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Adapted coordinates?
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A bit of history

1938 : Temple’s “optical co-ordinates”

The use of optical co-ordinates considerably simplifies general optical
theory in relativistic form. Fermat’s Principle can be rigorously established
and the treatment of the various astronomical determinations of distance

can be put in a simple and concise form. Some previous discussions of these
topics have been open to question in view of their unjustified use of Rieman-
nian normal co-ordinates on the null cone of the base point. The general
results obtained are applied to the case of greatest practical interest—the
isotropic expanding universe.

1958 : Joseph’s “optical co-ordinates”
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The result established here is exact and invariant. . It has been found
convenient to use the physically significant system of coordinates known as
optical coordinates (9) but the results are independent of this choice. The

Since [2/? = 1 by (2.4), the equations (2.3) define a transformation of coordinates
from the system x* to ‘“optical coordinates”’ (7) A, 7, «, B («, B being any two
independent functions of /*) in a domain D of space-time where the forward
null geodesics through points on C do not intersect one another. Let the




It should be realized that the optical coordinates A, T, «, B are observable quantities
with direct physical significance in the sense that an operational procedure can
be specified for measuring them. They are constructed in an invariant manner
depending only on the choice of world line C, and not on any pre-existing
coordinate system in space-time. 7, «, 8 can be realized by the single observer

a geodesic in Minkowskian space-time. With the world line C of the star as
base line, the space-time metric can be written in optical coordinates as

2 =dr® + 2 dr d\— Xe(do? + sin? o d?). (4.1)

1968 : Saunders “observer’s polar coordinates”

In the cosmic co-ordinate system (1), unfortunately, the constants of equation
(3) will in general vary from geodesic to geodesic within the pencil, and this makes
the calculation of the partial derivatives ok*/dx* difficult. It is therefore convenient
to introduce a second co-ordinate system. Let P be an observer moving along some

normal triad. This co-ordinate system will be referred to as ‘ observer’s polar
co-ordinates ’ ; except for a change in parametrization they are the same as the
¢ optical co-ordinates ’ of Joseph (1958). Note that in observer’s polar co-ordinates
Q2 lies on a null geodesic I" with #2 = const.

null geodesics. The cosmic co-ordinates are Eulerian co-ordinates for this fluid,
while the observer’s polar co-ordinates are the Lagrangian co-ordinates. It is well
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1984 : Maartens detailed “observational coordinates”
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Fig. 2. The aim of observational cosmology: to determine the space-time and its matter content, from the astronomical observations (using indirect
observations to confim the model thus arrived at). This is the inverse of the usual procedure, where cosmological models are used to predict
observational relations, which are then compared with actual observations.

In order to carry out a systematic investigation, it is convenient to introduce observational
coordinates (cf. Temple [26], Kristian and Sachs [1]). We base these coordinates on the world line C
(representing the history of our galaxy). We assume this is a geodesic at the time when the observations
are made (when we may assume p = 0). The coordinates {x'} = {w, y, 6, ¢} are defined in the following

proper ﬁmaf c
t post null cone
mﬂ, S w?, ClQ): {w=constant =w,}
'space ey




The Geodesic Light-Cone (GLC) coordinates :

ds?ic = T2dw? — 2Ydwdr + y45(d0° — U%dw)(d6" — Ubdw)
(6 arbitrary functions : T, U%, vap)

Properties
e w is a null coordinate

: 0w OHw =0
e 0,7 defines a geodesic flow

(0"7)V, (0u7) =0 (from gZ o= —1)
@ photons travel at (w,0%) = cst and their path is orthogonal to X (w, z).

Interpretation

T =

T is like an inhomogeneous scale factor (lapse function), U® is a
FLRW: w=n+r,7=t, (0*,6%) =(0,9),

shift-vector and v, the metric inside the 2-sphere (7, w).
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a(t) , U =0, ~a = a’r’diag(1,sin” )
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Direct simplifications

dsZ ;o = T2dw? — 2Ydwdr + 445 (d0° — Udw)(d6" — Uldw)
= Redshift perturbation

(1 + ZS)

_(KMuy)s

_ (0"w0,T)s
(kHauy,)o B

_ Y(wo, 7,,0%)
(O*w0,T)o o

T,

Y(w,,7s,09) — Ty
where u,, = —0,,7 is the peculiar velocity of the comoving observer/source
and k, = 0,w is the photon momentum. Cf. 1202.1247.

= (exact) Angular distance (with homogeneous observer neighborhood) :
da =~'* (sin@l)_l/

with 7 = det(ya) = | det(gere)|/T?
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which, combined with the redshift, gives the distance-redshift relation.

