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Bulk Flow Theory



Peculiar Velocity Challenges:

• Can only measure radial component si = ~vi · r̂i
• Individual velocities typically have absurdly large uncertainties

• Uncertainty in zero-point of distance relations or Hubble

constant can lead to systematic error in velocities

• Velocity field only linear on large scales
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Weighted Average to Reduce Uncertainty:

General Velocity Moments defined as

Un ≡
∑
i

wn,i si

Weights can be chosen to

• Minimize Uncertainty

• Estimate Standardized Flow (i.e. comparable between surveys)

• Match Physical Definition (e.g. integral of velocity over

spherical volume)

• Probe P(k) in particular way (e.g. focus on large, linear,

scales)

• Minimize dependence on the value of Ho

or a combination of these.
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Velocity Moment Example:

Bulk flow as integral of velocity field over spherical volume

~U =

∫
sphere

~v d3x

For ideal survey (uniform, no errors)

wn,i =
r̂i · r̂n
r2

are the weights to estimate Un (see Nusser 2014)
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Bulk Flow for Real surveys with uncertainties

Weights should also have an uncertainty dependence.

Maximum Likelihood Method

• Minimizes uncertainty in

Bulk Flow

• Bulk Flow estimate not

comparable between surveys

Minimum Variance Method

• Estimate Standardized Bulk

Flow (Comparable between

surveys)

• Constraints easily

incorporated

• Uncertainty cost not very

high.
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Statistics Aside

Distance Modulus µ ∼ log(r) has Gaussian errors, not distance r

Standard Estimator:

ve = cz − Hore

Biased and non-Gaussian errors

New, Improved Estimator:

ve = cz log(cz/Hore)

Unbiased and Gaussian errors ⇒ proper cancellation of errors

(See Watkins & Feldman 2015)
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New Estimator

Unbiased:

〈ve〉 = −cz (〈log(Hore)〉 − log(cz))

= −cz (log(Hor)− log(cz))

= −cz (log(cz − v)− log(cz))

= −cz (log(1− v/cz))

≈ v

assuming v/cz � 1 which it true for most galaxies and clusters.

Gaussian Distributed Errors since ∝ distance modulus µ
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Go BIG

• Velocity perturbations enhanced on large scales relative to

density perturbations, Pv (k) = P(k)/k2, so peculiar velocities

can tell us things that densities can’t.

• We only know the theoretical variance of the bulk flow

components. The only way to reduce this variance is to go to

large scales. To have a possibility of getting a greater than 3σ

result need to have σ ∼ 100 km/sec per component.
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Window Functions

Advantage of Velocity Moments:

Easy to calculate angle-averaged Window Function W (k) for Un

such that

〈U2
n〉 =

∫ ∞
0

P(k)W (k) dk

• W (k) tells us precisely what scales Un probes.
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Window Functions
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Window Functions

P(k)
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Minimum Variance Method

Un =
∑
i

wn,i si

Determine weights wn,i that minimize 〈(Un − un)2〉, where un is

velocity moment that would be measured by an ideal survey with

desired radial distribution.

• Need to assume a velocity power spectrum.

• Uncertainty cost over Maximum Likelihood estimator

generally small.

• Easy to incorporate constraints using Lagrange multipliers,

e.g. normalization condition.

see Watkins, Feldman, & Hudson (2009) and Feldman, Watkins, &

Hudson (2010)
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Minimum Variance Method

MV method weights survey objects in order to probe space in same

way as ideal survey.

• Objects in oversampled (undersampled) regions will be

down(up)-weighted.

• Ensures that results won’t be biased to reflect regions where

there is more information, e.g. at small distances.
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New Constraint:

Contribution to Un from change in zero-point or Hubble constant

∝
∑

i wn,i czi (assuming new estimator).

Suggests constraint: ∑
i

wn,i czi = 0

Creates moments Un that are independent of choice of Ho or

zero-point.
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cz vs. rmeas as Distance Indicator:

How to determine positions of objects for MV method?

Redshift as distance indicator

rcz = cz/Ho = r − v/Ho

Distance as distance indicator

rmeas = r + δr

• For reasonably distant objects v/Ho � δr

• Reduces Malmquist biases
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cz vs. rmeas as Distance Indicator:
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New Results: Measuring Bulk Flows

using CosmicFlows-3



The Data: CosmicFlows-3 (Tully et al. (2016))

• Used 11,878 individual galaxies and groups of galaxies

• Addition of 6dFGS, etc. ⇒ Distribution not isotropic.

• Used cz/Ho as distance estimate

• Used new velocity estimator v = cz log(cz/Ho)

• Used new constraint to make independent of choice of Ho

• Used both Gaussian Ball and 1/r2 tophat ideal surveys
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CosmicFlows3: Galactic Coordinates
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How Big can we go?: Window Functions
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Expected difference with Ideal Survey:
√
〈(Ui − ui)2〉
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Better match to ideal case with 1/r2 tophat weighting
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Advantages of 1/r 2 tophat weighting over Gaussian

• More desirable window function.

• Smaller σ for Bulk Flow Moments

• Better match to realistic surveys.

• Matches intuitive physical definition of Bulk Flow
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New Results from the CF3
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Compare to Previous Results
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Compare to Previous Results
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Key Results for CF3:

• Bulk Flow doesn’t increase with distance. ¨̂

• Generally lower amplitude Large Scale Flow

• But...still doesn’t fall off as fast as expected.

23



+y vs. −y contributions
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Contribution to Uy for each object ci = wisi
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Contribution to Uy for each object ci = wisi
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Sum of contributions to Uy with ci < cmax
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χ2 with 3 degrees of freedom
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Summary:

• CF3 catalog gives bulk flow w/ more “reasonable” R

dependence.

• Smaller bulk flow on Large scales: ∼ 300km/s for

R = 150h−1Mpc for 1/r2 weights

• Still “Tension” with Standard Cosmological Model:

∼ 1% Prob. for 1/r2 weights w/ R = 150h−1Mpc

• Need more distance measurements in +y direction
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