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The Gaussian hypothesis in Cosmology

“That a Gaussian random field may provide a good description of the
properties of density fluctuations could arise in a number of ways. The
central limit theorem implies that a Gaussian distribution arises whenever
one has a variable (or, more generally, a vector) which is a linear
superposition of a large number of independent random variables (or
vectors) which are all drawn from the same distribution. In particular, if
the field F(r) is written as a spatial Fourier decomposition, and its Fourier
coefficients F, are statistically independent, each having the same form of
distribution, then the joint probability of the density evaluated at a finite
number of points will be Gaussian under very weak conditions. Special
cases of this include the random phase approximation, in which it is
assumed that the phases of F, are uniformly distributed from 0 to 2rt. The
specific form of the distribution of the moduli |F,| does not matter. We
note that small-amplitude curvature perturbations generated by quantum
fluctuations in an inflationary phase of the very early universe would yield
a Gaussian random density field. ...” (Bardeen, Bond, Kaiser & Szalay
1986).



Why (non-) Gaussian?

. free (i.e. non-interacting)
Gaussian ” fold

large-scale ” non-linear gravitational
phase coherence dynamics



The phase information

credits: Peter Coles




Going beyond the Gaussian
hypothesis in Cosmology

Historical outline:

1977 Groth & Peebles compute the 3-pt function of galaxies: direct evidence that the LSS is non-Gaussian. Is this
only the effect of non-linear gravitational clustering?

1980 Strongly non-Gaussian initial conditions studied in the eighties. Perturbation theory calculations beyond the
linear level compute bispectrum, skewness, etc. using the Newtonian approximation (both in Eulerian and
Lagrangian coordinates (Bouchet et al. 1995; Catelan et al. 1995; ...), starting from Gaussian and in a few cases
also NG initial conditions.

2001 Determination of bispectrum for PSCz (Feldman et al. 2001) and 2dF galaxies (Verde et al. 2002).

1990 New era with fy, non-Gaussian (NG) models from inflation (Salopek & Bond 1991; Gangui et al. 1994: f~
102; Verde et al. 1999; Komatsu & Spergel 2001; Acquaviva et al. 2002; Maldacena 2002; + many models with
higher fy, ).

2000 Primordial NG (PNG) gradually emerged as a new “smoking gun” of (non-standard) inflation models, which
complements the search for primordial gravitational waves (PGW). PNG probes interactions among fields at the
highest energy scales.

2013 Is this route still viable, given the very stringent Planck constraints?



The view on Non-Gaussianity
... Clrca 1990

Moscardini, Lucchin, Matarrese & Messina 1991




The present view on
non-Gaussianity

Alternative structure formation models of the late eighties considered
strongly non-Gaussian primordial fluctuations.

The increased accuracy in CMB and LSS observations has, however,
excluded this extreme possibility.

The present-day challenge is either detect or constrain mild or weak
deviations from primordial Gaussian initial conditions.

Deviations of this type are not only possible but are generically
predicted in the standard perturbation generating mechanism
provided by inflation.



Evaluating NG: from inflation to the
present universe

Evaluate non-Gaussianity during inflation by a self-consistent second-order
calculation (or equivalent techniques, ...).

Evolve scalar (vector) and tensor perturbations to second order after
inflation outside the horizon, matching conserved second-order gauge-
invariant variable, such as the comoving curvature perturbation €@ (or
non-linear generalizations of it), to its value at the end of inflation
(accurately accounting for reheating).

Evolve them consistently after they re-enter the Hubble radius =2 i.e.
compute second-order radiation transfer function for CMB and second-
order matter transfer function for LSS (few codes already available!)



Non-Gaussianity in the Initial Conditions



Testable predictions of inflation

a Cosmological aspects

Q Critical density Universe

a Almost scale-invariant and nearly Gaussian, adiabatic
density fluctuations

Q Almost scale-invariant stochastic background of relic
gravitational waves

Q Particle physics aspects

O Nature of the inflaton
Q Inflation energy scale



The rise and fall ... of the comoving
Hubble horizon

(late-time dark energy dominance neglected for simplicity)
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Figure 7.4 Evolution of the comoving cosmological horizon 7.(t) in a universe charac-
terised by a phase with an accelerated expansion (inflation) from ¢; to tg. The scale [y enters
the horizon at t, leaves at t, and re-enters at t3. In a model without inflation the horizon
scale would never decrease so scales entering at ty could never have been in causal contact
before. The horizon problem is resolved if v.(tg) < v.(t;).



Inflation and the Inflaton

1
Lold gu] = 59" dud — V(9)

2 \
Standard kinetic term Inflaton potential: describes the self-interactions

of the inflaton field and its interactions with the
rest of the world

Think the inflaton mean field as a particle moving under a force
induced by the potential V V(9)
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Two simple but very important examples

“Large field’’ models “Small field’’ models
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Observational predictions of inflation

» Primordial density (scalar) perturbations
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» Primordial (tensor) gravitational waves
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Planck 2015 constraints on
inflation models
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PNG probes physics
of the Early Universe

PNG amplitude and shape measures deviations from standard
inflation, perturbation generating processes after inflation,
initial state before inflation, ...

Inflation models which would yield the same predictions for
scalar spectral index and tensor-to-scalar ratio might be
distinguishable in terms of NG features.

We should aim at “reconstructing” the inflationary action,
starting from measurements of a few observables (like n, r, n;,
fu, Bnu €tc. ...), just like in the nineties we were aiming at a
reconstruction of the inflationary potential (see e.g. revival of
the latter industry after the Bicep2 claim of PGW detection, ...).



Late nineties: simple-minded
NG model

Many primordial (inflationary) models of non-Gaussianity can be represented in
configuration space by the simple formula SSanpek & Bond 1990; Gangui et al. 1994;
Verde et al. 1999; Komatsu & Spergel 2001

D = ¢+ fy« (- < >>) + 8y + (93~ <0 >> P ) + ...

where @D is the large-scale gravitational potential (more precisely ® = 3/5 T on
superhorizon scales, where T is the gauge-invariant comoving curvature perturbation),
¢, its linear Gaussian contribution and fy the dimensionless non-linearity parameter
(or more generally non-linearityfunction". The percent of non-Gaussianity in CMB data
Implied by this model is

NG % ~ 105 |fy|

~ 100 | gL

“non-Gaussian = non-dog”
(Ya.B. Zel’dovich)




Bispectrum &
primordial non-Gaussianity

Primordial NG probed fundamental physics during inflation, being sensitive to
the interactions of fields present during inflation (different inflationary models
predict different amplitudes and shapes of the bispectrum)

Standard models of slow-roll ir)ﬂation predict a tiny deviation from
Gaussianity (Salopek & Bond 90; Gangui, Lucchin, Matarrese & Mollerach
1995; Acquaviva, Bartolo, Matarrese & Riotto 2003; Maldacena 2003)

2013 and 2015 Planck results consistent with such a prediction.

