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Plan
    Angular Power Spectra (Cℓ) and Likelihood

• In theory

‣ What are they ?

‣ Why do we need them ?

‣ How to generate them fast enough on large data 
sets ?

• In practice

‣ How to apply them to real data (Planck in 
particular) ?



The goal
• Goal: we want to measure parameters (cosmological+others) 

from the data.  
We need to evaluate the posterior distribution of the 
parameters {Ω} given the data d, P({Ω}|d),  
where d is the map or the angular power spectrum Cℓ 

Map: 50 106 pixels

Cosmological  
(+ nuisance)  
parameters  

Cℓ: 2500 multipoles



Bayes theorem
• To relate the  

posterior of the parameters given the data P({Ω}|d)  
to the probability of the data given the parameters P(d|{Ω}) 
(the likelihood), use Bayes theorem:

Likelihood
Posterior

Prior

So, what is the likelihood for CMB data?

P (d, {⌦}) = P (d|{⌦})P ({⌦}) = P ({⌦}|d)P (d)

=) P ({⌦}|d) = P (d|{⌦})P ({⌦})
P (d)



Spherical Harmonics

• We can decompose the temperature maps in Spherical Harmonics  (see E. Komatsu lecture #2)
✦ eigenfunctions of the angular part of the   Laplace operatorin spherical coordinates.
✦ They form a ortho-normal and complete basis.

✦ Complex representation:
✦ Parameterized by the multipole (degree?) l  and (order?) m   (cf, eigenvalues of kinetic moments L2 and Lz in Quantum Mechanics)

‣  l ~ π / θ, with the θ angular separation in the sky,

‣ For each l, -l ≤ m ≤ l. There are 2l +1 m-modes for each l,
‣ The projection on the m-modes depends on the reference system.

• For polarization (spin ±2 quantity), use spin-weighted SH   (= second derivatives of scalar SH, see E. Komatsu lecture #5)
✦ Zaldarriaga & Seljak (1997), Kamionkowski et al (1997)



Sphere Pixelisation
• To allow numerical treatment, data have to be discretised (pixelised),  

with Npix ~ 10
6
 - 10

8

• For each pixel q, one computes Ylm (q) = Nlm Plm(θq) exp(i m φq)   
where Legendre Polynomials Plm(θq) require a costly recursion 

• Iso-latitude layout of map pixels allows a faster calculation  
of  Ylm (q) by a factor √Npix

 
compared to more traditional layouts

- ECP (Mucaccia et al, 1997),   
HEALPix (Gorski et al, 2005),  
Igloo (Crittenden et al, 1998),  
GLESP (Doroskevich et al, 2003)

• Extra requirements for astrophysics 

‣ Equal pixel area: easier pixel value ⟷ flux density

‣ Hierarchical: easier change of resolution

• HEALPix (Hierarchical, Equal Area, iso-Latitude Pixelisation of the sphere)

‣ used in WMAP, Planck, GAIA, Euclid, …

‣ Npix = 12 Nside
2
,         ℓmax = 2 - 3 Nside



CMB signal

• CMB anisotropies are expected in the simplest inflation 
models (and observed by Planck, see S. Matarese lectures)  
to be distributed as a Gaussian random field.  

• We cannot theoretically predict the value of the 
temperature in the pixels, but only predict their statistical 
properties.

• A Gaussian distribution is fully characterized by a mean 
(m) and a variance (σ2). 

✦ All higher odd moments are 0, 

✦ even moments can be written in terms of the variance (Wick’s 
theorem)



• Decompose the fractional temperature variation in spherical harmonics 
 
 
 

• Applying the orthogonality of spherical harmonics:  
 
 

• As far as we know, ΔT(n) is a Gaussian random field, with isotropic statistical 
properties (ie ⟨ΔT(n)2⟩ = ⟨ΔT2⟩).  
Then, aℓm are statistically independent and randomly distributed,  
each described by a Gaussian distribution.

Decomposition in SH
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Angular power spectrum C
• To characterise the statistical properties of a Gaussian random field, we can calculate 

the mean and the variance of the field. For the CMB, the mean of the anisotropies is 
zero (by definition).  
The variance can be calculated either as the 2-point correlation function in real 
space, or equivalently, as the angular power spectrum in harmonic space, which 
describes the variance of the anisotropies as a function of scale

• ⟨aℓm⟩  =  0            ⟨aℓm aℓ’m’ ⟩  =    δℓℓ’ δmm’ Cℓ  
⟨⟩ are ensemble averages over many realisations of the sky.  
But, we have only one sky available !  
(CMB Cℓ predicted by theory, and computed by Boltzmann code (eg, CAMB, CLASS))

• Because of statistical isotropy, a
ℓm with same ℓ and different m are extracted from 

