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1) Overdensities focus light rays, so the CMB looks hotter where there 
are overdensities along the line of sight

2) Even in linear theory lensing is mostly at low redshift because density 
perturbations grow with time

3) The lensing potential is nearly Gaussian because there are many 
lenses along the line of sight and perturbations nearly linear

4) Lensing rotates polarization, partly turning E modes into B modes

5) The CMB lensing power spectrum peaks at 𝐿𝐿 ∼ 60, so temperature 
lensing reconstruction is sensitive to large-scale galactic foregrounds

Lensing warm up quiz: true or false?



CMB temperature

Perturbations: End of inflation Perturbations: Last scattering surface

gravity+
pressure+
diffusion 

0th order uniform temperature + 1st order perturbations:

Expect nearly Gaussian 
and isotropic linear perturbations



14 000 Mpc

z~1000

z=0
θ



Spatial components of the geodesic equation?

Where 𝐞𝐞 is the spatial photon 
propagation direction
- deflection due to transverse 
potential gradients

A

e

−𝛻𝛻⊥Φ

M

Full solution for 0th+1st order photon path

FRW background solution Time delay Lensing

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝐸𝐸
𝑎𝑎 1 −Ψ
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http://images.google.com/imgres?imgurl=http://www.olegvolk.net/olegv/newsite/samos/eye.jpg&imgrefurl=http://www.olegvolk.net/olegv/newsite/samos/samos.html&h=542&w=800&sz=67&tbnid=-Fj6h3BoFeoJ:&tbnh=96&tbnw=142&start=40&prev=/images?q=eye&start=20&svnum=100&hl=en&lr=&rls=GGLD,GGLD:2004-31,GGLD:en&sa=N


Zeroth-order CMB

• CMB uniform blackbody at ~2.7 K
(+dipole due to local motion)

1st order effects
• Linear perturbations at last scattering, zeroth-order light propagation; 

zeroth-order last scattering, first order redshifting during propagation (ISW)
- usual unlensed CMB anisotropy calculation 

• First order time delay, uniform CMB
- last scattering displaced, but temperature at recombination the same
- no observable effect



1st order effects contd.

• First order CMB lensing: zeroth-order last scattering (uniform CMB ~ 2.7K), 
first order transverse displacement in light propagation

A B

Number of photons before lensing
---------------------------------------------
Number of photons after lensing

=
A2

----
B2

=
Solid angle before lensing
-----------------------------------
Solid angle after lensing

Conservation of surface brightness: number of photons per solid angle unchanged

uniform CMB lenses to uniform CMB – so no observable effect
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2nd order effects
• Second order perturbations at last scattering, zeroth order light propagation

-tiny ~(10-5)2 corrections to linear unlensed CMB result

• First order last scattering (~10-5 anisotropies), first order transverse light 
displacement
- this is what we call CMB lensing

• First order last scattering, first order time delay
- delay ~1MPc, small compared to thickness of last scattering
- coherent over large scales: very small observable effect

• First order last scattering, first order anisotropic expansion
~(10-5)2: small but non-zero contribution to large-scale bispectrum
[equivalent to mapping from physical to comoving 𝐱𝐱 - the Maldacena consistency relation bispectrum on the CMB]

• First order last scattering, first order anisotropic redshifting
~(10-5)2: gives non-zero but very small contribution to large-scale bispectrum

• Others 
e.g. Rees-Sciama: second (+ higher) order redshifting
SZ: second (+higher) order scattering,  etc….

Hu, Cooray: astro-ph/0008001



Last scattering surface

Inhomogeneous universe
- photons deflected

Observer

Weak lensing of the CMB perturbations
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14 000 Mpc

Not to scale!
All distances are comoving

~100Mpc

~200/14000 ~ degree

largest overdensity

Neutral gas - transparent

Ionized plasm
a -opaque

Good approximation: CMB is single source plane at ~14 000 Mpc

R
ecom

bination

~200Mpc
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UnlensedMagnified Demagnified

Local effect of lensing magnification on the power spectrum



Credit: Duncan Hanson

Averaged over the sky, lensing smooths out the power spectrum



Matter Power Spectrum
(in comoving gauge)

Structure growth in matter domination 𝛿𝛿𝛿𝛿
𝜌𝜌

= ∆ ∝ 𝑎𝑎 Growth during radiation domination.