Searching for deviations from this standard paradigm is interesting per-se for
theoretically well-motivated models of inflation and, as shown in Planck 2013
results, can severely limit various classes of inflationary models beyond the
simplest paradigm. PNG probes interactions among particles at inflation
energy scales. See recent literature on probing string-theory via oscillatory
PNG (Arkani-Hamed & Maldacena 2015 “Cosmological collider physics”;
Silverstein 2017 “The dangerous irrelevance of string theory”).



NG requires higher-order statistics
(than the power-spectrum)

B The simplest statistics (but not fully,general) measuring NG is the 3-point function or its
Fourier transform, the ~bispectrum

<k )P(k;)b(ks)> = (27)°8C3) (K, +k,+ks) By(ky, ko ks)

which carries shape information.

B |noursimple linear + quadratic model above, the bispectrum of the gravitational
potential reads:

By(Ky,ka,ks) = 2fy [Py(ky)Py(k,) + cyclic terms]
(by direct application of Wick’ s theorem), where

<k )P(k;)> = (27)36B) (ky+k,) Py(ky)

Here the field ¢ is related to the comoving curvature perturbation { on super-Hubble
scales by ¢ = (3/5) ¢, and on super-Hubbler scales it reduces to Bardeen’s gauge-
invariant gravitational potential.



Bispectrum shape function

We can define the shape-function (fy,=1) S(ki,k2,k3) = — k1k7k3) Bq;(kl,kv ki),
where N is a suitable normalization.

In the scale-invariant case, the PS of the primordial gravitational potential takes the
simple form Py (k) = Agk—, hence:

Bo(k1, k2, k3)

= ZfNL[PQ(kl)PQ)(kz) + P@(kp_)P@(k3) + P@(k3)P®(k1 )]

Sy S )
~ Nk koks ) \ kaks Tk ik
For constant fy, (“local” PNG) this implies

local = 1 k:lz k:z)' k-%
S (kl)kZ,k3) - 3 k2k3 + klk3 = klkz .

NOTE: The local shape is peaked on squeezed configurations, where one
wave-number is much smaller than the other two.



Bispectrum shape function

I”

* Another standard template shape is the “equilateral” one

(ky +ky — k3)(ky + k3 — ky)(ks +k; — k3)

sell(ky ka, k3) = ki k2ks

equilateral local

0.6

o
b) from Liguori et al. 2010

Ficure 3: Shape functions for the scale-invariant equilateral (a) and local (b) models: S(ky,k;, k3) = S(a, B) on transverse slices with
2k = ky + k> + k3 = const. See main text for the definition of the coordinate reparametrization in terms of & (y-axis) and 8 (x-axis).



Where does NG come from
(in standard inflation)?

Falk et al. (1993) found @L—«?g ~ €2 (from non-linearity in the inflaton
e

potential in a fixed de Sitter space) in the standard single-field slow-roll
scenario

Gangui et al. (1994), using stochastic inflation found f, .~ €, 1 (from
second-order gravitational corrections during inflation). Acquaviva et al.
42003) and Maldacena (2003) confirmed this estimate (up to numerical
actors and momentum-dependent terms) with a full second-order
approach. Weinberg extended the calculation of the bispectrum to 1-
loop. One of these terms gives rise to the so-called “consistency
relation”, according to which found f, =-5/12(n.-1) It has been shown
that this term can be gauged away by a non-linear rescaling of
coordinates, up to sub-leading terms. Hence the only residual termis
proportional to € i.e. to the amplitude of tensor modes. See however
comments on this point, later on.



Bispectrum of a self-interacting scalar
field in de Sitter space

Consider a scalar field ¢ with cubic self-interactions, i.e. with a term Ax3/3! In
the Lagrangian. Call 6y the fluctuations around its v.e.v.. Its two and
three-point functions in Fourier space (Falk et al. 1993; Gangui et al.

1994; Bernardeau et al. 2004), after the rescaling 6, = 5 /4i ead:

(0107(z, K)oy(<, K)[0) =3 (k+ K)G(k, 1, 7)

(071,071,071 ) = — 120 (Kt + kg + K3) [ T ;:[Gm.a )G lka, 1. 7)G (k3. 7, 7))
— G*(k1.1,7)G* (k. 7. rj)oé*(/f& . 7)] .
where the Green’ s function reads | , ,
Gk,7,7) = % (1 kr) (l + F) exp[ik(t" — 1)]

The bispectrum is (C being a function of order 1

(071, 071,07, —MMZI_[ = v3(ki) = —= [ + {(ks) + logl k7]
i J;e, k; 3H




Bispectrum of standard inflation

In the case of standard slow-roll single-field inflation one finds (Acquaviva et
al. 2003; Maldacena 2003) the simple shape

sMald (k) ks, k3)

ki k3 k3
oc (3€ 2'7)[k2k3 - ki - kk

kik? + k3k3 + k3ki
kik2k3

+ 6[(k|k22 +5perm.) + 4
~ (6€ — 217) S (ky, ka, k) + gf s%9 k1, k2, k3

where the factor in front of the local shape is proportional to the tilt n.-1. But ...
is it observable?



Single-field Inflation bispectra

Maldacena 2003



Separability

The above shapes share the important property of being separable, i.e.

S(ki,k2,k3) = X(k1)Y (k2)Z(k3) + 5 perms,

This important property greatly simplifies the calculation of the bispectrum.



there are more shapes of non-Gaussianity from
inflation than ... stars in the sky



Starting point: the curvature
(gravitational potential) bispectrum

Bispectrum of primordial curvature perturbations Amplitude Shape

L L I W —
(B(Fey ) B (ko) D (ks3)) = (2m)26P) (k1 + ko + k3) fnLF (K1, ko, ks3)

Local NG Equilateral NG

Multi-field models of inflation;
Cuvaton models;
Ekpyrotic/cyclic models

Orthogonal NG

Single inflaton with non-standard kinetic term;
higher derivative interactions

Also: directionally dependent bispectra,
tensor bispectra and many others.

A Single inflaton with non-standard kinetic term;
higher derivative interactions




Models behind bispectrum shapes
(... a few of them)

local shape: Multi-field models, Curvaton, Ekpyrotic/cyclic, etc. ...

equilateral shape: Non-canonical kinetic term, DBI, K-inflation,
Higher-derivative terms, Ghost, EFT approach

orthogonal shape: Distinguishes between variants of non-canonical
kinetic term, higher-derivative interactions, Galilean inflation

flattened shape: non-Bunch-Davies initial state and higher-
derivative interactions, models where a Galilean symmetry is
imposed. The flat shape can be written in terms of equilateral and
orthogonal.

(1) Squeezed (2) Equilateral (3) Folded



NG shapes: local

Bispectrum peaks for squeezed triangles k,<<k,~k;

Local 1 .
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5 Babich et al. astro-ph/0405356
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Non-linearities develop outside the horizon during or immediately after inflation
(e.g. multifield models of inflation)



NG shapes: equilateral

Bispectrum peaks for equilateral triangles: k,=k,=k; -

Higher Deriv. 1 ) k3

k2

0.7 )
0.5 F(19x29x3)x2x3

0.25
{ 0

I3 = l\'3 ,,."IA'l and Iro = ]\'2 ‘,."IA'l

Babich et al. (2004)

Single field models of inflation with non-canonical kinetic term L=P(¢p, X) where X=(0 @)?
(DBI or K-inflation) where NG comes from higher derivative interactions of the inflaton
field .

