
Lecture 2
- Power spectrum

- Temperature anisotropy from sound waves



Outstanding Questions
• Where does anisotropy in CMB temperature come 

from? 

• This is the origin of galaxies, stars, planets, and 
everything else we see around us, including 
ourselves 

• The leading idea: quantum fluctuations in 
vacuum, stretched to cosmological length scales 
by a rapid exponential expansion of the universe 
called “cosmic inflation” in the very early universe



Data Analysis
• Decompose temperature 
fluctuations in the sky into a 
set of waves with various 
wavelengths 

• Make a diagram showing the 
strength of each wavelength
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Spherical Harmonic 
Transform

• Values of alm depend on coordinates, but the squared 
amplitude,         m       , does not depend on coordinates

(l,m)=(1,0) (l,m)=(1,1)



(l,m)=(2,0) (l,m)=(2,1)

(l,m)=(2,2)
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For l=m, a half-
wavelength, λθ/2, 

corresponds to π/l.  

Therefore, λθ=2π/l
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alm of the SW effect
• Using the inverse transform

on the Sachs-Wolfe (SW) formula
�T (n̂)

T0
=

1

3
�(tL, r̂L)

and Fourier-transforming the potential, we obtain:

*q is the 3d Fourier wavenumber

The left hand side is the coefficients of 2d spherical waves, 
whereas the right hand side is the coefficients of 3d plane 

waves. How can we make the connection?



Spherical wave decomposition 
of a plane wave

• This “partial-wave decomposition formula” (or Rayleigh’s 
formula) then gives

• This is the exact formula relating 3d potential at the last 
scattering surface onto alm. How do we understand this?



q -> l projection

• A half wavelength, λ/2, at the last scattering surface 
subtends an angle of λ/2rL. Since q=2π/λ, the angle is given 
by δθ=π/qrL. Comparing this with the relation δθ=π/l (for 
l=m), we obtain l=qrL. How can we see this?


• For l>>1, the spherical Bessel function, jl(qrL), peaks 
at l=qrL and falls gradually toward qrL>l. Thus, a given q 
mode contributes to large angular scales too. 



φq=cos(qz)

θ1=π/qrL 
i.e., l=qrL

θ2>θ1 
i.e., l<qrL



More intuitive approach: 
Flay-sky Approximation

• Not all of us are familiar with spherical bessel functions…


• The fundamental complication here is that we are trying 
to relate a 3d plane wave with a spherical wave.


• More intuitive approach would be to relate a 3d plane 
wave with a 2d plane wave



Decomposition
• Full sky 

• Decompose temperature fluctuations using spherical 
harmonics


• Flat sky 

• Decompose temperature fluctuations using Fourier 
transform


• The former approaches the latter in the small-angle limit



n̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓)

“Flat sky”,  
if θ is small



2d Fourier Transform
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a(l) of the SW effect
• Using the inverse 2d Fourier transform

on the Sachs-Wolfe (SW) formula
�T (n̂)

T0
=

1

3
�(tL, r̂L)

and Fourier-transforming the potential, we obtain:

1
flat-sky approx.



Flat-sky Result

• It is now manifest that only the 
perpendicular wavenumber contributes to l, 
i.e., l=qperprL, giving l<qrL

C.f., 

( )
i.e., 



Angular Power Spectrum
• The angular power spectrum, Cl, quantifies how much 

correlation power we have at a given angular separation.

• More precisely: it is l(2l+1)Cl/4π that gives the 
fluctuation power at a given angular separation, ~π/l. 
We can see this by computing variance:



COBE 4-year Power Spectrum
Bennett et al. (1996)

The SW formula 
allows us to determine 

the 3d power 
spectrum of φ at 
the last scattering 
surface from Cl.  

But how?



SW Power Spectrum

• But this is not exactly what we want. We want the 
statistical average of this quantity.

gives…



Power Spectrum of φ
• Statistical average of the right hand side contains

two-point correlation function

If does not depend on  locations (x) 
but only on separations between two points (r), then 

where we defined

consequence of “statistical homogeneity”

φ

and used



Power Spectrum of φ
• In addition, if                                              depends only 

on the magnitude of the separation r and not on the 
directions, then

Power spectrum!