Photon pressure stops growth: Φ → 0 due to expansion
⇒ no gravitational driving force, no acceleration
⇒ dark matter velocities redshift ∝ 1/𝑎𝑎
Integrate 𝑣𝑣 ∝ 1/𝑎𝑎 to get density ⇒ ln(𝜂𝜂) growth

For more details see notes at: http://cosmologist.info/teaching/EU/

Small scales, 𝑘𝑘 ≫ 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒: 

Large scales, 𝑘𝑘 ≪ 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒: Use Poisson equation

(+ matter domination)

∆ = 𝛿𝛿𝜌𝜌𝑚𝑚/𝜌𝜌𝑚𝑚

(ℋ = 𝑎𝑎𝑎𝑎 = comoving 
Hubble) 



× 1/𝑘𝑘3 × 1/𝑘𝑘4

𝒫𝒫Φ(𝑘𝑘)

Turnover in matter power spectrum at 𝑘𝑘 ∼ 0.01 − 0.02
(set by horizon size at matter-radiation equality)

More lenses ⇒ more lensing ⇒ most effect for small lenses for more along line of sight
Smallest lenses where potential has not decayed away ∼ 300Mpc

Linear Matter Power Spectrum

Note: ∆ ∝ 𝑎𝑎 in matter domination, but  𝛻𝛻2Φ ∝ 𝑎𝑎2𝜌𝜌∆ is constant

𝒫𝒫∆(𝑘𝑘)



CMB lensing order of magnitudes

β

Newtonian argument: β = 2 Ψ
General Relativity: β = 4 Ψ

Ψ

Potentials linear and approx Gaussian: Ψ ~ 2 x 10-5

β ~ 10-4

Characteristic size from peak of matter power spectrum ~ 300Mpc

Comoving distance to last scattering surface ~ 14000 Mpc

pass through ~50 lumps
assume uncorrelated

total deflection ~ 501/2 x 10-4

~ 2 arcminutes

(neglects angular factors, correlation, etc.)

(β << 1)



Why lensing is important

• 2arcmin deflections:  𝑙𝑙 ∼ 3000
- On small scales CMB is very smooth so lensing dominates the linear 
signal at high 𝑙𝑙

• Deflection angles coherent over 300/(14000/2) ~ 2°

- comparable to CMB scales
- expect 2arcmin/60arcmin ~ 3% effect on main CMB acoustic peaks

• Non-linear: observed CMB is non-Gaussian 
- more information
- potential confusion with primordial non-Gaussian signals

• Does not preserve E/B decomposition of polarization: e.g. 𝐸𝐸 → 𝐵𝐵
- Confusion for primordial B modes (“r-modes”)
- No primordial B ⇒ B modes clean probe of lensing

Relatively large 𝑂𝑂(10−3) not 𝑂𝑂(10−5) – GR lensing factor, many lenses along line of sight
[NOT because of growth of matter density perturbations, potentials are constant or decaying!]



Deflection angle 𝛼𝛼

𝜅𝜅

𝛾𝛾

Convergence

Shear

Rotation 𝜔𝜔 = 0 from scalar perturbations in linear perturbation theory
(because deflections from gradient of a potential)

𝜔𝜔

Rotation

Bulk deflections unobservable (don’t know unlensed CMB); only differences in 
deflection angle really matter. So sometimes instead use magnification matrix:
Shear 𝛾𝛾𝑖𝑖 , convergence 𝜅𝜅 , and rotation 𝜔𝜔



Last scattering

FRW background: comoving angular diameter distance

X

Write X, in two ways

Observed deflection

Calculating the deflection angles

Weyl Potential:
Ψ𝑊𝑊 ≡ (Φ + Ψ)/2

determines scalar 
part of the Weyl tensor
Conformally invariant



Lensed temperature depends on deflection angle

Lensing Potential
Deflection angle on sky given in terms of angular gradient of lensing potential

co-moving distance to last scattering

Newtonian (Weyl) potential

See lensing review for more rigorous spherical derivation



Deflections O(10-3), but coherent on degree scales  important!

Deflection angle power spectrum

Can be computed with CLASS http://class-code.net  or CAMB: http://camb.info

Linear

Non-linear

On small scales 
(Limber approx, 𝑘𝑘𝑘𝑘 ∼ 𝑙𝑙)

Deflection angle power ~ 
(better: 𝑙𝑙 → 𝑙𝑙 + 1/2)



Redshift Dependence: broad redshift kernel all way along line of sight
Depends on 𝑙𝑙 of interest. High 𝑧𝑧 more important for higher 𝑙𝑙.