Example: 5¢(V5¢)2



NG shapes: flattened

Bispectrum peaks for flattened triangles k, = k,+k,

k3 k2

k1

(typical of NG from excited initial states, see Meerburg et al. arXiv:0901.4044; Chen et al. hep-th/
0605045; Holman & Tolley arXiv:0710.1302; or from higher derivative interactions, Fasiello, Bartolo,
Matarrese, Riotto arXiv:1004.0893)




Warning: this is not a blind search for NG

* Detecting a non-zero primordial bispectrum (e.g. non-zero f,)
proves that the initial seeds were non-Gaussian. Similarly for
the trispectrum, etc. ...

* Not detecting non-zero f, however, doesn’t prove
Gaussianity!

* There are infinitely many ways PNG can evade observational
bounds optimized to search for f, and similar higher-order
parameters



A worked example
(Scherrer & Schaefer 1995)

Assume the linear density contrast 6 is non-Gaussian.

By the central limit theorem, the gravitational potential ¢ (which yields large-scale
CMB anisotropies) tends to be much more Gaussian. Indeed, by solving Poisson’s

equation,
r 3 r
2 el
———J— ———
d(r) = —Ga’p | 7%
300000 =TT - 300000 [T T -
250000 [~ — 250000 -
200000 |~ - 200000 -
N(8/0) F 3 N($/0) ]
160000 [~ = 150000 -
100000 - — 100000 .
50000 [~ = 50000 =
b ]
o bl I o 2 (P I I I
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
é/c ¢/0
FiG. 1a FiG. 1b

FiG. 1—(a) The distribution of densities in the model given by the Wold representation: &) = | f(|r — ¥'|)A(')d°, where A(r) is an uncorrelated field with a
gamma distribution, and f is chosen to give a Zel'dovich power spectrum [P(k) oc k] for the density field. Solid curve is a Gaussian distribution with the same mean
and variance. (b) The distribution of potentials for the same model. Solid curve is a Gaussian distribution with the same mean and variance.



Inflation in the scaling limit

(Matarrese, Ortolan & Lucchin 1989)

1 ave) | H)
= T3HW) a6 | o1~

where H(¢)=V'V/30% and o=1/V 887G

n(t),

(n(t))=0,
(n(t)y(t"))=2ed(t—1t"), e=~to /8w’

Multiplicative stochastic process

Plp,1)=(8(s—[n()])),



NG is generic in the late-time
“scaling limit”
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FIG. 2. The distribution for the inflaton with quartic poten-
tial is plotted at different times. From left to right:
7/7=1073, 1072, 1.28, 1.492, 1.499, and 1.5. The parameters
are A=10"% H, /o ~14.5.
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FIG. 3. The distribution for the inflaton with exponential po-
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A=0.5, Hy /0 ~14.5.



NG is generic in the late-time
“scaling limit”
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are A=10"% H, /o ~14.5.



Why is this NG dynamics not difrectly affecting
observable perturbation modes?

This NG dynamics has to do with fluctuations w.r.t. the global, i.e.
super-horizon, average; observable fluctuations instead have to be
computed on top of the local mean (i.e. w.r.t to our Hubble
volume). See Salopek, Bond & Bardeen 1989; Kofman et al. 1991

If the underlying noise is “white”, because of the Markov property,
any cross-talk between super-Hubble and sub-Hubble modes

disappears and observable fluctuations become nearly Gaussian.
See: Mollerach, Matarrese, Ortolan & Lucchin 1991

Is this really the final word?

The noise is not really white: colored noise leads to cross-talk and
potentially observable effects (Matarrese, Musso & Riotto 2004)

The super-Hubble dynamics can be related to the so-called NG
landscape (Nurmi et al. 2013; LoVerde et al. 2013).

Potentially interesting consequences (e.g. intermittency) yet to be
explored ...



Non-Gaussianity &
Cosmic Microwave Background (CMB)
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NG CMB simulated maps
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Planck 2015 results XVII:
Planck collaboration: A&A 594, A17 (2016)

Constrain (with high precision) and/or detect primordial non-Gaussianity (NG)
as due to (non-standard) inflation (NG amplitude and shape measure
deviations from standard inflation, perturbation generating processes after
inflation, initial state before inflation, ...)

We test: local, equilateral, orthogonal shapes (+ many more) for the
bispectrum and constrain primordial trispectrum parameter gy, (Ty,
constrained in previous release).

Currently we are working at a final, Planck legacy release, which will improve
the 2015 results in terms of more refined treatment of E-mode polarization
(including lower and higher |.



CMB bispectrum representation
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Optimal f, bispectrum estimator

p: 1 1\ 1_\" 1 _\"s 1 1_\"s
— myni,msy - - - _ - -
Sa = N 2 Bglgzgs (C Cl)fl (C a)éz (C a)€3 3C£1m1£2m2 (C Cl)%
Leaving aside complications coming from breaking of statistical isotropy

(sky-cut, noise, ...), one can see that we are extracting the 3-point
function from the data and fitting theoretical bispectrum templates to it

my

ny
fNL =l2BZ¢1é”2£m3 4, 4y,
N e C, C, C
14 51 ) {3

i

msj
d%

A brute force implementation scales like ffnax. Unfeasible at Planck
(or even WMAP) resolution.

Can achieve massive speed improvement (ffnaxscaling) if the reduced
bispectrum is separable (KSW method: Komatsu, Spergel, Wandelt 2003).

ijk



Optimal f,, bispectrum estimator

],l\' =l2 B
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The theoretical template needs to be written in separable form. This can be
done in different ways and alternative implementations differ basically in terms
of the separation technique adopted and of the projection domain.

o KSW (Komatsu, Spergel & Wandelt 2003) separable template fitting + Skew-C,
extension (Munshi & Heavens 2010)

o Binned bispectrum (Bucher, Van Tent & Carvalho 2009)

o Modal expansion (Fergusson, Liguori & Shellard 2009)




Going beyond the standard approach

* in Verde, Jimenez, Alvarez-Gaume, Heavens & Matarrese 2013 we
provided an exact expression for the multi-variate joint probability
distribution function of non-Gaussian fields primordially arising from local
transformations of a Gaussian field.

 We applied our expression to the non-Gaussianity estimation from CMB
maps and the halo mass function where we obtain analytical expressions.

 We also provided analytic approximations and their range of validity. And
for the CMB we gave a fast way to compute the PDF which is valid up to
more than 7o for f, values not ruled out by current observations, which
consists of expressing the PDF as a combination of bispectrum and
trispectrum of the temperature maps.

* The resulting expression is valid for any kind of non-Gaussianity and is not
limited to the local type.

These results may serve as the basis for a fully Bayesian analysis of the non-
Gaussianity parameter.



