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The	CMB	from	A	to	Z	
promises	and	challenges	of	the	CMB	as	a	cosmological	probe	



The	Gaussian	hypothesis	in	Cosmology	

•  “That	 a	 Gaussian	 random	 field	 may	 provide	 a	 good	 descripQon	 of	 the	
properQes	 of	 density	 fluctuaQons	 could	 arise	 in	 a	 number	 of	 ways.	 The	
central	limit	theorem	implies	that	a	Gaussian	distribuQon	arises	whenever	
one	 has	 a	 variable	 (or,	 more	 generally,	 a	 vector)	 which	 is	 a	 linear	
superposiQon	 of	 a	 large	 number	 of	 independent	 random	 variables	 (or	
vectors)	which	 are	 all	 drawn	 from	 the	 same	distribuQon.	 In	parQcular,	 if	
the	field	F(r)	is	wriVen	as	a	spaQal	Fourier	decomposiQon,	and	its	Fourier	
coefficients	Fk	are	staQsQcally	independent,	each	having	the	same	form	of	
distribuQon,	then	the	joint	probability	of	the	density	evaluated	at	a	finite	
number	 of	 points	 will	 be	 Gaussian	 under	 very	 weak	 condiQons.	 Special	
cases	 of	 this	 include	 the	 random	 phase	 approximaQon,	 in	 which	 it	 is	
assumed	that	the	phases	of	Fk	are	uniformly	distributed	from	0	to	2π.	The	
specific	 form	of	 the	distribuQon	of	 the	moduli	|Fk|	does	not	maVer.	We	
note	that	small-amplitude	curvature	perturbaQons	generated	by	quantum	
fluctuaQons	in	an	inflaQonary	phase	of	the	very	early	universe	would	yield	
a	 Gaussian	 random	 density	 field.	 …”	 (Bardeen,	 Bond,	 Kaiser	 &	 Szalay	
1986).	



Why	(non-)	Gaussian?	

Gaussian	
free	(i.e.	non-interacQng)	
field		

large-scale	
phase	coherence	

non-linear	gravitaQonal	
dynamics	



The	phase	informaQon		

credits:	Peter	Coles	



Going	beyond	the	Gaussian	
hypothesis	in	Cosmology	

Historical	outline:	
	
1977	Groth	&	Peebles	compute	the	3-pt	funcQon	of	galaxies:	direct	evidence	that	the	LSS	is	non-Gaussian.	Is	this	
only	the	effect	of	non-linear	gravitaQonal	clustering?		
	
1980	Strongly	non-Gaussian	iniQal	condiQons	studied	in	the	eighQes.	PerturbaQon	theory	calculaQons	beyond	the	
linear	level	compute	bispectrum,	skewness,	etc.	using	the	Newtonian	approximaQon	(both	in	Eulerian	and	
Lagrangian	coordinates	(Bouchet	et	al.	1995;	Catelan	et	al.	1995;	…),	starQng	from	Gaussian	and	in	a	few	cases	
also	NG	iniQal	condiQons.	
	
2001	DeterminaQon	of	bispectrum	for	PSCz	(Feldman	et	al.	2001)	and	2dF	galaxies	(Verde	et	al.	2002).	
	
1990	New	era	with	fNL	non-Gaussian	(NG)	models	from	inflaQon	(Salopek	&	Bond	1991;	Gangui	et	al.	1994:	fNL~	
10-2;	Verde	et	al.	1999;	Komatsu	&	Spergel	2001;	Acquaviva	et	al.	2002;	Maldacena	2002;	+	many	models	with	
higher	fNL	).			
	
2000	Primordial	NG	(PNG)	gradually	emerged	as	a	new	“smoking	gun”	of	(non-standard)	inflaQon	models,	which	
complements	the	search	for	primordial	gravitaQonal	waves	(PGW).	PNG	probes	interacQons	among	fields	at	the	
highest	energy	scales.	
	
2013	Is	this	route	sQll	viable,	given	the	very	stringent	Planck	constraints?	



The	view	on	Non-Gaussianity		
…	circa	1990	

Moscardini, Lucchin, Matarrese & Messina 1991 



The	present	view	on		
non-Gaussianity		

ü  AlternaQve	structure	formaQon	models	of	the	late	eighQes	considered	
strongly	non-Gaussian	primordial	fluctuaQons.		

ü  The	increased	accuracy	in	CMB	and	LSS	observaQons	has,	however,		
excluded	this	extreme	possibility.	