Gaussian distribution with the same variance C
ℓ  

so an estimator of C
ℓ
 is  

 
 
 
and 
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Cosmic Variance
• So we have an estimator       whose expectation value is 

• Since we only have 2ℓ+1 samples  
for each ℓ, there is an intrinsic uncertainty!

hcC`i = C`hcC`i = C`

For a gaussian field, 
Wick’s theorem says 
that any N-point  (N 
even) statistics can 
be written as a 
function of the 2-
point correlation 

aℓm*  aℓm   aℓm’* aℓm’



Cℓ’s and 2-point correlation function
• We can relate the angular power spectrum to the 2-point correlation function in real space 

using the Legendre polynomials and the addition theorem:

• Because of isotropy, the two-point correlation function depends only on the angular 
separation in the sky θ, not on the orientation of the separation.

• C(θ) is much less showed than Cℓ  because 

• it lacks features (tale-telling ‘acoustic peaks’), 

• has correlated errors

• but can be convenient for some calculations:  
a product of 2 C(θ) can replace the ‘convolution’ of 2 Cℓ (e.g. Chon et al, 2004)

Dodelson et 
al. 2004

 



Noise and cross-power-spectrum
• In the presence of (instrumental) noise or contaminant n :  d  =  s + n,    dℓm = sℓm + nℓm  

The auto power spectrum is  
⟨Ĉℓ⟩= Sℓ + Nℓ with variance ⟨ΔĈℓ

2
⟩ = 2(Sℓ+Nℓ)

2 
/ (2ℓ+1) 

→Noise bias and increased variance

• For 2 data-sets with the same signal but un-correlated noises 
d1 = s + n1,  d2 = s + n2,   the cross power spectrum 
 
has ⟨Ĉℓ⟩ = Sℓ with variance ⟨ΔĈℓ

2
⟩= (Sℓ

2
+(Sℓ+N1,ℓ)(Sℓ+N2,ℓ)) / (2ℓ+1) 

→No noise bias, but even larger variance

✦ 2 data-sets with un-correlated noises and N1=N2=N 
(biased) auto spectrum of d = (d1+d2)/2 has variance  (2Sℓ

2 
+ Nℓ

2
/2 + 2SℓNℓ) / (2ℓ+1),  

 
(unbiased) cross spectrum of d1,d2 has variance (2Sℓ

2 
+ Nℓ

2
 + 2SℓNℓ) / (2ℓ+1).  

In spite of larger variance when Nℓ ⩾ Sℓ, cross-spectrum is often preferable because it is 
un- (or less) biased, and does not mixes up systematics 

• Nd data-sets:
‣ a single auto-spectrum of bias Nℓ / Nd and variance 2 Nℓ

2 
/ Nd

2

‣ vs Nd (Nd-1)/2 un-biased cross-power spectra, each of variance Nℓ
2  

 

average of cross-spectra has ~ same variance as auto-spectrum 
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Likelihood of Gaussian CMB maps
• CMB maps m=(I,Q,U) have Gaussian fluctuations with  
 

• m is the data vector of length Npix containing the  
pixels of the map

• M is a Npix*Npix covariance matrix.  
Mij tells us how much pixels i and j are correlated:  
Mij = ⟨mi.mj

T
⟩= S(θij ; Cℓ({Ω})) + N(γi ,γi)

✦ S(θij ; Cℓ({Ω})) is the signal covariance related to  
the (theoretical) power spectrum through (for T)  
 
 
 
 
(assuming isotropy of the signal)

✦ N(γi ,γj) is the pixel space noise covariance matrix  
(diagonal only for white noise)
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Pixel-based Likelihood

• Working in pixel-space has advantages.  
E.g. dealing with masks is easy.

• BUT! In order to calculate the likelihood for each set of 
parameters {Ω} we need to 

✦ calculate the determinant of M and inverse M (or rather 
solve M . x = m when applicable) → goes like O(Npix

3),

✦M = S + N, for masked sky and/or non-white noise S and N 
not diagonal in neither pixel- nor multipole- spaces.

• It can be used at low resolutions, with variants 
eg,  NRML(Bond et al, 1998), QML(Tegmark, 1998, Gruppuso et 
al, 2009), TEASING (Benabed et al, 2009),  
but Planck HFI maps have O(106) pixels!  Need other solutions!



Multipole-based Likelihood
• One writes the Likelihood in terms of Ĉℓ (= square of Gaussians) instead:  

since for the full sky L(aℓm|Cℓ) = (2πCℓ )
-1/2 exp( - aℓm aℓm

* 
/ 2Cℓ)  

⇒ L(Ĉℓ|Cℓ) ∝ 1/Ĉℓ  [Ĉℓ/Cℓ  exp( - Ĉℓ/Cℓ )]
(2ℓ+1)/2 

each multipole treated separately (on the full sky !).