Generic definition of the power spectrum for 
statistically homogeneous and isotropic fluctuations



SW Power Spectrum
• Thus, the power spectrum of the CMB in the SW limit is

• In the flat-sky approximation, 



SW Power Spectrum
• Thus, the power spectrum of the CMB in the SW limit is

• In the flat-sky approximation, 

For a power-law form, , we get



SW Power Spectrum
• Thus, the power spectrum of the CMB in the SW limit is

• In the flat-sky approximation, 

For a power-law form, , we get

n=1

fu
ll-

sk
y 

co
rr

ec
tio

n



n=1

n=1.2 ± 0.3  
(68%CL)

Bennett et al. (1996)



COBE 4-year Power Spectrum
Bennett et al. (1996)



WMAP 9-year Power Spectrum
Bennett et al. (2013)



Planck 29-mo Power Spectrum
Planck Collaboration  (2016)



Planck 29-mo Power Spectrum
Planck Collaboration  (2016)

Clearly, the SW 
prediction does not fit! 

Missing physics:  
Hydrodynamics  
(sound waves)





Cosmic Miso Soup
• When matter and radiation were hotter than 3000 K, 

matter was completely ionised. The Universe was 
filled with plasma, which behaves just like a soup 

• Think about a Miso soup (if you know what it is). 
Imagine throwing Tofus into a Miso soup, while 
changing the density of Miso  

• And imagine watching how ripples are created and 
propagate throughout the soup





This is a viscous fluid, 
in which the amplitude of 

sound waves damps 
at shorter wavelength





When do sound waves  
become important?

• In other words, when would the Sachs-Wolfe approximation 
(purely gravitational effects) become invalid?


• The key to the answer: Sound-crossing Time 

• Sound waves cannot alter temperature anisotropy at a 
given angular scale if there was not enough time for sound 
waves to propagate to the corresponding distance at the 
last-scattering surface


• The distance traveled by sound waves within a given 
time = The Sound Horizon



Comoving Photon Horizon

• First, the comoving distance traveled by photons is given 
by setting the space-time distance to be null:

ds2 = �c2dt2 + a2(t)dr2 = 0

rphoton = c

Z t

0

dt0

a(t0)



Comoving Sound Horizon

• Then, we replace the speed of light with a time-
dependent speed of sound:

rs =

Z t

0

dt0

a(t0)
cs(t

0)

• We cannot ignore the effects of sound waves if qrs > 1



Sound Speed
• Sound speed of an adiabatic fluid is given by

- δP: pressure perturbation 
- δρ: density perturbation

• For a baryon-photon system:

We can ignore the baryon pressure because  
it is much smaller than the photon pressure



Sound Speed
• Using the adiabatic relationship between photons and baryons:

• and pressure-density relation of a relativistic fluid, δPγ=δργ/3, 
We obtain

[i.e., the ratio of the number densities of baryons and photons is equal everywhere] 

• Or equivalently 
where

sound speed is reduced!



Value of R?
• The baryon mass density goes like a–3, whereas the 

photon energy density goes like a–4. Thus, the ratio of the 
two, R, goes like a.


• The proportionality constant is:

where we used 

for



Value of R?
• The baryon mass density goes like a–3, whereas the 

photon energy density goes like a–4. Thus, the ratio of the 
two, R, goes like a.


• The proportionality constant is:

where we used 

for

For the last-scattering redshift of zL=1090  
(or last-scattering temperature of TL=2974 K),  

rs = 145.3 Mpc 
We cannot ignore the effects of sound waves 

if qrs>1. Since l~qrL, this means 

l > rL/rs = 96 
where we used rL=13.95 Gpc



Creation of Sound Waves: 
Basic Equations

1. Conservation equations (energy and momentum)


2. Equation of state, relating pressure to energy density


3. General relativistic version of the “Poisson equation”, 
relating gravitational potential to energy density


4. Evolution of the “anisotropic stress” (viscosity)

P = P (⇢)



• Total energy conservation: 

• C.f., Total energy conservation [unperturbed]

Energy Conservation

( )
velocity potential

anisotropic stress:
[or, viscosity]

v↵ =
1

a
r�u↵



Energy Conservation
• Total energy conservation: 

• Again, this is the effect of locally-defined inhomogeneous 
scale factor, i.e.,


• The spatial metric is given by


• Thus, locally we can define a new scale factor: 

ds2 = a2(t) exp(�2 )dx2

ã(t,x) = a(t) exp(� )