Going to higher order?
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It may become important if we want to detect NG in observables where f, is large (e.g. in
high-redshift probes) and/or if both f, (= leading order bispectrum) and g,, (leading-order
trispectrum) are both depending on the same underlying physical coupling constant that we
aim at determining. Note: The one above is a contracted form; more combinations in the

general expression. Verde, Jimenez, Alvarez-Gaume, Heavens & Matarrese 2013



Bispectrum shapes (modal representation)
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The 2015 Planck bispectrum (modal)
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Planck TTT: 2013 vs Planck 2015
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Primordial NG Planck results: Ade et al., Planck 2015 results. XVII

Method: modal bispectrum reconstruction (Fergusson, Liguori, Shellard 2010, 2011)



Planck TTT: 2013 vs Planck 2015
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ISW-lensing signature




fy. from Planck bispectrum (KSW)

INL(KSW)
Shape and method Independent  ISW-lensing subtracted
SMICA (T)
Local ......... 10.2 + 5.7 25 =+ 5.7
Equilateral . . . . .. 13 = 70 -16 =+ 70
Orthogonal . . ... -56 + 33 -34 + 33
SMICA (T+E)
Local ......... 6.5 £+ 5.0 0.8 + 5.0
Equilateral . . . . .. 3 =+ 43 -4 + 43
Orthogonal . . ... -36 + 21 -26 =+ 21
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ISW-lensing bispectrum from Planck (2013)

The coupling between weak lensing and
Integrated Sachs-Wolfe (ISW) effects is the
leading contamination to local NG. We have
detected the ISW lensing bispectrum with a «

significance of 2.6 o

SMICA NILC SEVEM C-R
KSwW ... 0.81 £031 0.85+032 0.68+0.32 0.75+0.32
Binned . ... 091037 1.03+£0.37 0.83+0.39 0.80+040
Modal .... 077037 0.93+£0.37 0.60+0.37 0.68 +0.39

Results for the amplitude of the ISW-lensing bispectrum

from the SMICA, NILC, SEVEM, and C-R foreground-cleaned
maps, for the KSW, binned, and modal (polynomial)
estimators; error bars are 68% CL.

SMICA NILC SEVEM C-R

Local ................ 7.1 7.0 7.1 6.0
Equilateral ............ 0.4 0.5 0.4 1.4
Orthogonal . ........... =22 -21 =21 -19

The bias in the three primordial fNL parameters due to the
ISW-lensing signal for the 4 component-separation methods.
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Constraint on 4-point function from
local NG (Planck 2013)
T,,< 2800 @ 95% CL

n x107°
IS L T T | I
143 x 217 — NO
2 - o Cf i
e—o Cr (kinematic removed)
i e—o Kinematic dipole _
TnL = 1000
G2 —
4
o i \ ]

0.0

—-05

L il . . il
1 2 3 4 10 100

Power spectrum of the power modulation reconstructed from 143 X 217 GHz maps. Shading shows the 68%, 95% and 99% CL intervals from
simulations with no modulation or kinematic signal. The dashed lines are when the mean field simulations include no kinematic eects,
showing a clear detection of a modulation dipole. The blue points show the expected kinematic modulation dipole signal from simulations,
along with 1o error bars (only first four points shown for clarity). The solid line subtracts the dipolar kinematic signal in the mean fields from
simulations including the expected signal, and represents out best estimate of the non-kinematic signal (note this is not just a subtraction of
the power-spectra since the mean field takes out the fixed dipole anisotropy in real space before calculating the remaining modulation
power). The dotted line shows the expected signal for t,, = 1000.



Planck constraints on primordial
trispectrum amplitudes

* Inthe 2015 release we obtained also constraints
on 3 fundamental shapes of the trispectrum
(transform of 4-pt function)

gl = (=9.0 +7.7) x 10*

gy = (=02 +1.7)x 10°

g9 = (=0.1 £3.8)x 10°

* We plan to extend this analysis in 2017 Planck
analysis



Standard inflation is still alive
... and in very good shape!

Standard inflation i.e.

* single scalar field (single clock)

* canonical kinetic term

* slow-roll dynamics

* Bunch-Davies initial vacuum state
* Einstein gravity

predicts tiny (up to O(10%)) primordial NG signal

= no (presently) detectable primordial NG



Beyond “standard” shapes

In 2015 we constrained fy, for a large number of primordial models beyond the
standard local, equilateral, orthogonal shapes, including

Equilateral family (DBI, EFT, ghost)

Flattened shapes (non-Bunch Davies)

Feature models (oscillatory bispectra, scale-dependent)
Direction dependence

Quasi-single-field

Parity-odd models

AN NI NI NI NI

* No evidence for NG found, constraints on parameters from the models
above

* Extended survey of feature models with respect to 2013, 600 -> 2000
modes, including polarization.



Implications for inflation

No evidence for primordial NG of the local, equilateral, orthogonal type.
consistent with the simplest scenario: standard single-field slow roll.

Other possibilities are however not ruled out. Constraints on f, are
converted into constraints on relevant model parameters, for example:

- Curvaton decay fraction ry> 19% (from local fy, T+E)

- Speed of sound in Effective Field Theory ¢ > 0.024 (from equil. + ortho. fy)
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Summary of Planck 2015 results on PNG

. \(livorn tzolrigs on local, equilateral, orthogonal bispectra improved by up to 15%

* First PNG analysis using polarization data

. (bZonstraints on T+E (2015) confirm T results with significantly reduced error
ars

e 2013 hints of NG in oscillatory feature madels remain in T, but decrease
significantly when polanzatlon is included; look-elsewhere effect fully
accounted for; new estimator for high-frequency oscillations covering 10
times more parameter space

* New constraints on:
— isocurvature NG: polarizartion data crucial in this respect

— tensor NG analyzed: parity-odd T limit consistent with WMAP (and with
null result)

— trispectrum due to cubic NG (g, for a variety of shapes)
e 2015 analysis contains largely extended analysis of NG templates

. 9 2017 analysis (“Planck legacy’ papeE) WI|| further |mgrove on standard
es owm to reﬁned treatment of E-mode polarization maps), add some
extra shapes (scale- eg% dent f,,, conformal symmetry, ...). Search for
eatures in both PS and bispectrlifn.



PNG with CMB spectral distortions
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If u-anisotropies are measured (du ~ ®?):

CMB spectral distortions from acoustic
wave dissipation probe a large range
of scales, much more than CMB/LSS

Many additional modes!

| Kathri & Sunyaev 2013, arXiv: 1303.7212

v" Tu correlation: primordial local fy, (Pajer & Zaldarriaga 2013)
or other squeezed shapes, e.g. excited initial states (Ganc & Komatsu 2013)

v" uu correlation: primordial local trispectrum, T, (Bartolo, Liguori, Shiraishi 2016)

v' TTu bispectrum: primordial local trispectrum, g,, (Bartolo, Liguori, Shiraishi 2016)

Credits: M. Liguori




PNG with CMB spectral distortions
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For Gaussian initial conditions, dissipated power
in small patches is isotropically distributed

If local NG is present, large scale modulation of
the small-scale power arise => Tm correlations
(Pajer, Zaldarriaga 2013, Emami et al. 2015)
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Bartolo, Liguori & Shiraishi 2016




Chern-Simons gravitational term

. Bartolo & Orlando 2017
Lagrangian:

I

L

1 y 1 W « | L 7 [ I LVpa 7y K v
L= \/EIE‘\[[%[R — 59‘ ay(f)a‘ Q — V (d))] + f(@)fl 3 C‘yu /\Cp(fh'/\ Weyl tensor

- The Chern-Simons term arises from an effective field
theory expansion of the fundamental theory

Peculiarities of the Chern-Simons gravitational term

: : 0
Parljcy I?ree?kmg (C/,(I.I/)pO’ — 0)

Vanishing in the background —
Invariant under a Weyl transformation of the metric g’ — e—~u’(1‘~t )g

Surface term without the coupling function f(¢)



Effects on PGW

o zng./ ir o b [ LD = Phu(r P ] ) = +1‘,KL— -1

2 A[I%I 2 k f(‘D) 2 kphys .
Ars=—-a |1 =-8\——5F | =a” (1 = As— ) Right-handed PGW
8 2 a ﬂ'[jl Mecs
become GHOST fields
N2
M cs = ‘I‘_Ipl When kphys >MCS
-~ 8f(9)
SOLUTION: put an UV energy ‘ Parity breaking signatures in tensor power
cut-off in the theory spectrum are suppressed
bispectrum: two gravitons-one scalar R

correlator has interesting features

i. Parity breaking signatures are not
suppressed

ii.  squeezed shape e ——




Enhancing SST

TSS bispectrum model Shiraishi, Liguori, Fergusson 2017

» TSS bispectrum (A = elicity, g, = NG amplitude)
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* Realized also in standard single-field, but gtss is small
(~ €). Can be enhanced with non-zero mass of gravitons  Not much imorovement allowed Need B-modes and TTB (TBB.

Shape * WMAP 9-yrs bounds (as a function of Imax)
+ CMB shape takes a complex, non-separable from. Can be 20 ‘ Contral values + 2 emors

expanded e.g. via modal decompositions. Local-type NG 200 -
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CORE: CMB bispectrum forecasts

LiteCORE LiteCORE CORE COrE+ Planck LiteBIRD ideal
80 120 M5 2015 3000
T local 4.5 3.7 3.6 3.4 (5.7) 9.4 2.7
T equilat 65 59 58 56 (70) 92 46
T orthog 31 27 26 25 (33) 58 20
T lens-isw 0.15 0.11 0.10 0.09 (0.28) 0.44 0.07
E local 54 4.5 4.2 3.9 (32) 11 2.4
E equilat 51 46 45 43 (141) 76 31
E orthog 24 21 20 19 (72) 42 13
E lens-isw 0.37 0.29 0.27 0.24 1.1 0.14
T+E local 2.7 2.2 2.1 1.9 (5.0) 5.6 1.4
T+E equilat 25 22 21 20 (43) 40 15
T+E orthog 12 10.0 9.6 9.1 (21) 23 6.7
T+E lens-isw 0.062 0.048 0.045 0.041 0.18 0.027
from: Finelli et al. 2016
16} i LiteCORE 80 | 60" O LiteCORE 80 ||
== LiteCORE 120 == LiteCORE 120
" e e e
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Primordial Non-Gaussianity (PNG) & the
Large-Scale Structure (LSS) of the Universe

(= primordial NG + NG from gravitational instability)



PNG and LSS

PNG in LSS (to make contact with the CMB definition) can be defined through a
potential ® defined starting from the DM density fluctuation 0 through Poisson’s
equation (use comoving gauge for density fluctuation, Bardeen 1980)

3 -1
5= —(EQmHz) VO

Assuming the same model

b = ¢L + fNL(Qbi _<¢§>) + gNL(¢13, —<¢5>¢L) * ...

® on sub-horizon scales reduces to minus the large-scale gravitational potential,
¢, is the linear Gaussian contribution and f, and gy, are dimensionless non-
linearity parameters (or more generally non-linearity functions).

CMB and LSS conventions may differ by a factor 1.3 for f,, (1.3)% for g,



Searching for PNG with rare events

Besides using standard statistical estimators, like (mass) bispectrum, tris,oectrum,
three and four-point function, skewness, etc. ..., one can look at the tails of the
distribution, i.e. at rare events.

Rare events have the advantage that they often maximize deviations from what is
predicted by a Gaussian distribution, but have the obvious disadvantage of being rare!
But remember that, according to Press-Schechter-like schemes, all collapsed DM halos
correspond to (rare) high peaks of the underlying density field (note: density, not
gravitational potential maxima).

Matarrese, Verde & Jimenez (2000) and Verde, Jimenez, Kamionkowski & Matarrese
showed that clusters at high redshift (z>1) can probe NG down to fy, ~ 102. Alternative
approach by LoVerde et al. (2007). Determination of mass function using stochastic
approach ('rst-crossing of a diffusive barrier) Maggiore & Riotto 2009. Ellipsoidal
collapse used by Lam & Sheth 2009. Saddle-point + diffusive barrier (Paranjape et al.
2010). Log-Edgeworth expantion: LoVerde & Smith 2011. Excursion sets studied with
correlated steps: Paranjape, Lam & Sheth 2011; Paranjape & Sheth 2011, ... and many,
many more. Excellent agreement of analytical formulae with N-body simulations found
bXtGross(ijet al. 2009; Desjacques et al. 2009; Pillepich et al. 2010; ... and many others
afterwards.

Halo (galaxy) clustering and halo (galaxy) higher-order correlation functions represent
further and more powerful implementations of this general idea.



NG vs halo mass function

 The halo mass function (a-la-Press-Schechter)
can be a useful tool to probe PNG as it
essentially depends exponentially on the PNG
parameters (Matarrese, Verde & Jimenez
2000), by modulating the critical overdensity
for collapse. Its calculation can be done along
the lines of the original PS approach, using a
steepest-descent approximation to deal with
(small) PNG.



NG vs. halo mass function

Relevant effects:
— non-Markovianity, already there in the Gaussian case, unavoidable in NG case
— non-spherical collapse
— connecting random walks w. DM halos

Dealing with rare events i.e. tails of NG distribution

Validation with N-body simulations crucial (although very rare events/tails
not probed by finite number of realizations = analytical treatments
welcome!)

Understanding/definition of connection between analytical/numerical
quantities and real observables = to what level is this affecting NG (e.g.

fyL) measurements?

A more fundamental question: should we necessarily go on with
(extended) Press-Schechter-like approaches? Are alternative approaches
viable: e.g. Smoluchowski equation for non-Poissonian random process
(earliest attempt by Silk & White 1978)



Different approaches
to the NG halo mass function
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Figure 6: Same as Fig. 5, but including filter effects. These affect only the error bars for MVJ and LMSV, and they
affect both the curve and the error bars for MR and our result. For MR and our result, the Gaussian mass function
used to construct the ratio Ryg, is taken as the non-Gaussian result at fnr. = 0, and hence includes filter effects.

Paranjape et al. 2010



Bias: halos (=»galaxies) do not trace the
underlying (dark) matter distribution

Following the original proposal by Kaiser (1984), introduced for
galaxy clusters and later for galaxies, we are used to parametrize
our ignorance about the way in which DM halos clusters in space
w.r.t. the underlying DM, via some “bias” parameters, e.g. (Eulerian
bias)

&0 (X) =b, 6 (x) + b, 82 er (X) + ...

halo matter

or via some non-linear and non-local expression (e.g. as a function
of the Lagrangian position of the proto-halo center of mass.