✦ (2ℓ+1)Ĉℓ/Cℓ has a χ2 distribution with 2ℓ+1degrees of freedom 
(mean=2ℓ+1, variance=2(2ℓ+1))  
Wishart distribution when dealing with (Cℓ

TT,Cℓ
TE,Cℓ

EE)

✦ Ĉℓ/Cℓ has Γ distribution with 2ℓ+1 dof 
(mean=1, variance= 2/(2ℓ+1))

✦ Cℓ/Ĉℓ has inverse Γ distribution with 2ℓ+1 dof 
inverse Wishart distribution when dealing with (Cℓ

TT,Cℓ
TE,Cℓ

EE)

• Note that when 2ℓ+1 >> 1, all of these distributions have a Gaussian like 
shape around their peak, see e.g. Percival & Brown (2006)



• Many things complicate the calculation of the likelihood, starting 
with the necessity of masking the most foreground-contamined pixels

• When masking the sky: ΔT(n) → ΔT(n) W(n) (EH et al, 2002)  
 
 
 
 
 
 
 
ãℓm are still Gaussian, but not independent since they all depend on 
the sum of aℓ’m’.         ãℓ1m1  and ãℓ2m2 are correlated.  
 
                            correlated for different ℓs, and their variances 
                             get mixed up  
=> all ℓ  now coupled in Likelihood (no more χ2 nor Wishart)  

Life is more complicated…

Planck masks

The smaller the observed patch, the poorer the spectral resolution!



• Since, the “pseudo Cℓ” of the masked sky is related (in average) to the true Cℓ via 
 
 
one defines a new estimator  
 
 
such that it is unbiased: ⟨Ĉℓ⟩= ⟨Cℓ⟩, with  
 
 
 

• implemented in eg, MASTER (EH et al, 2002),  
PolSpice (Chon et al, 2004), Xspect (Tristram et al, 2005),  
Romaster (Polenta et al, 2005), XFaster (Rocha et al, 2009).

• Bin the Cℓ  to lump Δℓ  multipoles that are tightly correlated because of the mask.  

• The covariance ⟨ΔĈℓ ΔĈℓ’⟩ can also be estimated (Efstathiou, 2004)  
if the mask is smooth enough (narrow enough ℓ band-width).  
→ extra care required for Point Sources mask

Unbiased pseudo-Cℓ estimator
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Let’s approximate: Gaussian!
• For large degrees of freedom ν=(2ℓ+1)Δℓfsky, the distribution 

of the Ĉℓ → Gaussian distribution (central limit theorem).  
 
 
 
 
 
 
 
But! It works only at high-ℓ (large dof)  
See e.g. Hamimeche & Lewis 2008, 2009 for discussion and improvement.  
Validated by comparison with more sophisticated approximation, including on 
actual Planck data (Planck 2013-XV, 2014)

data (debiased  
pseudo Cℓ 

vector)

Model (that depends on the  
parameters we want to 
determine)

⟨ΔĈℓ ΔĈℓ’⟩ covariance matrix 
(can be estimated with a fixed 
fiducial set of parameters, 
often validated with Monte-Carlo 
simulations)
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Effect of beam
• All experiments have a finite angular response:  

the optical beam, possibly convolved with the instrumental time 
response in case of scanning

• For a beam of power spectrum Bℓ  
                         Ĉℓ → Ĉℓ Bℓ  
if, and only if

- either the beam is circular, whatever is the scanning,

- or the beam is arbitrary, but remains parallel to itself 
(raster scan)

• In all other cases, and especially for polarisation,  
things get more complicated.  
See 2nd lecture



Planck likelihood: A hybrid approach

• Low-ℓ (ℓ < 30): 

–TT: Pixel-based approach based on Nside=16 
Commander component separated map, 92% sky,  
all Planck frequencies used+WMAP+Haslam 

–TE and EE: Pixel based approach based on  
Planck LFI 70GHz map, 46% of the sky.  
30 GHz and 353GHz used for foreground 
cleaning.  

• High-ℓ (30 < ℓ < 2500): 

–TT:  Gaussian likelihood  based on  
HFI 100, 143, 217GHz at (70, 60, 50% sky) 

–TE,EE: Gaussian likelihood,  
HFI 100, 143, 217GHz at (70, 50, 40% sky). 

Planck 2015 results. XI. 



Recap
    We have seen 

• Why we need the Cℓ and their likelihood.

• How to compute them 

✦ when the foregrounds can be removed by smooth (apodized) masks,

✦ when the instrument is perfectly known and well-behaved:

‣ friendly noises, non-correlated between detectors,

‣ instantaneous measurements,

‣ well measured circular beams,

‣ constant instrumental responses.

• All residual systematics are well below the instrumental noise.
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