=




Hubble diagram

Two assumptions in SMC :

Magnitude : @ GR valid on all scales,
P @ Isotropy + Homogeneity,
m = —2.5 logyo(5—) = FLRW model.
ref
Flux : Luminosity Distance (for K =0) :
= —L APLRW () 142 /z dz’
4rd? L Ho Jo [0 + Qmo(1 + 2/)3]1/2

Absolute Mag. :

o))

ref(pc

Distance Modulus :

uw=m—M = 5log,y(dr) + cst
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Distance-redshift relation at O(2)
The GLC metric allows to compute the dp(z) relation to O(2) in NG :

ds% e = a*(n) (—(1 +20)dn? + (1 — 20)(dr? + vfi)doadob))
with 'y((l(;) = r2diag (1, sin? 0), and & =1 + %qﬁ(z) , W =1+ %1/1(2) (Bardeen).

@ 62 o V2(9;900%p) , 0;00%)  (cf. Bartolo, Matarrese, Riotto, 2005)
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Distance-redshift relation at O(2)
The GLC metric allows to compute the dp(z) relation to O(2) in NG :

ds% e = a*(n) (—(1 +20)dn? + (1 — 20)(dr? + 'yi?doadeb))
with 'y((l(;) = r’diag (1, sin? 0), and ¢ =1 + %(zﬁ(z) , =1+ %1/1(2) (Bardeen).
PP o2 V=2(0;40%)) , 9;3p0%  (cf. Bartolo, Matarrese, Riotto, 2005)

FULL transformation GLC <« NG at second order in PT :
(r,w, 0%, 02) = f(n,r,0,0)

il
(T,U%,7%) = (¢, 6?)
il

N —1/2
dr, = (14 2)2 414 (511191) up to O(2) :

Az, 0%) = dE () (14680 (20, 0%) + 08 (24,07 )
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At 0Q1) :

n_
5%1)(23,0‘1) ~ SW + ISW + Doppler — ( §1> —I—/ dz 11)) - Lensing(l)
ny

Lensine® = Ly ga ""ﬂ”;ﬂgo)A (.70 — 1,0%)
g = V= | Ay gy 2=

1 N K /a('ﬂl) / a
Doppler = (1 — 7> Vo —Vs)-N , V= / d \Y , 7,0
H.An ( ) e ¥(n )

At O(2), full calculation :

e Dominant terms : (Doppler)?, (Lensing)?!!!

@ Combinations of O(1)-terms : ¥2, ([[|SW)?2, [I[[SW x Doppler,
(s, :Jr_ dz ¥)x (Lensing, [I|SW, Doppler) ...

@ Genuine O(2)-terms : 22) , Lensing@) = %VELQ“@) , Qf)...

@ A LOT of other contributions : New integrated effects, Angle deformations,
Redshift perturbations(C transverse peculiar velocity), Lens-Lens coupling,
corrections to Born approximation, ... See 1209.4526, also Umeh 1402.1933.




Stochastic average of inhomogeneous realizations

Inhomogeneities :

9.1071° Prim
R d3k ik > “Mordial Spee,
00,3 = | Gy <@ o

= 510710

with F a unit R.V. which is <
homogeneous(&* (i) = £(-F)) and
gaussian(E(E) =0, BE(k1)E(k2) = §(K1 + E2)).

CDM

107]0

Spectrum : |4 (n)> = 2m° Py (k) /K> oo “ th vpe] ! !

Light-cone average is combined with a stochastic average. In CDM :

@] = [ PeCtan

We do the same V terms in <5él)> and <5é2)> in ACDM... with approximations.

Kaiser € Peacock 2015 for precise discussion on ‘di7‘ectional’ﬁ4 ‘source’ averaging.
S : : : Toace
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The averaged modulus (i) depends on ((®,/®()*) while the
standard deviation o, = {/(u?) — mQ = 2.5(log,, €)\/ ((®1/P0)?) with
((®1/®0)*) ~ ((Doppler)?) 4 <(Lensing(1))2>

Jonsson et al.(2010)

0.20 lens _ (0 055+g 22?) _/\

0151 Kronborg et al.(2010)
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@ small z : Velocities explain quite

@ The total effect is well approximated by
well the scatter.

Doppler (z < 0.2) + Lensing (z > 0.3),
@ large z : Lensing is too weak to

@ Lensing prediction is in great agreement
explain data’s scatter (~% Qao). &P & &

with experiments so far!
Cf. Ben-Dayan 2014, 1401.7973 for effect on H,.
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Az (A, Ao)

Amplification matrix ((...)" = 9,(
A

Lensing quantities in GLC coordinates
CZA()\S)

_ ( 1—k-— ’?/1

—Ry—

(Xs) [2ur(an) '], 587 (o)

—F2 + @

1—rk+%

The angular distance and lensing quantities become

-2
da
da ’
2
— uTO
da
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B ;Yab'}/bcf.)/cd

,yad i

daox ()= ey =
involving da = a(7)r with r = w — [ a~!(7)dr measured from the observer,
L
3

