrete symmetries,
Nucl. Phys. B353, 689 (1991).
- 8
-
R. Coquereaux, G. Esposito-Farese and F. Scheck,
An SU(2|1) theory of electroweak interactions described by algebraic superconnections,
Int. Jour. of Mod. Phys. A, Vol. 7, No 26 (1992) 6555-6593
- 9
-
R. Coquereaux, R. Haussling and F. Scheck,
Algebraic connections on parallel universes,
Int. Jour. of Mod. Phys. A, Vol. 10, No 1 (1995) 89-98
- 10
- R. Coquereaux, O. Ogievetsky.
Comments on the properties of finite dimensional Hopf algebras related with
when q is a primitive root of unity,
CPT-Preprint. To appear.
- 11
- E. Corrigan, D. Fairlie, P. Fletcher and R. Sasaki,
Some aspects of quantum groups and supergroups,
J. Math. Phys. 31, 776 (1990)
- 12
- C.W. Curtis,
Modular Lie Algebras. I,
Transac. of the Amer. Math. Soc., Vol 82 p 161-179 (1956)
- 13
- C.W. Curtis,
Representation of Lie algebras of classical type with applications
to linear groups,
J. Math. Mech. 9, 307-326 (1960)
- 14
- P. Di Francesco and J.-B. Zuber, in
Recent Developments in Conformal Field Theories,
Trieste Conference, 1989, S. Randjbar-Daemi, E. Sezgin and J.-B. Zuber eds.,
World Scientific 1990
- 15
-
M. Dubois Violette,
Derivations et calcul differentiel non commutatif,
C.R.A.S. Paris, 307, Série I (1988), 403-408
- 16
-
M. Dubois Violette
Non-commutative differential geometry, quantum mechanics and gauge theory,
in Differential Geometric Methods in Theoretical Physics, Rapallo 1990
(C. Bartocci, U. Bruzzo,, R. Cianci, eds),
Lecture Notes in Physics 375, Springer-Verlag 1991.
- 17
- D.V. Gluschenkov, A.V. Lyakhovskaya,
Regular representation of the quantum Heisenberg double (q is a root of
unity), Zapiski LOMI 215 (1994).
- 18
- N. Jacobson,
Abstract Derivation and Lie algebra,
Transac. of the Amer. Math. Soc., Vol 42 p 206-224 (1937)
- 19
- N. Jacobson,
Restricted Lie algebras of characteristic p,
Transac. of the Amer. Math. Soc., Vol 50 p 15-26 (1941)
- 20
- G. Lusztig,
Finite dimensional Hopf algebras arising from quantized universal
enveloping algebras,
J. of the Amer. Math. Soc., Vol 3, N1, p 257-296 (1990)
- 21
- G. Lusztig,
Quantum groups at roots of 1,
Geometrica Dedicata,Vol 35, p 89-114 (1990)
- 22
- H.Ewen, O. Ogievetsky and J. Wess,
Quantum matrices in two dimensions,
Letters in Math. Phys. 22, 297-305, 1991
- 23
- O. Ogievetsky and J. Wess
Relations between
's,
Z. Phys. C - Particles and Fields 50,123,131 (1991)
- 24
-
M. Marcu,
The representations of spl(2|1),
J.Math. Phys. 21(6) 1277-1283 (1980)
- 25
-
C.P. Martin, J. Gracia Bondia and J. Varilly,
The Standard Model as a noncommutative geometry: the low mass regime,
hep-th/9605001
- 26
- Y. Ne'eman, J. Thierry-Mieg,
Anomaly-free sequential superunification,
Phys. Lett. B108 (1982) 399-402
- 27
- A. Ocneanu, private communication.
See also: Paths on Coxeter diagrams, from Platonic solids and
singularities to minimal models and subfactors (notes recorded
by S. Goto, Univ. of Tokyo (in Japanese))
- 28
- O. Ogievetsky,
Matrix structure of
when q is a root of unity.
CPT-96/P3390
- 29
- V. Pasquier and H. Saleur,
Common structure between finite systems and conformal field theories
through quantum groups,
Nucl. Phys. B330 (1990) 523
- 30
- R. Suter,
Modules over
,
Comm. in Math. Phys., Vol 163, p 359-393 (1994)
- 31
- S. Vokos, J. Wess and B. Zumino,
Analysis of the basic matrix representation of
,
Z. Phys. C48, 65 (1990)
Robert Coquereaux
Tue Nov 5 15:18:21 MET 1996