The resulting non-linear and non-local affects the statistical
distribution of the halos introducing further NG effects.

The various bias parameters can be generally dealt with either as
purely phenomenological ones (i..e. to be fitted to observations) or
predicted by a theory (e.g. Press-Schechter + Lagrangian PT).



Dark matter halo clustering as
a powerful constraint on PNG

6halo =b 6matter
Dalal, Dore’ , Huterer & Shirokov 2007
Dalal et al. (2007) have shown that halo fo
bias is sensitive to primordial non- 3 12 100 —
ey R +500 —

Gaussianity through a scale-dependent
correction term (in Fourier space)

Ab(K)/b o 2 fy 8,/ k2

This opens interesting prospects for

constraining or measuring NG in LSS but
demands for an accurate evaluation of the

effects of (general) NG on halo biasing.
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Clustering of peaks (DM halos)
of NG density field

Start from results obtained in the 80’ s by

Grinstein & Wise 1986, ApJ, 310, 19;
Matarrese, Lucchin & Bonometto 1986,
Apd, 310, L21 giving the general

expression for the peak 2-point function as
a function of N-point connected correlation

functions of the background linear (i.e.
Lagrangian) mass-density field

Enarl(lxs —xo|) = -1+

>~ N-1 N —N
SN N

v o N
. R (N X1, X1y XOueeuunenny ‘
exXp Z Z ]l( N — 1)’S jtimes (N —j)times

N=2 j=1

(requires use of path-integral, cluster
expansion, multinomial theorem and

asymptotic expansion). The analysis of NG

models was motivated by a paper by

Vittorio, Juszkiewicz and Davis (1986) on

bulk flows.

THE ASTROPHYSICAL JOURNAL, 310:1.21-126, 1986 November 1
©1986. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A PATH-INTEGRAL APPROACH TO LARGE-SCALE MATTER DISTRIBUTION
ORIGINATED BY NON-GAUSSIAN FLUCTUATIONS

SABINO MATARRESE
International School for Advanced Studies, Trieste, Italy
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AND
S1LVIO A. BONOMETTO
International School for Advanced Studies, Trieste, Italy; Dipartimento di Fisica G. Galilei, Padova, Italy;
and INFN, Sezione di Padova
Received 1986 July 7; accepted 1986 August 1

ABSTRACT

The possibility that, in the framework of a biased theory of galaxy clustering, the underlying matter
distribution be non-Gaussian itself, because of the very mechanisms generating its present status, is explored.
We show that a number of contradictory results, seemingly present in large-scale data, in principle can recover
full coherence, once the requirement that the underlying matter distribution be Gaussian is dropped. For
example, in the present framework the requirement that the two-point correlation functions vanish at the same
scale (for different kinds of objects) is overcome. A general formula, showing the effects of a non-Gaussian

background on the expression of three-point correlations in terms of two-point correlations, is given.
Subject heading: galaxies: clustering
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NON-GAUSSIAN FLUCTUATIONS AND THE CORRELATIONS OF GALAXIES OR RICH
CLUSTERS OF GALAXIES'

BENJAMIN GRINSTEIN? AND MARK B. Wise?
California Institute of Technology
Received 1986 March 6 ; accepted 1986 April 18

ABSTRACT

Natural primordial mass density fluctuations are those for which the probability distribution, for mass
density fluctuations averaged over the horizon volume, is independent of time. This criterion determines that
the two-point correlation of mass density fluctuations has a Zeldovich power spectrum (i.e., a power spectrum
proportional to k at small wavenumbers) but allows for many types of reduced (connected) higher correla-
tions. Assuming galaxies or rich clusters of galaxies arise wherever suitably averaged natural mass density
fluctuations are unusually large, we show that the two-point correlation of galaxies or rich clusters of galaxies
can have significantly more power at small wavenumbers (e.g., a power spectrum proportional to 1/k at small
wavenumbers) than the Zeldovich spectrum. This behavior is caused by the non-Gaussian part of the prob-

ability distribution for the primordial mass density fluctuations.
Subject headings: cosmology — galaxies: clustering



Halo bias in NG models

Matarrese & Verde 2008 applied this relation to the case of NG of the
Erawta‘nonal potential, obtaining the power-spectrum of dark matter

alos modeled as high “peaks” (up-crossing regions) of height v=0/0; of
the underlying mass density field (Kaiser s model). Here 6c(z% is the critical
overdensity for collapse (at redshift a) and o is the rms mass fluctuation
on scale R (M ~ R3).

Account for motion of peaks (going from Lagrangian to Eulerian space),
which implies (Catelan et al. 1998)

1+ 6h(XEu|erian) = (1+6h(x|_agrangian))(1+6R(xEu|erian))

and (to linear order) b=1+b, (Mo & White 1996) to get the scale-dependent
halo bias in the presence of NG initial conditions. Corrections may arise
from second-order bias and GR terms.

Alternative aBproaches (e.g. based on 1-loop calculations) by Taruya et al.
2008; Matsubara 2009; Jeong & Komatsu 2009. Giannantonio & Porciani
2010 improve fit to N-body simulations by assuming dependence on
gravitational potential) = extension to bispectrum by Baldauf et al. 2011.
Leistedt et al. (2014) include g, and f, in analysis os QSO clustering.



Halo bias in NG models

* Extension to general (scale and configuration dependent) NG is
Straightforward (Matarrese & Verde 2008)

* In full generality write the f bispectrum as B(k,,k,,k;). The relative
NG correction to the halo bias is

Ab,  Ad(z) 1 / ,
= | ke B2 M (ke
bn D(z) 87203, 1Ry M (k1) x

! By (k1. /. k) 1
dpe M - ' ' X ———————
/_1 MR (\/a R;(k) MR(k)

v = 1'11% —|_ 1112 —|_ 21’2'11’2'}'1’-

* It also applies to non-local (e.g. “equilateral”) PNG (DBI, ghost
inflation, etc.. ) and universal PNG term!! (= see also Schmidt &
Kamionkowski 2010).



Halo bias in NG models

Matarrese & Verde 2008
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o=k + k2 + 2k kp
factor connecting the smoothed linear overdensity with the primordial potential:

power-spectrum of a Gaussian
gravitational potential

window function defining the radius R of a
proto-halo of mass M(R):

transfer function:
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PNG with LSS: 2-point function
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* Single tracer, V = 25 Gpc3 h3, statistical power ~ Planck

* Multi-tracer techniques have the power to reach og, ~ 1 (local)

 Significant degeneracies between fy,, 8\, T

Credits: M. Liguori




CIB power spectrum

e CIB power spectrum is integrated over a large volume. Ideal for scale
dependent bias (Tucci et al. 2016)

e Seriously contaminated by dust, but future full-sky satellite B-mode
experiments with many (high-)frequency channels allow very accurate
component separation.