2
(detab ;}/ab)

V7Y Yo
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Examples of applications :

Study of the inhomogeneous Lemaitre-Tolman-Bondi spacetime (LTB) with
off-center observer (Fanizza, Nugier 201/, 1408.1604) :
e non-perturbative da, &, |¥|, i in terms of LTB coordinates (t,, 6, ¢),

e numerical resolution of ¢(z), r(z) with ansatz for H,(r) = plots of lensing
quantities wrt observation angle from the bubble center.
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Examples of applications :

Study of the inhomogeneous Lemaitre-Tolman-Bondi spacetime (LTB) with
off-center observer (Fanizza, Nugier 201/, 1408.1604) :

e non-perturbative da, &, |¥|, i in terms of LTB coordinates (t,, 6, ¢),

e numerical resolution of ¢(z), r(z) with ansatz for H,(r) = plots of lensing
quantities wrt observation angle from the bubble center.

Study of an anisotropic spacetime, Bianchi I (Fleury, Nugier, Fanizza 2016
arXiv :1602.0446) :

@ precise residual gauge fixing conditions for GLC coordinates,
e d, and GLC functions written in terms of Bianchi I coordinates,

° numerical calculations indicate a violation of the flux co%servatjon!
=In fﬂ' 1 Tﬁxed,wo,ea) d2Q 7é 1 with ﬂ = (dA/dA) = (}/(I)

] = = =
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dsy; = —dt? + a?()e*P M) §;;da’ da

Axisymmetric Bianchi I

OAlae T~ e--T o TTTTTTTTTTTT ] Bz:(ﬁ7ﬁ7_2/8)
filled by dust and A = 0.

TG ________ Associating FLRW

= e SN [ === with Bianchi I : either
= ] identifying Ho (solid), or
identifying po (dashed).

— Qg=1072 |

— Qg=10"° Curves are first > 0 and

00 02 04 06 08 1.0 12 14 then < 0.
redshift z

Here we find that (i7" — 1~ Quo = (afag)? > (0nBi)?

6H2
= ((2)-violation of (i ')q = 1 from large-scale anisotropy of Bianchi I!

Similar to inhom. Swiss-Cheese (Lavinto, Risdnen 2013), but not like perturbative
approaches for which (3™ — 1 = O(4) (Ben-Dayan 2013, Bonvin 2015).
Low z ~ Malmgquist-like bias (Kaiser & Hudson 2015).
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Double Light-Cone (DLC) coordinates

GLC for which we replace T by a future null coordinate w, !

T2dw? — 2Ydwdr + yap(d0° — Udw)(d6" — Utdw)
U

dSGLc

ds?o = —Y2dw,dw, + e (d07 — Tdw,)(d0"” — Udw,)

U =~0, =U" + 7 “”ggb ,

ar_f 87’_1_”’(137'_’_1@87'&
dw. 2T ow, 2 90« " 27 804 agb
are < 0 Z—T ) 0 > —1 -yt —ub)r
g =1 - T?4+U —Uy , gt = —r-t 0 0
! 6T Ul e B S S
0 —-Y2/2 0 0 —2/Y2  —20°/7?
DLC _ ( “¥25 o _g, ) gl = _2/%2 0 g
0T -0 b —2@"T/x2 T vt

See Nugier 2016, arXiv :1606.08296.
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Properties of DLC coordinates

@ Share the advantages of GLC (e.g. z; still given by T,/Y)
e Can describe static black holes (also Kerr ?)
o Can describe trajectories around static BHs

e Can derive the time delay between UR particles (like done in GLC
in Fanizza, Gasperini, Marozzi, Veneziano 2016, arXiv :1512.0848)

e w, is well defined from GLC coordinates considering perturbations
around an FLRW spacetime.

They are equivalent to the double-null coordinates of Brady, Droz,
Israel and Morsink 1995 after a gauge fixing!
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Conclusions

Applications of GLC coordinates :

@ luminosity distance at O(2), inhomogeneities effect
on Hubble diagram, weak lensing, averaging on
our past light cone,

@ Specific models : LTB and Bianchi I.
@ Link to Double-Null coordinates! (7 — wy)

@ Number counts and bispectrum at O(2) (Di Dio et
al. 1407.0376, 1510.04202) ! !'!

o Time-of-flight of ultra-relativistic particles.

= Good coordinates to handle light signals!

Adapted systems of coordinates are very useful! ®
But not often employed in calculations ®...

Fabien Nugier (LeCosPA)



/

Collaborators :
@ G. Veneziano, G. Marozzi, M. Gasperini, P. Fleury, G. Fanizza, I. Ben-Dayan,
@ Other researches : B. Metcalf, P. Chen, Hsu-Wen Chiang, E. Romano.

Fabien Nugier (LeCosPA)