Convergence kernel ∝ 𝜒𝜒 1 − 𝜒𝜒
𝜒𝜒∗

for 
comparison with galaxy lensing:

𝛼𝛼2 ∝ ∫ 𝑑𝑑 ln 𝑙𝑙 𝐶𝐶𝑙𝑙𝜅𝜅 ∝ ∫ 𝑑𝑑𝑑𝑑 1 − 𝜒𝜒
𝜒𝜒∗

2
∫ 𝑑𝑑𝑑𝑑 𝒫𝒫Ψ (𝑘𝑘, 𝑧𝑧(𝜒𝜒))

𝜅𝜅2 ∝ ∫ 𝑑𝑑𝑑𝑑𝜒𝜒2 1 − 𝜒𝜒
𝜒𝜒∗

2
∫ 𝑑𝑑𝑑𝑑 𝑘𝑘2𝒫𝒫Ψ (𝑘𝑘, 𝑧𝑧(𝜒𝜒))

(there are lots of different things you can 
plot and define as the “lensing kernel”)

Redshift dependence of integrands per log z



Lensing potential and deflection angles: simulation

LensPix sky simulation code: http://cosmologist.info/lenspix (several others also available)

Note: my notation (and literature) is not very consistent: mix of 𝜙𝜙,𝜓𝜓 for lensing potential

http://cosmologist.info/lenspix


Lensed field: series expansion approximation

(BEWARE: this is not an accurate approximation for power spectrum!
Better method uses correlation function)

Using Fourier transforms in flat sky approximation:

Then lensed harmonics then given by



Lensed field still statistically isotropic: 

with

Alternatively written as

where

(RMS deflection ~ 2.7 arcmin)

Second term is like a convolution with the deflection angle power spectrum
- smoothes out acoustic peaks
- transfers power from large scales into the damping tail



Small scales, large 𝒍𝒍 limit:
- unlensed CMB has very little power due to silk damping:

- Proportional to the deflection angle power 
spectrum and the (scale independent) power in 
the gradient of the temperature



Lensing effect on CMB temperature power spectrum



• Note: can only observe lensed sky

• Any bulk deflection is unobservable
– degenerate with corresponding change in unlensed CMB:
e.g. 
rotation of full sky
translation in flat sky approximation

• Observations sensitive to differences of deflection angles
- convergence and shear



Series expansion in deflection angle OK?

Series expansion only good on large and very small scales – don’t use for lensed 𝑪𝑪𝒍𝒍

Only a good approximation when:
- deflection angle much smaller than wavelength of temperature perturbation
- OR, very small scales where temperature is close to a gradient

CMB lensing is a very specific physical second order effect; not accurately 
contained in 2nd order expansion – differs by significant 3rd and higher order terms

Error using series expansion:

temperature
E-polarization

Accurate lensed power spectrum calculation must 
non-perturbative correlation function method.

- See lensing review for details



Summary so far

• Deflection angles of ~ 3 arcminutes, but correlated on 
degree scales

• Lensing convolves TT with deflection angle power 
spectrum
- Acoustic peaks slightly blurred
- Power transferred to small scales

large scales

small scales

Average over lenses



Comparison with galaxy lensing
• Single source plane at known distance

(given cosmological parameters)

• Statistics of sources on source plane well understood
- can calculate power spectrum; Gaussian linear perturbations
- magnification and shear information equally useful - usually discuss in terms of 
deflection angle; 
- magnification analysis of galaxies much more difficult 

• Hot and cold spots are large, smooth on small scales
- ‘strong’ and ‘weak’ lensing can be treated the same way: infinite magnification 
of smooth surface is still a smooth surface

• Source plane very distant, large nearly-linear lenses
- much less sensitive to non-linear modelling, baryon feedback, etc.

• Full sky observations
- may need to account for spherical geometry for accurate results

• Systematics completely different
- CMB/galaxy cross-correlations can be a good way to calibrate systematics



Lensing of polarization

• Polarization not rotated w.r.t. parallel transport 
(vacuum is not birefringent; higher order post-Born 
rotation also negligible)

• Q and U Stokes parameters simply re-mapped by the 
lensing deflection field

Last scattering Observed

e.g.