5
10:. T T

10* |

C, [3y* sr7']

1000 |-}

353 GHz

Dust (x107%)

ell

COrE+ o(fNL)
v [GHz| 220 255 295 340 390 450 520 600
fwhm [arcmin] 3.82 329 285 247 215 1.87 1.62 140
wl [Jy2sr1] 0.654 1.43 520 831 1350 2298 39.88 69.26
Y. [Jy?sr| - 804 - 473 - 212. 382 - 1.6
COrE+ with Planck
Yep [Jy?sr!] - 197 - 108 - 456 90.2 163.6 0.6
CORE o(fr)
v [GHz] 220 255 295 340 390 450 520 600
fwhm [arcmin] 523 457 3.99 349 3.06 265 229 1.98
wl [Jy2sr Y 029 0.57 077 108 216 355 6.2 110
Yep [Jy2sr — 1.8 - 88 - 429 801 - 0.7
CORE with Planck
¥2rp [Jy? st - 103 - 52 - 233 439 689 0.34

(Tucci et al. 2016)

(Finelli et al. 2016)

Credits: M. Liguori




PNG with LSS: the galaxy bispectrum

Let’s follow Tellarini et al. (2016)

The linearly evolving density field dy;, 1s related to the primordial gravitational potential through
din(k, 2) = a(k, z)P;, (k) ,
where the function a(k, z) is defined as

2k2c2T (k) D(2)
30, HZ

alk,z) =

T'(k) is the transfer function, which goes to one as k£ — 0. Note that the linearly evolving density
(eq. (2.3)) includes non-Gaussian terms in the presence of PNG. Thus it is useful to define the Gaussian
part of the linearly evolving density field as

da(k, z) = a(k, z)ec(k).

Second-order (Eulerian) PT yields:

dk dk
5@ (k, 2) =/( - 2 6P (k — k; — ko) fz(kl,k2)+fNLa

2r)3 J (2m)3 ] da(ki,z)éa(ke, 2)

(k1)a(ko)

5 1k;-ko [k k 2 (ki - ko)?
with the 2-nd order gravity-kernel Folky, ko) = - + 5—; 3 2 (—kl + k_2> ?—( }c2k22)
1k2 2 1 1k2



PNG with LSS: the galaxy bispectrum

The quantity 8(x) is expressed in Eulerian frame, with the initial spatial coordinate
q in the Lagrangian frame being related to the evolved Eulerian coordinate x through the formula

x(q,7) = q+¥(q,7),

where W is the displacement field. Such relation is useful for obtaining an alternative way to write
the second-order solution of eq. (2.6), which will be needed in section 2.4. It is given by [61, 62]:

62 (x,7) = g(élin(x, z))2 + %.92()(, z) —W(x,2)-Vi(x,z),

where s? = sijsij and s;; 1s the trace-free tidal tensor, defined as

1
Sij = (vzv] — §55v2) V—2(5 )

and 6{3(- 1s the Kronecker delta. From now on, in order to simplify our expressions, we will not explicitly
write the redshift dependence in the density and velocity fields.



PNG with LSS: the galaxy bispectrum

One can introduce a long-short splitting of the gravitational potential and DM density field,
such that, for local NG one easily finds (for local NG)

Oin,1(K) = 01 + fnne (9ir — (9ea))

with
vc(q) = vci(q) + vac,s(q)

In Lagrangian space one can then introduce the expansion

%o‘slin + bIGl‘PG + b%o((slin)Q + b%lélinSOG + b(I)JzSQQG T

L _ ng(q) —(ng)
6g(q) = oy b

where the subscript | has been dropped and the 5 b; represent our (generally
unknown) bias parameters



PNG with LSS: the galaxy bispectrum

One can then move to the final Eulerian position of the galaxy by using the conservation
law (Catelan et al. 1998)

1+ 6, (x,2) = [1+6(x,2)] [L+ 65(q, 2)]

to find

2
6y (k) =b1od +bg1G + b3od * &+ b118 * oG + boapa * pa — Zbios” — born”

where s? and n? are suitable expansion terms and the Eulerian bias parameters read:

E L
bio =1+brp,

bgl - b(Iﬁ )
8
bhy = ﬁb%o + b5y,

E L L
b11 = bgy + b17

E _ L
bog = Doy -



PNG with LSS: the galaxy bispectrum

We use the following standard definitions for the galaxy power spectrum P,, and bispectrum B,,,:

(05 (k1)0y (ko)) = (2m)367 (k1 + ko) Py (K1) ,
(65 (k1)dy (k2)dy (ka)) = (2m)°6"” (k1 + ko + k3) Bygg(k1, k2, Ks) .

At tree-level, they can be conveniently written as

ng(kl) = Ei?(kl)P(kl) )
ngg (kl, k2, k3) = 2E1 (kl)El (kQ)EQ(kl, kg)P(kl)P(kQ) + 2 CycC.,

where P(k) is the matter power spectrum for the Gaussian source field ¢, while the kernels E; are

defined as

bo1
Ei(k1) =bio + —— (k) 2 scale-dependent bias term  boi/a(ki) o< fu/kf )

Ea(ki, ka) = bio [Fz(kl, Ka) + fxi C;(('ZI)Z(IZ'))] + [b20 — 25,0, kz)]

b1 1 1 boo B N2(k1,k2) N2(k2,k1)
i [a<k1)+a(kz>]+a(k1)a(kz> ”‘“[ alks) | a(k) ]




PNG with LSS: Bispectrum

Power Spectrum Bispectrum

Sample O fxr O fai O fni 0 fa
bias float bias fixed bias float bias fixed
BOSS 21.30 13.28 1.04%3;2% o.57§2f§§
eBOSS 14.21 11.12 1.18@:333 0.70{1);;*2;
Euclid 6.00 4.71 0.4528;35g 0.3228;},;;
DESI 5.43 4.37 0.31(y 40 0213037
BOSS + Euclid  5.64 444 03950 0.28 ;)

Tellarini et al. 2016

Fisher matrix forecast. Tree-level bispectrum. Local NG initial conditions.
In redshift space. Covariance between different triangles neglected (optimistic).

The bispectrum could do better than the power-spectrum.

fy. ~ 1 achievable with forthcoming surveys?

Many issues, e.g. full covariance, accurate bias model, GR effects, survey
geometry, estimator implementation ... Still, great potential: 3D vs 2D (CMB).



GR effects on the PS and bispectrum

* In full generality GR effects (including also
redshift-space distortions, lensing, etc ...) have to
be taken into account both in the galaxy power-
spectrum and bispectrum, as well as in the DM
evolution.

* Recently, Bertacca, Raccanelli, Bartolo, Liguori,
Matarrese & Verde (2017) obtained for the first
time the complete expression for the galaxy
bispectrum (which is obviously VERY complex) to
be soon compared with observations.