ü  The	present-day	challenge	is	either	detect	or	constrain	mild	or	weak	
deviaQons	from	primordial	Gaussian	iniQal	condiQons.	

ü  DeviaQons	of	this	type	are	not	only	possible	but	are	generically	
predicted	in	the	standard	perturbaQon	generaQng	mechanism	
provided	by	inflaQon.		



EvaluaQng	NG:	from	inflaQon	to	the	
present	universe	

Evaluate	non-Gaussianity	during	inflaQon	by	a	self-consistent	second-order	
calculaQon	(or	equivalent	techniques,	…).	

Evolve	scalar	(vector)	and	tensor	perturbaQons	to	second	order	aqer	
inflaQon	outside	the	horizon,	matching	conserved	second-order	gauge-
invariant	variable,	such	as	the	comoving	curvature	perturbaQon	ζ(2)	(or	
non-linear	generalizaQons	of	it),	to	its	value	at	the	end	of	inflaQon	
(accurately	accounQng	for	reheaQng).	

Evolve	them	consistently	aqer	they	re-enter	the	Hubble	radius	à	i.e.	
compute	second-order	radiaQon	transfer	funcQon	for	CMB	and	second-
order	maVer	transfer	funcQon	for	LSS	(few	codes	already	available!) 



Non-Gaussianity	in	the	IniQal	CondiQons	



Testable	predicQons	of	inflaQon	

q  Cosmological	aspects	
	

q  CriQcal	density	Universe	
q  Almost	scale-invariant	and	nearly	Gaussian,	adiabaQc	
density	fluctuaQons	

q  Almost	scale-invariant	stochasQc	background	of	relic	
gravitaQonal	waves	

q  ParQcle	physics	aspects	

q  Nature	of	the	inflaton	
q  InflaQon	energy	scale	



The	rise	and	fall	...	of	the	comoving	
Hubble	horizon	

										(late-Qme	dark	energy	dominance	neglected	for	simplicity)	

inflaQon	

radiaQon	and	maVer	eras	pre-inflaQon	era	(if	any)	

last	scaVering	



InflaQon	and	the	Inflaton		
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Two	simple	but	very	important	examples	
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typical	of	``caothic	inflaQon	scenario’’	
(Linde	`83)	

	``power	law	inflaQon’’	(Lucchin,	
Matarrese‘85)	
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ObservaQonal	predicQons	of	inflaQon			
Ø 	Primordial	density	(scalar)	perturbaSons		

Ø 	Primordial	(tensor)	gravitaSonal	waves	

amplitude	

spectral	index:	
(or	``+lt’’)	
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Ø 	Tensor-to-scalar	raSo	

Ø 	Consistency	relaSon	(valid	for	all	single	field	slow-roll	inflaQon,	easily	generalizable	to		
				non-canonical	kineQc	term)		
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Planck	2015	constraints	on		
inflaQon	models	

Marginalized	joint	68%	and	95%	CL	regions	for	ns	and	r0.002	from	Planck	in	combinaQon	
with	other	datasets,	vs.	theoreQcal	predicQon	of	selected	inflaQon	models.	



PNG	probes	physics		
of	the	Early	Universe	

•  PNG	amplitude	and	shape	measures	deviaQons	 from	standard	
inflaQon,	 perturbaQon	 generaQng	 processes	 aqer	 inflaQon,	
iniQal	state	before	inflaQon,	...		

•  InflaQon	 models	 which	 would	 yield	 the	 same	 predicQons	 for	
scalar	 spectral	 index	 and	 tensor-to-scalar	 raQo	 might	 be	
disQnguishable	in	terms	of	NG	features.	

•  We	 should	 aim	 at	 “reconstrucQng”	 the	 inflaQonary	 acQon,	
starQng	from	measurements	of	a	few	observables	(like	nS,	r,	nT,	
fNL,	 gNL,	 etc.	 …),	 just	 like	 in	 the	 nineQes	we	were	 aiming	 at	 a	
reconstrucQon	of	 the	 inflaQonary	potenQal	 (see	e.g.	 revival	of	
the	laVer	industry	aqer	the	Bicep2	claim	of	PGW	detecQon,	...).	