Observed Stokes’ Parameters

- -

Q U
Q → -Q, U → -U under 90 degree rotation

Q →  U, U → -Q under 45 degree rotation

Measure 𝐸𝐸 field perpendicular to observation direction �𝒏𝒏
Intensity matrix defined as

Linear polarization + Intensity + circular polarization

CMB only linearly polarized. In some fixed basis



Alternative complex representation

Define complex vectors

And complex polarization

e.g.

Under a rotation of the basis vectors

- spin 2 field



Series expansion
Similar to temperature derivation, but now complex spin-2 quantities:

Unlensed B is expected to be very small. Simplify by setting to zero.
Expand in harmonics

�𝐸𝐸 𝑙𝑙 = 𝐸𝐸 𝑙𝑙 − �
𝑑𝑑2𝑙𝑙′

2𝜋𝜋 𝑙𝑙′ ⋅ 𝑙𝑙 − 𝑙𝑙′ cos 2 𝜙𝜙𝑙𝑙′ − 𝜙𝜙𝑙𝑙 𝜓𝜓 𝑙𝑙 − 𝑙𝑙′ 𝐸𝐸(𝑙𝑙′)

First order terms are

�𝐵𝐵(𝑙𝑙) = −�
𝑑𝑑2𝑙𝑙′

2𝜋𝜋 𝑙𝑙′ ⋅ 𝑙𝑙 − 𝑙𝑙′ sin 2 𝜙𝜙𝑙𝑙′ − 𝜙𝜙𝑙𝑙 𝜓𝜓 𝑙𝑙 − 𝑙𝑙′ 𝐸𝐸(𝑙𝑙′)



Lensed spectrum: lowest order calculation

Need second order expansion for consistency with lensed E: 0th x 2nd order + 1st x 1st order :

Calculate power spectrum. Result is



Effect on EE and TE similar to temperature: convolution smoothing + transfer 
of power to small scales



Polarization lensing power spectra

Nearly white spectrum on large scales
(power spectrum independent of 𝑙𝑙)

l4Cl
φ

l4Cl
φ l2Cl

E

Cl
B

Cl
E

On large scales, lensed BB given by

BB generated by lensing even if unlensed B=0

Can also do more accurate calculation
using polarization correlation functions

- unless removed, acts like an effective
white-noise of 5 𝜇𝜇K arcmin

𝐶̃𝐶𝑙𝑙𝐵𝐵 ∼ 2 × 10−6𝜇𝜇K2



Current 95% indirect limits for LCDM given WMAP+2dF+HST
Polarization power spectra



Warm up quiz: some answers

1) Overdensities focus light rays, so the CMB looks hotter where there 
are overdensities along the line of sight

2) Even in linear theory lensing is mostly at low redshift because 
density perturbations grow with time

3) The lensing potential is nearly Gaussian because there are many 
lenses along the line of sight and perturbations nearly linear

4) Lensing rotates polarization, partly turning E modes into B modes

✔



Lecture 2



Non-Gaussianity, statistical anisotropy 
and reconstructing the lensing field

2.

⇒ Anisotropic Gaussian lensed temperature distribution

1. Marginalize over (unobservable) lensing and unlensed temperature fields:

⇒ Non-Gaussian statistically isotropic lensed temperature distribution

�𝑇𝑇(𝐱𝐱) = 𝑇𝑇 𝐱𝐱 + 𝛻𝛻𝜓𝜓

In pixels this is a remapping �𝑇𝑇𝑖𝑖 = [Λ 𝜓𝜓 ]𝑖𝑖𝑖𝑖𝑇𝑇𝑗𝑗: Linear in 𝑇𝑇; non-linear in 𝜓𝜓

�𝑇𝑇 = Λ𝑇𝑇 is a linear function of 𝑇𝑇 for fixed 𝜓𝜓: 

For the given (fixed) lensing field in our universe think about �𝑇𝑇 ∼ 𝑃𝑃( �𝑇𝑇|𝜓𝜓): 

𝑃𝑃 𝑇𝑇,𝜓𝜓 ≈ Gaussian; on small scales 𝑇𝑇𝑇𝑇 = 0 ⇒ 𝑃𝑃 𝑇𝑇,𝜓𝜓 = 𝑃𝑃 𝑇𝑇 𝑃𝑃(𝜓𝜓)



UnlensedMagnified Demagnified

+ shear modulation:

Think about ‘squeezed’ configuration: big nearly constant lenses, much smaller lensed T