Equilateral PNG: theoretical uncertainties

= Pliin+Biin

= Piin+Biin

= Pliin+Biin
P1i+B1. P1i+B1.L P1i+B1L
Blin nm Blin nm
S T Bipnm | 0 STel NG eeeeeees B4, nm
100} ... — Biin ideal — Biin ideal 1 .
50 >
NN NN
AN
AN
AN
N \
N N
N\ N
] T P T T T paeviin. SR
no=1072, a=0 no=1073, a=0 N 0 e -3
5 > I
0.5 1 2 5 0.5 1 2 5 0.5 1 2 5
Zmax Zmax Zmax

Baldauf et al. 2016

The LSS bispectrum allows in principle tight constraints also on non-local

shapes (e.g. equilateral)
Naive mode counting suggest o, ~ 1 for equilateral might be achievable by

pushing k

max

high enough

However, in the non-linear regime we have to model the gravitational
bispectrum with high accuracy. Very challenging. Equilateral is more correlated

than local to non-linear gravitational bispectrum, so bigger problem.

Credits: M. Liguori




Controversial issues on non-Gaussianity



Is the single-field consistency relation
observable?

The cispectrum for single-field inflation (Gangui et al. 1995; Acquaviva et al. 2001;
Maldacena 2001) can be represented as:

(A7) 5
(K1, ko, k3) x ———— — ns) Sloc. (k1, k2, k —& Sequil.(k1, k2, k
BS(LI,A)_,L;g) X (klkzkg)z l(l n ) ] .(Ll Lz‘L3)+3 quil (LI,L-AB)]
, H 5
ns—1=—n—2¢ withe = —q2 = 7=

The observability of the so-called “Maldacena consistency relation”, related to the
above bispectrum for single field inflation, in CMB and LSS data has led to a long-
standing controversy. Recently, various groups have argued that the (1-n.) term is
totally unobservable (for single-clock inflation), as, in the strictly squeezed limit (one of
the wave-numbers going to 0), this term can be gauged away by a suitable coordinate
tranformation. Cabass, Schmidt and Pajer (2017) argued that the term survives up to a
“renormalization” which further reduces it by a factor of ~ 0.1 if one applies Conformal
Fermi Coordinates to get rid of such a “gauge mode”.

* Is this (CFC approach) the only way to deal with this term?
* Can we aim at an exact description, which is not affected by “spurious PNG”?



fy -like effects from non-linear GR effects?

* Second order DM dynamics in GR leads to (post-
Newtonian) 6 T -like terms which mimic local primordial
non-Gaussianity (Bartolo, Matarrese & Riotto 2005). Verde
& Matarrese 2009 include this GR term in halo bias. The
same GR term can be trivially recovered by a short-long
mode splitting, leading to a resummed non-linear
contribution 6 e?¢(Bruni, Hidalgo & Wands 2014). This
comes from the modulation of sub-horizon scales due to
modes entering the horizon at any given time.

* In the comoving gauge (suitable for calculation of halo bias)
this would correspond to an fy, =-5/3 in the pure squeezed
limit.

* |ssuch a GR NG signature detectable via some cosmological
observables?



fy -like terms generated by non-linear GR evolution

PNG-like GR (actually PN) terms

Poisson gauge

5
P
ki.ky; )= |- —1
(ki ka; 7) [3(aNL ) E—

1 g 2 1By(1) N 37’(2 B4(l’)]

4+ —— _—— - —

2gn 3 2 g8n 2 g8

L (k) (k ko) [3 ) Bs(1) 2+§Bg(r)] C (k-k)(k-ko) kT +K3
k* 2\ 28 2 88in k? kik3
3 Bs(1) kI+k33_ .  B(1)
~H? — (ki -k “H .
X3 f(r) o (k; - ko) 22 2 f(r) o
Comoving and synchronous gaug
5 5k -k
C _ 1 - K2
fNL(klakz)—g[(aNL—l)—l'*'E 2 ]

from: Bartolo, Matarrese, Pantano & Riotto 2010



Long and short modes

In each patch, the comoving spatial element is
ds?(3)= €% §; dx' dx/

There is a global background which must be defined
with respect to some scale A, at least as large as all the
other scales of interest, i.e., at least as large as our
presently observable Universe. It is important to
distinguish this from the scale of the separate universe
patches, A, . This is large enough for each patch to be
treated as locally homogeneous and isotropic, but
patches must be stitched together to describe the long-
wavelength perturbations on a scale A, > A, . Thus,

N> AL DA, > A

The local observer in a separate universe patch cannot
observe the effect of ¢, which is locally homogeneous
on the patch scale A, . However, local coordinates can
be defined only locally and the long mode curvature
perturbation is observable through a mapping from
local to global coordinates.

=V

‘l"ull'/il"‘

-'lvm.v-
) I=

0/

from: Bartolo et al. 2016



Observability of GR non-linearities

In the halo bias case the effect is unobservable. Indeed, as pointed out by
Dai, Pajer & Schmidt 2015 and de Putter, Doré & Green 2015, a local physical
redefinition of the mass, gauges way such a NG effect (in the pure squeezed
limit), similarly to Maldacena’s fy, = - 5/12(n.-1) single-field NG contribution.

This is true provided the halo bias definition is strictly local. Are there
significant exceptions? Are all non-linear GR effects fully accounted for by

“projection effects”?

However, this dynamically generated GR non-linearity is physical and cannot
be gauged away by any local mass-rescaling, provided it involves scales
larger than the patch required to define halo bias, but smaller than the
separation between halos (and the distance of the halo to the observer).

Hence one would expect it to be in principle detectable in the matter
bispectrum. Similarly, the observed galaxy bispectrum obtained via a full GR
calculation must include all second-order GR non-linearities on such scales
(only as projection effects?)



Beyond Separate Universes ...

The Separate Universe approach proved very useful for many applications,
but:

The effect of the external world cannot be always described by linear
theory = the usual identification large scales = linear theory is only
gualitative and can become misleading in some cases: e.g. perturbations
of order N >> 1 give the leading contribution to N-th order moments, such
as <6N>_. And, we know from non-linear Newtonian dynamics that <&N>_
~ <§2>N-1 on all scales (for scale-free spectra).

Well inside a given Separate Universe assuming that the only non-linearity
is described by Newtonian physics can be too restrictive. The relevance of
non-linear GR effects in sub-patch dynamics depends upon the specific
problem.

It would be interesting to see the effects of using e.g. the Silent Universe
description to account for deviations of the patch from purely spherical
behavior (remember that over-dense patches evolve towards oblate
ellipsoids; even under-dense ones can collapse to oblate ellipsoids, owing
to tidal effects of surrounding matter).

Interesting recent approach using Local Tide Approximation (Ilp & Schmidt
2017) goes in this direction.



Concluding remarks



Short term goals

Improve f, limits from CMB (Planck) with polarization & full data
Look for more non-Gaussian shapes, scale-dependenf f, etc. ...
Make use of bispectrum in 3D data

Improve constraints on gy,

Long term goals

reconstruct inflationary action

if (quadratic) NG turns out to be small for all shapes go on and search for
fy.~ 1 non-linear GR effects and second-order radiation transfer function
contributions. For LSS resort to GR-based N-body simulations!



v Inflation provides a causal mechanism for the generation of
cosmological perturbations

v" CMB and LSS data fully support the detailed predictions of inflation

v" The direct detection of:

= primordial gravitational waves

= primordial non-Gaussianity

with the specific features predicted by inflation would provide
strong independent support to the model



