

Institut d'Astrophysique de Paris (CNRS)

Collaboration:

Jens Jasche (TUM/ExC),

Michael Hudson (UoW), Benjamin D. Wandelt (UPMC/IAP),

Florent Leclercq (IAP → Portsmouth)

Outline

- Context and problems
- The statistical models: BORG (spectroscopic) and VIRBIUS (distance+spectroscopic)
- Application to CosmicFlows, COMPOSITE and 2M++
- Results
- Conclusion

July $5^{ ext{th}}$ 2016

Context

- Cosmic distance surveys coming out of infancy
- Superb spectroscopic surveys

6dFv survey (Springob et al. 2014) Cosmicflows 3 (Tully et al. 2016)

SDSS3 / BOSS (SDSS website)

Context

- Cosmic distance surveys coming out of infancy
- Superb spectroscopic surveys
- Still naive data analysis

 $m July~5^{th}~2016$

Context

- Cosmic distance surveys coming out of infancy
- Superb spectroscopic surveys
- Still naive data analysis
- Is it possible to do a full and statistically accurate analysis of surveys? Obtain velocity fields?

Outline

- Context and problems
- The statistical models: BORG (spectroscopic) and VIRBIUS (distance+spectroscopic)
- Application to CosmicFlows, COMPOSITE and 2M++
- Results
- Conclusion

 $m July~5^{th}~2016$

Bayesian Origins Reconstruction from Galaxies (BORG)

BORG2 model

~OpenMP parallel

Lavaux & Jasche, 2015, MNRAS Jasche & Wandelt, 2013, MNRAS

BORG3 model

MPI + OpenMP parallel, exact supersampling, entire code rewriting

Lavaux & Jasche, 2016, in prep. Jasche & Lavaux, 2016, in prep.

BORG3 model (effectively)

 δ sampled using Hamiltonian Monte Carlo algorithm

LJ, JL, 2016 in prep. Jasche & Wandelt (2013)

BORG3 sampling technique

Velocity Reconstruction using Bayesian Inference Scheme

VIRBIUS model

Lavaux, 2016, MNRAS

VIRBIUS model

July $5^{ ext{th}}$ 2016

VIRBIUS model

OpenMP parallel

VIRBIUS model (effectively)

Hard to write completely here...

The following is only the core part:

Likelihood

$$\mathcal{L} = P(\{\mu_{i}, z_{i}\} | \{d_{i}^{L}\}, \{\sigma_{z,i}, \sigma_{\mu,i}\}, \{\hat{\Theta}(\boldsymbol{k}_{q})\}, H, \widetilde{H}, \Sigma_{\text{NL}}, \mathcal{T}, \{p_{t}^{type}\})$$

$$\propto \prod_{i=1}^{N_{d}} \left(\sigma_{z,i}^{2} (1 + \bar{z}_{i})^{-2} + \sigma_{\text{NL},type(i)}^{2}\right)^{-1/2} \times$$

$$\exp \left\{ -\frac{1}{2} \sum_{i=1}^{N_{d}} \frac{\left[v_{i}^{r}(z_{i}, d_{i}) - H f \Psi_{r,i}(q^{h})\right]^{2}}{\left[(\sigma_{z,i}^{2} (1 + \bar{z}_{i}(d_{i}))^{-2} + \sigma_{\text{NL},type(i)}^{2}\right]} - \frac{(\mu_{i} - 5 \log_{10}(d_{i}^{L}/10 \text{ pc}))^{2}}{\sigma_{\mu,i}^{2}} \right\}$$

Posterior distribution

$$P(\mathcal{D}^{L} = \{d_{i}^{L}\}, \hat{\Theta} = \{\hat{\Theta}(\boldsymbol{k}_{q})\}, \tilde{H}, H, A_{S}, \{\sigma_{\text{NL},t}\}, \mathcal{T}|$$

$$\mathcal{M} = \{\mu_{i}\}, \mathcal{Z} = \{z_{i}\}, \Sigma_{z} = \{\sigma_{z,i}\}, \Sigma_{\mu} = \{\sigma_{\mu,i}\}) = \frac{\mathcal{L} \times \pi(\mathcal{D}^{L})\pi(\hat{\Theta})\pi(\Sigma_{\text{NL}})\pi(H)\pi(\{type(i)\})\pi(A_{S})}{\sum_{\mathcal{T}'} \int dH d\hat{\Theta} d\mathcal{D}^{L} d\Sigma_{\text{NL}} \mathcal{L} \times \pi(\mathcal{D}^{L})\pi(\mathcal{T}')\pi(\hat{\Theta})\pi(\{\sigma_{\text{NL},t}\})\pi(H)},$$

 $\mathbf{July}\ 5^{\text{th}}\ \mathbf{2016}$

VIRBIUS sampling technique

VIRBIUS sampling technique

July 5th 2016 18

Outline

- Context and problems
- The statistical models: BORG (spectroscopic) and VIRBIUS (distance + spectroscopic)
- Application to CosmicFlows, COMPOSITE and 2M++
- Results
- Conclusion

July $5^{ ext{th}}$ 2016 $ext{1}$

CosmicFlows 2.1 data

8188 galaxies

4 subsets:

• "High precision": 558

Supernovae: 221

• Fundamental plane: 1455

Tully-Fisher: 5954

Max velocity: 29 313 km/s

Tully et al. (AJ, 2013)

COMPOSITE data

Watkins, Feldman & Hudson (MNRAS, 2009)

2M++ compilation

Lavaux & Hudson (MNRAS, 2011)

VIRBIUS reconstructed fields

PRELIMINARY (!)

CF2.1, mean density and velocity field given data

Supergalactic plane

BORG3 density field

Supergalactic plane, final density field smoothed to 5 Mpc/h (Gaussian)

PRELIMINARY

2M++, mean final matter density field

Supergalactic plane

BORG3 density field

Supergalactic plane, final density field, no smoothing

PRELIMINARY

2M++, mean final matter density field

Supergalactic plane

Density + velocity field

PRELIMINARY

CF2.1, mean divergence field + velocity

2M++, mean final matter density field

Supergalactic plane

July 5th 2016 26

Meta-characteristics found by VIRBIUS

 $\mathbf{July}\ \mathbf{5^{th}}\ \mathbf{2016}$

Bulk flows (Cosmic Flows 2.1)

 ∞

PRELIMINARY

Compatible with Hoffman, Courtois & Tully (2015)

Bulk flows (COMPOSITE)

PRELIMINARY

 $10h^{-1} \text{ Mpc}$

 $30h^{-1} \text{ Mpc}$

 $60h^{-1} \mathrm{Mpc}$

Gaussian kernel

 ∞

 $\mathbf{July}\ 5^{\text{th}}\ \mathbf{2016}$

Conclusion

- **✓** Possibility of finding outliers
- ✓ Consistent analysis of different distance data
- **✓** Hubble constant in CF2.1 is more like ~70 km/s/Mpc
- ✓ Comparison with BORG, similar topology but details are still sorted out
- ✓ BORG3 opens new possibilities of fully non-linear reconstruction, including also distance data

- ✓ Bulk flows still high in CF2.1, not compatible with LCDM
- ✓ COMPOSITE has no residual non-LCDM bulk flow
- **✓** Both surveys compatible in the inner ~60 Mpc/h (Gaussian) region

✓ No cosmological parameters fitting yet

July $5^{ ext{th}}$ 2016 30