
Lecture 3
- Temperature anisotropy from sound waves 
(continued)


- Cosmological parameter dependence of the 
temperature power spectrum







Stone: Fluctuations 
“entering the horizon”

• This is a tricky concept, but it is important


• Suppose that there are fluctuations at all wavelengths, 
including the ones that exceed the Hubble length (which we 
loosely call our “horizon”)


• Let’s not ask the origin of these “super-horizon 
fluctuations”, but just assume their existence


• As the Universe expands, our horizon grows and we can see 
longer and longer wavelengths


• Fluctuations “entering the horizon”
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Three Regimes
• Super-horizon scales [q < aH] 

• Only gravity is important


• Evolution differs from Newtonian


• Sub-horizon but super-sound-horizon [aH < q < aH/cs] 

• Only gravity is important


• Evolution similar to Newtonian


• Sub-sound-horizon scales [q > aH/cs] 

• Hydrodynamics important -> Sound waves



qEQ

• Which fluctuation entered the horizon before the matter-
radiation equality?


• qEQ = aEQHEQ ~ 0.01 (ΩMh2/0.14) Mpc–1


• At the last scattering surface, this subtends the multipole 
of lEQ = qEQrL ~ 140



Entered the horizon  
during the radiation era



What determines the 
locations and heights of 

the peaks?  

Does the sound-wave 
solution explain it?



Peak Locations?

• VERY roughly speaking, the angular power spectrum Cl is given 
by [             ]2 with q -> l/rL


• Question: What are the integration constants, A and B?


• Answer: They depend on the initial conditions; namely, 
adiabatic or not? 


• For adiabatic initial condition, A >> B when q is large

High-frequency solution, for q >> aH

[We will show it later.]



Peak Locations?

• VERY roughly speaking, the angular power spectrum Cl is given 
by [             ]2 with q -> l/rL


• If A>>B, the locations of peaks are

High-frequency solution, for q >> aH





The simple estimates do 
not match! 

This is simply because 
these angular scales do 

not satisfy q >> aH, i.e, the 
oscillations are not pure 

cosine even for the 
adiabatic initial condition. 

We need a better solution!



Better Solution in 
Radiation-dominated Era

• In the radiation-dominated era, R << 1


• Change the independent variable from the time (t) to 

Going back to the original tight-coupling equation..
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Better Solution in 
Radiation-dominated Era

Then the equation simplifies to

where 

The solution is

where 



Einstein’s Equations

• Now we need to know Newton’s gravitational potential, φ, 
and the scalar curvature perturbation, ψ.


• Einstein’s equations - let’s look up any text books:
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any viscosity.



Einstein’s Equations

• Now we need to know Newton’s gravitational potential, φ, 
and the scalar curvature perturbation, ψ.


• Einstein’s equations - let’s look up any text books:

Will come back to 
this later. 

For now, let’s ignore 
any viscosity.



Einstein’s Equations 
in Radiation-dominated Era
• Now we need to know Newton’s gravitational potential, φ, 

and the scalar curvature perturbation, ψ.


• Einstein’s equations - let’s look up any text books:
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Einstein’s Equations 
in Radiation-dominated Era
• Now we need to know Newton’s gravitational potential, φ, 

and the scalar curvature perturbation, ψ.


• Einstein’s equations - let’s look up any text books:
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We shall ignore this



Solution (Adiabatic) 
in Radiation-dominated Era

• Low-frequency limit (super-sound-horizon scales, qrs << 1)


• ΦADI -> –2ζ/3 = constant


• High-frequency limit (sub-sound-horizon scales, qrs >> 1)


• ΦADI -> 2ζ

ADI
where

damp

Kodama & Sasaki (1986, 1987)
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• Low-frequency limit (super-sound-horizon scales, qrs << 1)


• ΦADI -> –2ζ/3 = constant


• High-frequency limit (sub-sound-horizon scales, qrs >> 1)


• ΦADI -> 2ζ

ADI
where

damp

Poisson Equation

& oscillation solution for radiation



Solution (Adiabatic) 
in Radiation-dominated Era

• Low-frequency limit (super-sound-horizon scales, qrs << 1)


• ΦADI -> –2ζ/3 = constant


• High-frequency limit (sub-sound-horizon scales, qrs >> 1)


• ΦADI -> 2ζ

ADI
where

damp



ζ:  
Conserved on large scales

• For the adiabatic initial condition, there exists a useful quantity, 
ζ, which remains constant on large scales 
(super-horizon scales, q << aH) regardless of the contents of 
the Universe


• ζ is conserved regardless of whether the Universe is 
radiation-dominated, matter-dominated, or whatever


• Energy conservation for q << aH:

Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)