Energy Conservation
• Total energy conservation: 

• Momentum flux going outward (inward) -> reduction 
(increase) in the energy density

C.f., for a non-expanding medium: 

⇢̇+r · (⇢v) = 0( )



Momentum Conservation
• Total momentum conservation

• Cosmological redshift of the momentum 

• Gravitational force given by potential gradient 

• Force given by pressure gradient 

• Force given by gradient of anisotropic stress 



• Pressure of non-relativistic species (i.e., baryons and cold 
dark matter) can be ignored relative to the energy density. 
Thus, we set them to zero: PB=0=PD and δPB=0=δPD


• Unperturbed pressure of relativistic species (i.e., photons 
and relativistic neutrinos) is given by the third of the 
energy density, i.e., Pγ=ργ/3 and Pν=ρν/3 

• Perturbed pressure involves contributions from the bulk 
viscosity: 

Equation of State

�P� =

�P⌫ =



• Pressure of non-relativistic species (i.e., baryons and cold 
dark matter) can be ignored relative to the energy density. 
Thus, we set them to zero: PB=0=PD and δPB=0=δPD


• Unperturbed pressure of relativistic species (i.e., photons 
and relativistic neutrinos) is given by the third of the 
energy density, i.e., Pγ=ργ/3 and Pν=ρν/3 

• Perturbed pressure involves contributions from the bulk 
viscosity: 

Equation of State

�P� =

�P⌫ =

The reason for this is that 
trace of the stress-energy 

of relativistic species 
vanishes: ∑μ=0,1,2,3 Τμμ = 0 

T 0
0 +

3X

i=1

T i
i = �⇢+ 3P +r2⇡ = 0



Two Remarks

• In the standard scenario:


• Energy densities are conserved separately; thus we do 
not need to sum over all species


• Momentum densities of photons and baryons are NOT 
conserved separately but they are coupled via 
Thomson scattering. This must be taken into account 
when writing down separate conservation equations



• Fourier transformation replaces 

Conservation Equations for 
Photons and Baryons

r2 ! �q2

momentum transfer via scattering



• Fourier transformation replaces 

Conservation Equations for 
Photons and Baryons

r2 ! �q2

what about  
photon’s viscosity?



Formation of  
a Photon-baryon Fluid

•Photons are not a fluid. Photons free-stream at 
the speed of light


• The conservation equations are not enough because we 
need to specify the evolution of viscosity


• Solving for viscosity requires information of the phase-space 
distribution function of photons: Boltzmann equation


• However, frequent scattering of photons with baryons* can 
make photons behave as a fluid: Photon-baryon fluid 

Peebles & Yu (1970); Sunyaev & Zeldovich (1970)

*Photons scatter with electrons via Thomson scattering. Protons scatter with electrons 
via Coulomb scattering. Thus we can say, effectively, photons scatter with baryons



• Fourier transformation replaces 

Let’s solve them!
r2 ! �q2



Tight-coupling 
Approximation

• When Thomson scattering is efficient, the relative velocity 
between photons and baryons is small. We write

[d is an arbitrary dimensionless variable]

• And take                             *. We obtain

*In this limit, viscosity πγ is exponentially suppressed. This result comes from 
the Boltzmann equation but we do not derive it here. It makes sense physically.



Tight-coupling 
Approximation

• Eliminating d and using the fact that R is proportional to 
the scale factor, we obtain

• Using the energy conservation to replace δuγ with δργ/ργ, 
we obtain

Wave Equation, with the speed of sound of cs2 = 1/3(1+R)!



Sound Wave!
• To simplify the equation, let’s first look at the high-

frequency solution


• Specifically, we take q >> aH (the wavelength of 
fluctuations is much shorter than the Hubble length). 
Then we can ignore time derivatives of R and Ψ 
because they evolve in the Hubble time scale:

Peebles & Yu (1970); Sunyaev & Zeldovich (1970)

Solution: SOUND WAVE!



Recap
• Photons are not a fluid; but Thomson scattering couples 

photons to baryons, forming a photon-baryon fluid 

• The reduced sound speed, cs2=1/3(1+R), emerges 
automatically


• δργ/4ργ is the temperature anisotropy at the bottom of the 
potential well. Adding gravitational redshift, the observed 
temperature anisotropy is δργ/4ργ + Φ, 
which is given by 