Fractional magnification ∼ convergence 𝜅𝜅 = −𝛁𝛁 ⋅ 𝜶𝜶
2



𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍

𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍

𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍

𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍 𝑪𝑪𝒍𝒍

Variance in each 𝐶𝐶𝑙𝑙 measurement ∝ 1/𝑁𝑁modes

𝑁𝑁modes ∝ 𝑙𝑙max2 - dominated by smallest scales

⇒measurement of angular scale (⇒ 𝜅𝜅) in each box nearly independent
⇒ Uncorrelated variance on estimate of magnificantion 𝜅𝜅 in each box
⇒ Nearly white ‘reconstruction noise’ 𝑁𝑁𝑙𝑙

(0) on 𝜅𝜅 , with 𝑁𝑁𝑙𝑙
(0) ∝ 1/𝑙𝑙max2

Lensing reconstruction
-concept



Average over unlensed CMB Θ:

For 𝐿𝐿 ≥ 1 define quadratic estimator by summing up with weights 𝑔𝑔(𝒍𝒍,𝑳𝑳)

Off-diagonal correlation ∝ 𝜓𝜓 𝐿𝐿 − use to measure 𝜓𝜓!

For fixed 𝜓𝜓: Gaussian anisotropic distribution ⇒ Θ 𝐥𝐥 Θ 𝐥𝐥′ ≠ 𝐶𝐶𝑙𝑙𝛿𝛿(𝐥𝐥 − 𝐥𝐥′)

Use series expansion: 

(higher order terms are important, but bias can be corrected for later)

Zaldarriaga & Seljak, Hu 2001+



Reconstruction ‘Noise’ 𝑁𝑁 𝐿𝐿 – from random fluctuations of the unlensed CMB
Turns out to be the same as the normalization 𝑁𝑁(𝐿𝐿)

On large scales (large lenses), 𝐿𝐿 ≪ 𝑙𝑙, with no instrumental noise

1
𝐿𝐿4𝑁𝑁 𝐿𝐿

≈ 1
16𝜋𝜋

∫ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑 ln 𝑙𝑙2𝐶𝐶𝑙𝑙
𝑑𝑑 ln 𝑙𝑙

2
+ 1

2
𝑑𝑑 ln 𝐶𝐶𝑙𝑙
𝑑𝑑 ln 𝑙𝑙

2

Convergence Shear

constant

(in limit of no lensing – there are higher order corrections)



Want the best estimator: find weights g to minimize the variance

Want 

⇒



Lensing reconstruction information mostly in the smallest scales observed

- Need high resolution and sensitivity
- Almost totally insensitive to large-scale T (so only small-scale foregrounds an issue)

∝ 𝐶𝐶𝑙𝑙𝜅𝜅

Reconstruction Noise
𝑁𝑁𝐿𝐿

0

𝑁𝑁𝑙𝑙
0 ∼ const Beam, noise, shape of 𝐶𝐶𝑙𝑙 and 𝑙𝑙 ∼ 𝑙𝑙max effects

Planck 2013



Practical fast way to do it, using FFT:

- Looks like convolution: use convolution theorem

- fast and easy to compute in harmonic space

- Can make similar argument on full sky and for polarization

Easy to calculate in real space: multiply maps



Alternative more general derivation (works for cut-sky, anisotropic noise)
For fixed lenses, sky is Gaussian but anisotropic:

Find the maximum-likelihood estimator for the lensing potential/deflection angle

Trick: where 𝑥𝑥 has covariance 𝑪𝑪𝑇𝑇𝑇𝑇 𝐴𝐴 = 𝑇𝑇𝑇𝑇 𝐴𝐴𝐶𝐶−1〈𝑥𝑥𝑥𝑥𝑇𝑇〉

= 〈𝑥𝑥𝑇𝑇𝐴𝐴𝐶𝐶−1𝑥𝑥〉 - rewrite trace as “mean field” average

Can show that first-step Newton-Raphson maximum likelihood solution is as 
before, but with 

1
𝐶𝐶𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡

→ (𝐶̂𝐶 �Θ�Θ)−1 = 𝑆𝑆 + 𝑁𝑁 −1 �𝜓𝜓 → �𝜓𝜓 − 〈 �𝜓𝜓〉
weights optimally for cuts/noise
and subtracts average signal from 
noise inhomogeneity and cuts