ζ:  
Conserved on large scales

• If pressure is a function of the energy density only, i.e.,

Integrate

, then

integration constant

Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)



ζ:  
Conserved on large scales

• If pressure is a function of the energy density only, i.e.,
, then

integration constant

For the adiabatic initial 
condition, all species share the 

same value of ζα, i.e., ζα=ζ

Bardeen, Steinhardt & Turner (1983); Weinberg (2003); Lyth, Malik & Sasaki (2005)



Sound Wave Solution in the 
Radiation-dominated Era

The solution is

where 

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)



Sound Wave Solution in the 
Radiation-dominated Era

The solution is

where 

i.e., ADI ADI

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)



Sound Wave Solution in the 
Radiation-dominated Era

The adiabatic solution is

with

Therefore, the solution is a pure cosine 
only in the high-frequency limit! 

Kodama & Sasaki (1986, 1987); Baumann, Green, Meyers & Wallisch (2016)





Roles of viscosity

• Neutrino viscosity 

• Modify potentials: 


• Photon viscosity 

• Viscous photon-baryon fluid: damping of sound waves
Silk (1968) “Silk damping”



High-frequency solution 
without neutrino viscosity

The solution is

where 



High-frequency solution 
with neutrino viscosity

The solution is

where 

Chluba & Grin (2013)

non-zero value!



High-frequency solution 
with neutrino viscosity

The solution is

where 

Hu & Sugiyama (1996)

Bashinsky & Seljak (2004)

Phase shift!



High-frequency solution 
with neutrino viscosity

The solution is

where 

Hu & Sugiyama (1996)

Bashinsky & Seljak (2004)

Phase shift!

Thus, the neutrino viscosity will: 

(1)  Reduce the amplitude 
of sound waves at large multipoles 

(2)  Shift the peak positions 
of the temperature power spectrum 



Photon Viscosity

• In the tight-coupling approximation, the photon viscosity 
damps exponentially


• To take into account a non-zero photon viscosity, we go 
to a higher order in the tight-coupling approximation



Tight-coupling 
Approximation (1st-order)

• When Thomson scattering is efficient, the relative velocity 
between photons and baryons is small. We write

[d is an arbitrary dimensionless variable]

• And take                             *. We obtain

*In this limit, viscosity πγ is exponentially suppressed. This result comes from 
the Boltzmann equation but we do not derive it here. It makes sense physically.



Tight-coupling 
Approximation (2nd-order)

• When Thomson scattering is efficient, the relative velocity 
between photons and baryons is small. We write

[d2 is an arbitrary dimensionless variables]

• And take                            .. We obtain

where



Tight-coupling 
Approximation (2nd-order)

• Eliminating d2 and using the fact that R is proportional to 
the scale factor, we obtain

• Getting πγ requires an approximate solution of the Boltzmann 
equation in the 2nd-order tight coupling. We do not derive it 
here. The answer is

Kaiser (1983)



Tight-coupling 
Approximation (2nd-order)

• Eliminating d2 and using the fact that R is proportional to 
the scale factor, we obtain

• Getting πγ requires an approximate solution of the Boltzmann 
equation in the 2nd-order tight coupling. We do not derive it 
here. The answer is

Kaiser (1983)

given by the velocity potential 
- a well-known result in fluid 

dynamics



Damped Oscillator
• Using the energy conservation to replace δuγ with δργ/ργ, 

we obtain, for q >> aH,

New term, giving damping!

where



Damped Oscillator
• Using the energy conservation to replace δuγ with δργ/ργ, 

we obtain, for q >> aH,

New term, giving damping!

where Important for high frequencies  
(large multipoles)
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Damped Oscillator
• Using the energy conservation to replace δuγ with δργ/ργ, 

we obtain, for q >> aH,

New term, giving damping!

Exponential dampling!

SOLUTION:

Silk

Silk
“diffusion length”  
= length traveled by photon’s random walks



Planck Collaboration  (2016)

Sachs-Wolfe Sound Wave

Silk Damping?



Additional Damping

Landau ( )

• The power spectrum is [            ]2 with q -> l/rL. The damping factor 
is thus exp(–2q2/qsilk2)


• qsilk(tL) = 0.139 Mpc–1. This corresponds to a multipole of  lsilk ~ qsilk 
rL/√2 = 1370. Seems too large, compared to the exact calculation


• There is an additional damping due to a finite width of the last 
scattering surface, σ~250 K


• “Fuzziness damping” – Bond (1996)


• “Landau damping” - Weinberg (2001)



Planck Collaboration  (2016)

Sachs-Wolfe Sound Wave

Silk+Landau  
Damping

Total damping:  
qD–2 = qsilk–2 + qlandau–2 


qD ~ 0.11 Mpc–1, giving

lD ~ qDrL/√2 ~ 1125



Planck Collaboration  (2016)

