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Bulk Flow Theory



Peculiar Velocity Challenges:

Can only measure radial component s; = v; - 7;

Individual velocities typically have absurdly large uncertainties

Uncertainty in zero-point of distance relations or Hubble

constant can lead to systematic error in velocities

Velocity field only linear on large scales



Weighted Average to Reduce Uncertainty:

General Velocity Moments defined as
U, = Z Wpi Si
i

Weights can be chosen to

e Minimize Uncertainty

e Estimate Standardized Flow (i.e. comparable between surveys)

e Match Physical Definition (e.g. integral of velocity over
spherical volume)

e Probe P(k) in particular way (e.g. focus on large, linear,
scales)

e Minimize dependence on the value of H,

or a combination of these.



Velocity Moment Example:

Bulk flow as integral of velocity field over spherical volume

U= / v dx
sphere

For ideal survey (uniform, no errors)
Wh,i =

are the weights to estimate U, (see Nusser 2014)



Bulk Flow for Real surveys with uncertainties

Weights should also have an uncertainty dependence.

Minimum Variance Method

e Estimate Standardized Bulk
Flow (Comparable between

Maximum Likelihood Method

e Minimizes uncertainty in

surveys)
Bulk Flow _ _
e Constraints easily

e Bulk Flow estimate not .
incorporated

comparable between surveys ]
e Uncertainty cost not very

high.



Statistics Aside

Distance Modulus p ~ log(r) has Gaussian errors, not distance r

Standard Estimator:

Ve = ¢z — Hyre

Biased and non-Gaussian errors

New, Improved Estimator:

Ve = czlog(cz/Hore)
Unbiased and Gaussian errors = proper cancellation of errors

(See Watkins & Feldman 2015)



New Estimator

Unbiased:

(ve) = —cz((log(Hore)) — log(cz))
= —cz(log(Hor) — log(cz))
= —cz(log(cz — v) — log(cz))
= —cz(log(l—v/cz))

l
<

assuming v/cz < 1 which it true for most galaxies and clusters.

Gaussian Distributed Errors since o< distance modulus p




Go BIG

e Velocity perturbations enhanced on large scales relative to
density perturbations, P, (k) = P(k)/k?, so peculiar velocities
can tell us things that densities can't.

e We only know the theoretical variance of the bulk flow
components. The only way to reduce this variance is to go to
large scales. To have a possibility of getting a greater than 3o
result need to have o ~ 100 km/sec per component.



Window Functions

Advantage of Velocity Moments:

Easy to calculate angle-averaged Window Function W(k) for U,
such that

wa= [ T Pk W(K) dk

e W(k) tells us precisely what scales U, probes.



Window Functions
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Minimum Variance Method

Un = E Whp.i Si
;

Determine weights w,, ; that minimize ((U, — u,)?), where uj, is
velocity moment that would be measured by an ideal survey with
desired radial distribution.

e Need to assume a velocity power spectrum.

e Uncertainty cost over Maximum Likelihood estimator
generally small.

e Easy to incorporate constraints using Lagrange multipliers,
e.g. normalization condition.

see Watkins, Feldman, & Hudson (2009) and Feldman, Watkins, &

Hudson (2010)
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Minimum Variance Method

MV method weights survey objects in order to probe space in same
way as ideal survey.

e Objects in oversampled (undersampled) regions will be
down(up)-weighted.

e Ensures that results won't be biased to reflect regions where
there is more information, e.g. at small distances.
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New Constraint:

Contribution to U,, from change in zero-point or Hubble constant

X Y ; Wp czj (assuming new estimator).

Suggests constraint:

E Wp,i ¢z =0
i

Creates moments U, that are independent of choice of H, or

zero-point.
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CZ VS. I'mess as Distance Indicator:

How to determine positions of objects for MV method?

Redshift as distance indicator Distance as distance indicator

rez =cz/Ho =r—v/H, Fmeas = F + Or

e For reasonably distant objects v/H, < dr

e Reduces Malmquist biases
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CZ VS. I'meas @S Distance Indicator:

CF3 Survey
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New Results: Measuring Bulk Flows
using CosmicFlows-3




The Data: CosmicFlows-3 (Tully et al. (2016))

Used 11,878 individual galaxies and groups of galaxies
e Addition of 6dFGS, etc. = Distribution not isotropic.

Used cz/H, as distance estimate

Used new velocity estimator v = czlog(cz/H,)

Used new constraint to make independent of choice of H,

Used both Gaussian Ball and 1/r? tophat ideal surveys
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CosmicFlows3: Galactic Coordinates

CF3-group
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How Big can we go?: Window Functions
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Better match to ideal case with 1/r? tophat weighting
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Advantages of 1/r? tophat weighting over Gaussian

e More desirable window function.

Smaller o for Bulk Flow Moments

Better match to realistic surveys.

Matches intuitive physical definition of Bulk Flow
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New Results from the CF3
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Compare to Previous Results
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Compare to Previous Results
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Key Results for CF3:

e Bulk Flow doesn't increase with distance. -~
e Generally lower amplitude Large Scale Flow

e But...still doesn't fall off as fast as expected.
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+y vs. —y contributions
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Contribution to U, for each object ¢; = w;s;

R=150h""Mpc
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bution to U, for each object ¢; = w;s;
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Sum of contributions to U, with ¢; < ¢y«

Sum of contributions with ¢; <¢
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x? with 3 degrees of freedom
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CF3 catalog gives bulk flow w/ more “reasonable” R
dependence.

e Smaller bulk flow on Large scales: ~ 300km/s for
R = 150h~Mpc for 1/r? weights

Still “Tension” with Standard Cosmological Model:
~ 1% Prob. for 1/r? weights w/ R = 150h~*Mpc

Need more distance measurements in +y direction
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