“mean field” calculated from expectation from simulationsSets to zero in cut,
downweights high noise
(also need lensed 𝐶𝐶𝑙𝑙 ) astro-ph/0209489, arXiv:0908.0963

= 0



Lensing potential power spectrum

�𝜓𝜓 𝐿𝐿 �𝜓𝜓 𝐿𝐿′ = 𝛿𝛿 𝐿𝐿 + 𝐿𝐿′ 𝐶𝐶𝐿𝐿
𝜓𝜓 + 𝑁𝑁0 𝐿𝐿 + other biases

Other biases include:

- Other sources of connected 4-point function (e.g. point sources)
- instrumental/observational complications

- N1

N1 comes from ‘non-primary’ contractions that depend on 𝜙𝜙: 

𝐶𝐶�𝜙𝜙 ∼ 𝑇𝑇1𝑇𝑇2𝑇𝑇3𝑇𝑇4 = 𝐶𝐶𝜓𝜓 + 𝑇𝑇1𝑇𝑇3⟩⟨𝑇𝑇2𝑇𝑇4 + 𝑇𝑇1𝑇𝑇4⟩⟨𝑇𝑇2𝑇𝑇3

N0+N1

�𝜓𝜓 is quadratic in T ⇒ 𝐶̂𝐶𝜓𝜓 ∝ ⟨ �𝜓𝜓 �𝜓𝜓⟩ is quartic in T: measure of 4-point function

N0= independent of 𝐶𝐶𝜓𝜓:
N1=𝑂𝑂(𝐶𝐶𝜓𝜓) from off-diagonal correlations of T(l)T(l’)



→ process input maps

→ estimate lensing potential 
from anisotropic 2-point

Lens Reconstruction Pipeline

Filtering

Quadratic 
Estimator

Power Spectrum 
Estimation

Filtering

Quadratic 
Estimator

Data / Sims Data / Sims

Cross-
correlation

ϕ Tracer

Filtering

Data / Sims

Filtering

Data / Sims

→ estimate lensing power 
spectrum.



Best measured modes of 
MV estimator have S/N=1.

Planck noise power spectra for lensing estimators.



1) Raw power 
spectrum of 
quadratic 
estimates.

Power Spectrum Estimation



2) Correct for N0 
noise bias 
estimated from 
sims.

Power Spectrum Estimation



2) Correct for 
noise bias 
estimated from 
sims.

Power Spectrum Estimation



3) Apply further 
data-based 
estimate of noise 
bias to reduce 
sensitivity to 
inaccuracy of sims
(‘RDN0’).

Power Spectrum Estimation



4) Correct for N1 
bias.

Power Spectrum Estimation



5) MC correction 
for mode mixing / 
inaccuracies in 
normalization.

Power Spectrum Estimation



6) Correct for 
point source
bias.

Power Spectrum Estimation

Done!



Lensing Power Spectrum

Amplitude constrained to ~2.5% 
(40σ detection of lensing).



Planck 2015 lensing reconstruction (𝐸𝐸𝛁𝛁𝛁𝛁)



Simulated Planck lensing reconstruction



True simulation input



High-resolution ground-based observations can 
measure smaller sky area with much higher S/N

e.g. SPTpol

cosmo-nordita.fysik.su.se/talks/w3/d5/kstory_spt_lensing_stockholm_201707.pdf



Challinor et al. arXiv:1707.02259

Current lensing reconstruction power spectra



DES 1YR +Planck lensing only LCDM forecast

Probes higher redshift ⇒ constrains Ω𝑚𝑚𝜎𝜎80.25 vs. galaxy Ω𝑚𝑚𝜎𝜎80.5

DES 1Yr has 10 nuisance parameters, conservative cuts: limited by modelling not statistics
CMB lensing currently limited by low S/N (and only one source redshift plane)

CMB lensing currently competitive with galaxy lensing



Warm up quiz answers 

1) Overdensities focus light rays, so the CMB looks hotter where there 
are overdensities along the line of sight

2) Even in linear theory lensing is mostly at low redshift because 
density perturbations grow with time

3) The lensing potential is nearly Gaussian because there are many 
lenses along the line of sight and perturbations nearly linear

4) Lensing rotates polarization, partly turning E modes into B modes

5) The CMB lensing power spectrum peaks at 𝐿𝐿 ∼ 60, so is sensitive to 
large-scale galactic temperature foregrounds

✔

Large-scale reconstruction information comes from large-scale 
variations (shear/magnification) of small-scale temperature modes



Lensing reconstruction with polarization

- Expect no primordial small-scale B modes (r-modes only large scales 𝑙𝑙 < ~300)

- All small-scale B-mode signal is lensing: no cosmic variance confusion with 
primordial signal as for E and T

- Polarization data does much better than temperature if sufficiently good S/N 
(mainly EB estimator).