Sachs-Wolfe Sound Wave

Next: Let’s 
understand the 
peak heights

Silk+Landau  
Damping



Matching Solutions

• We have a very good analytical solution valid at low and 
high frequencies during the radiation era:

• Now, match this to a high-frequency solution valid at the 
last-scattering surface (when R is no longer small)



Matching Solutions

• We have a very good analytical solution valid at low and 
high frequencies during the radiation era:

• Now, match this to a high-frequency solution valid at the 
last-scattering surface (when R is no longer small)

Slightly improved solution, with a weak time dependence of R using the WKB method  
[Peebles & Yu (1970)]



High-frequency Solution(*) 
at the Last Scattering Surface

• (*) To a good approximation, the low-frequency solution is 
given by setting R=0 because sound waves are not 
important at large scales

Weinberg “Cosmology”, Eq. (6.5.7)

where T(q), S(q), θ(q) are “transfer functions” that smoothly interpolate two limits as

q q q

q << qEQ:
q >> qEQ:

with qEQ = aEQHEQ ~ 0.01 Mpc–1, giving lEQ=qEQrL ~ 140
“EQ” for “matter-radiation Equality epoch”

qq
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the radiation dominated era
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High-frequency Solution(*) 
at the Last Scattering Surface

• (*) To a good approximation, the low-frequency solution is 
given by setting R=0 because sound waves are not 
important at large scales

Weinberg “Cosmology”, Eq. (6.5.7)

where T(q), S(q), θ(q) are “transfer functions” that smoothly interpolate two limits as

q q q

q << qEQ:
q >> qEQ:

with qEQ = aEQHEQ ~ 0.01 Mpc–1, giving lEQ=qEQrL ~ 140
“EQ” for “matter-radiation Equality epoch”

Due to the neutrino 
anisotropic stress

qq



• (*) To a good approximation, the low-frequency solution is 
given by setting R=0 because sound waves are not 
important at large scales

High-frequency Solution(*) 
at the Last Scattering Surface

Weinberg “Cosmology”, Eq. (6.5.7)

q q q

q -> 0(*) �⇣

5
This should agree with the Sachs-Wolfe result: Φ/3; thus,

� = �3⇣/5 in the matter-dominated era



• (*) To a good approximation, the low-frequency solution is 
given by setting R=0 because sound waves are not 
important at large scales

Effect of Baryons
Weinberg “Cosmology”, Eq. (6.5.7)

q q q
Shift the zero-point of  

oscillations
Reduce the amplitude of  

oscillations



` ⇡ 302⇥ qrs/⇡No Baryon [R=0]



` ⇡ 302⇥ qrs/⇡No Baryon [R=0]

Boost due to decaying potential  

during the radiation era



` ⇡ 302⇥ qrs/⇡No Baryon [R=0]

Silk damping



` ⇡ 302⇥ qrs/⇡

Effect of baryons



` ⇡ 302⇥ qrs/⇡

Zero-point shift of the 
oscillations

Effect of baryons



` ⇡ 302⇥ qrs/⇡

WKB factor (1+R)-1/4 
and Silk damping 

compensate the zero-
point shift

Effect of baryons



Effect of Total Matter
Weinberg “Cosmology”, Eq. (6.5.7)

where T(q), S(q), θ(q) are “transfer functions” that smoothly interpolate two limits as

q q q

q << qEQ:
q >> qEQ:

with qEQ = aEQHEQ ~ 0.01 (ΩMh2/0.14) Mpc–1

“EQ” for “matter-radiation Equality epoch”

qq



` ⇡ 302⇥ qrs/⇡

[ΩMh2=0.07]

Smaller matter density  
-> More potential decay 
-> Larger boost



Recap
• The basic structure of the temperature power spectrum is


• The Sachs-Wolfe “plateau” at low multipoles


• Sound waves at intermediate multipoles


• 1st-order tight-coupling 


• Silk damping and Landau damping at high multipoles


• 2nd-order tight-coupling



In more details…
• Decay of gravitational potentials boosts the temperature 

power at high multipoles by a factor of 5 compared to 
the Sachs-Wolfe plateau


• Where this boost starts depends on the total matter density


• Baryon density shifts the zero-point of the oscillation, boosting 
the odd peaks relative to the even peaks


• However, the WKB factor (1+R)–1/4 and damping make the 
boosting of the 3rd and 5th peaks not so 
obvious



Not quite there yet…
• The first peak is too low 

• We need to include the “integrated Sachs-Wolfe effect”


•How to fill zeros between the 
peaks? 

• We need to include the Doppler shift of light