Challinor et al. arXiv:1707.02259



Large set of possible estimators, e.g. for S4 several nearly-independent probes

𝑙𝑙4𝐶𝐶𝑙𝑙
𝜙𝜙𝜙𝜙

2𝜋𝜋

Noise

N1

L



• Maximum likelihood techniques much better than quadratic estimators 
for polarization when noise levels low enough (astro-ph/0306354)

Optimal polarization lensing reconstruction

Input Quadratic Iterative maximum likelihood

- Carron & Lewis 2017: public code that can be used in practice (1704.08230)
(efficient handling of anisotropic noise, beams, sky cuts..)

LensIt: 
https://github.com/carronj/LensIt (by Julien Carron)

https://github.com/carronj/LensIt


Is the lensing reconstruction useful?



Neutrino mass from high S/N lensing reconstruction

S4 Science Book

Neutrinos suppress late-time
perturbations

Lensing measures late-time
perturbations

CMB measures 𝐴𝐴𝑠𝑠𝑒𝑒−2𝜏𝜏, if we
know 𝜏𝜏 well enough, know 
early perturbation amplitude

⇒ can measure neutrino mass



CMB lensing to calibrate shear for galaxy lensing

Galaxy lensing surveys measure (roughly) galaxy ellipticity 𝑒𝑒𝑔𝑔. 
Hard to relate directly to lensing shear 𝛾𝛾lens.

Schaan et al. arXiv: 1607.01761

𝑒𝑒g ∼ 1 + 𝑚𝑚 𝛾𝛾lens

Cross-correlation with CMB 
lensing can measure 𝑚𝑚

e.g. S4 to calibrate LSST

𝑚𝑚 could mimic different 
dark energy models.

Valuable for EUCLID, WFIRST, LSST, etc.
- more robust prior-independent constraints on 

dark energy



See e.g. arXiv:1710.09465 and refs therein

CMB lensing and cross-correlations to measure bias

- Lensing probes dark matter distribution directly

- Galaxy number counts perturbations (g) depend on bias b

- Very roughly:

𝑔𝑔(𝑧𝑧) ∼ 𝑏𝑏(𝑧𝑧)𝜎𝜎8(𝑧𝑧)

𝑔𝑔(𝑧𝑧)𝑔𝑔(𝑧𝑧) ∝ 𝑏𝑏(𝑧𝑧)2, 𝑔𝑔(𝑧𝑧)𝜙𝜙 ∝ 𝑏𝑏(𝑧𝑧)

⇒ estimate b(z) from 𝑔𝑔 𝑧𝑧 𝑔𝑔 𝑧𝑧
𝑔𝑔 𝑧𝑧 𝜙𝜙

- Can help with parameters and non-Gaussianity from scale-dependent bias
(with many redshifts can be limited by shot noise and reconstruction noise, not cosmic variance as  
lensing and galaxies probe same underlying mass perturbations)

https://arxiv.org/abs/1710.09465


Delensing

1. Use external tracer of matter, 
e.g. CIB (Cosmic Infrared Background). 
(Sherwin et al 2015, Larsen et al. 2016)

2. Use internal lensing reconstruction

Measure 𝜓𝜓 (hence 𝛼𝛼 = 𝛻𝛻𝜓𝜓)

Re-map back lensed fields or subtract perturbative lensing signal

To measure 𝜓𝜓:

(or use both!)



CIB-lensing cross-correlation

(Planck 2015)

1502.05356

Detected at ~50σ. Correlation coefficient

CIB provides an independent, quite high S/N probe of ɸ - good for delensing

https://arxiv.org/abs/1502.05356


CIB can already by used for delensing

Detection of delensing of TT power spectrum: 
Partly undo peak-smoothing effect - peaks get sharper

Larsen et al. 1607.05733



Carron, Lewis, Challinor arXiv:1701.01712

Current (Planck) delensing efficiencies currently limited by reconstruction noise

(But in future will be much better)

Internal delensing: 𝜙𝜙 from lensing reconstruction



∼ 25𝜎𝜎 detection of TT delensing, 20𝜎𝜎 of polarization delensing; consistent with expectations

Carron, Lewis, Challinor arXiv:1701.01712Planck internal delensing of TT, TE, EE

(S4 EE/TE delensing could sharpen peaks and decrease errors by up to ~ 20%, arXiv: 1609.08143)



Planck internal
First detection of delensing of B-
mode polarization at 4.5 𝜎𝜎

(Proof of principle only: noise high, so does not yet help at all with tensor 𝑟𝑟 constraint)

Carron, Lewis, Challinor arXiv:1701.01712 Manzotti et al. arXiv:1701.04396

SPTpol and Herschel
28% delensing detected at 6.9𝜎𝜎

Current status of B-Mode Delensing



Future lensing reconstruction efficiency 
quadratic estimator (dashed)

Iterative estimator (solid)
CIB not competitive for S4, though may help (reddish  points)

Carron & Lewis, 1704.08230



Future high-resolution data could remove most of large-scale B-mode “noise” on 𝑟𝑟

S4 Science Book

Without delensing, 𝑟𝑟 limited by lensing not instrumental noise smaller than ∼ 5 𝜇𝜇𝜇𝜇 arcmin



How well can we delens in principle?

𝐸𝐸,𝜙𝜙�𝐸𝐸, �𝐵𝐵
lensing

Delensing?

(almost all modes 
small-scale,
unlensed 𝐵𝐵 = 0)

2 d.o.f. 2 d.o.f.

TheoryObserved

Hirata & Seljak 2003

Perfect lensing reconstruction, hence delensing, if only 2 d.o.f. 

�𝑃𝑃𝑎𝑎𝑎𝑎 �𝒏𝒏 = 𝑃𝑃𝑎𝑎𝑎𝑎(�𝒏𝒏 + 𝛁𝛁𝜙𝜙)

Standard lensing remapping approximation:

Breaks down eventually even in principle: 
Second order effects from reionization (r ∼ 10−4, 1709.01395),  time-delay/emission angle (r ∼ 10−6), 
non-linear recombination (r ∼ 10−7), …

https://arxiv.org/abs/1709.01395


But: residual foregrounds in B may limit nearer 𝑟𝑟 ∼ 10−3 for planned observations

Optimal internal reconstruction in principle only limited by noise down to 𝑟𝑟 ∼ 10−4 − 10−6

e.g. S4 Science Book



Cluster CMB lensing

GALAXY
CLUSTER

Last scattering surface What we see

CMB very smooth on small scales: approximately a gradient

0.1 degrees
Need sensitive ~ arcminute resolution observations



Unlensed Lensed Difference

RMS gradient ~ 13 μK / arcmin
deflection from cluster ~ 1 arcmin Lensing signal ~ 10 μK

BUT: depends on CMB gradient behind a given cluster

can compute likelihood of given lens (e.g. NFW parameters) essentially exactly

Unlensed CMB unknown, but statistics well understood (background CMB Gaussian) :



Unlensed T+Q+U Difference after cluster lensing

Add polarization observations?

Less sample variance – but signal ~10x smaller: need 10x lower noise 

Note: E and B equally useful on these scales; gradient could be either



S4 Science Book

e.g. high-sensitivity, high-resolution CMB can calibrate mass of 
1000 stacked clusters to a few percent



Complications
• Temperature

- Thermal SZ, dust, etc. (frequency subtractable)
- Kinetic SZ (cluster rotation, can average in stacking)
- Moving lens effect (velocity Rees-Sciama, dipole-like)
- Background Doppler signals 
- Other lenses

• Polarization
- Quadrupole scattering 
(< 0.1μK)
- Re-scattered thermal SZ (freq)
- Kinetic SZ (higher order)
- Other lenses

Generally much cleaner

But usually galaxy lensing does much better, esp. for low redshift clusters



Conclusions
Lensing the leading secondary effect on the CMB anisotropies
- Smooths acoustic peaks
- Transfers power to small scales
- Introduces non-Gaussianity
- Makes B-mode polarization by lensing E

Can be used to reconstruct the lensing potential
- map integrated density of universe on largest scales
- very different systematics to galaxy lensing

(cross-correlation can be used for calibration)

Test LCDM, constrain parameters, ∑𝑚𝑚𝜈𝜈, dark energy, bias, etc.

Delensing important for future tensor mode searches if 𝑟𝑟 small
- just starting to be possible
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