Late	nineQes:	simple-minded		
NG	model		

							Many	primordial	(inflaQonary)	models	of	non-Gaussianity	can	be	represented	in	
configuraQon	space	by	the	simple	formula	(Salopek	&	Bond	1990;	Gangui	et	al.	1994;	
Verde	et	al.	1999;	Komatsu	&	Spergel	2001)	

                   Φ	=	φL	+	fNL	*	(	φL2	-	<φL2>)	+	gNL	*	(φL3	-	<φL2>	φL	)	+	…		

   where	Φ is	the	large-scale	gravitaQonal	potenQal	(more	precisely	Φ	=	3/5	ζ	on	
superhorizon	scales,	where	ζ	is	the	gauge-invariant	comoving	curvature	perturbaQon),	
φL	its	linear	Gaussian	contribuQon	and	fNL	the	dimensionless	non-linearity	parameter	
(or	more	generally	non-linearity	func?on).	The	percent	of	non-Gaussianity	in	CMB	data	
implied	by	this	model	is	

   																																		
   																		NG	%	~	10-5		|fNL|	

   																												~	10-10	|gNL|	

<	10-5	from	

CMB & LSS 

<	10-5	from		CMB & LSS 

“non-Gaussian	=	non-dog”		
(Ya.B.	Zel’dovich)		



Bispectrum	&		
primordial	non-Gaussianity	

•  Primordial	NG	probed	fundamental	physics	during	inflaQon,	being	sensiQve	to	
the	interac+ons	of	fields	present	during	inflaQon	(different	inflaQonary	models	
predict	different	amplitudes	and	shapes	of	the	bispectrum)	

•  Standard	models	of	slow-roll	inflaQon	predict	a	+ny	devia+on	from	
Gaussianity	(Salopek	&	Bond	‘90;	Gangui,	Lucchin,	Matarrese	&	Mollerach	
1995;	Acquaviva,	Bartolo,	Matarrese	&	RioVo	2003;	Maldacena	2003)	

2013	and	2015	Planck	results	consistent	with	such	a	predic+on.	
	
•  Searching	for	deviaQons	from	this	standard	paradigm	is	interesQng	per-se	for	

theoreQcally	well-moQvated	models	of	inflaQon	and,	as	shown	in	Planck	2013	
results,	can	severely	limit	various	classes	of	inflaQonary	models	beyond	the	
simplest	paradigm.	PNG	probes	interacQons	among	parQcles	at	inflaQon	
energy	scales.	See	recent	literature	on	probing	string-theory	via	oscillatory	
PNG	(Arkani-Hamed	&	Maldacena	2015	“Cosmological	collider	physics”;	
Silverstein	2017	“The	dangerous	irrelevance	of	string	theory”).	



NG	requires	higher-order	staQsQcs		
(than	the	power-spectrum)	

n  The	simplest	staQsQcs	(but	not	fully	general)	measuring	NG	is	the	3-point	funcQon	or	its	
Fourier	transform,	the	“bispectrum”:	

																																		<φ(k1)φ(k2)φ(k3)>	=	(2π)3δ(3)(k1+k2+k3)	Bφ(k1,k2,k3)	

					which	carries	shape	informaQon.	
n  In	our	simple	linear	+	quadraQc	model	above,	the	bispectrum	of	the	gravitaQonal	

potenQal	reads:	

																																			Bφ(k1,k2,k3)	=	2fNL	[Pφ(k1)Pφ(k2)	+	cyclic	terms]	
	
					(by	direct	applicaQon	of	Wick’s	theorem),	where			
	
																																																<φ(k1)φ(k2)>	=	(2π)3δ(3)(k1+k2)	Pφ(k1)	
	
	
Here	the	field	ϕ	is	related	to	the	comoving	curvature	perturbaQon	ζ	on	super-Hubble	
scales	by	ϕ	=	(3/5)	ζ,	and	on	super-Hubbler	scales	it	reduces	to	Bardeen’s	gauge-	
invariant	gravitaQonal	potenQal.	



Bispectrum	shape	funcQon	

We	can	define	the	shape-funcQon	(fNL=1)		
where	N	is	a	suitable	normalizaQon.	
In	the	scale-invariant	case,	the	PS	of	the	primordial	gravitaQonal	potenQal	takes	the		
simple	form																												,	hence:	

For	constant	fNL	(“local”	PNG)	this	implies	

NOTE:	The	local	shape	is	peaked	on	squeezed	configuraSons,	where	one		
wave-number	is	much	smaller	than	the	other	two.	



Bispectrum	shape	funcQon	
•  Another	standard	template	shape	is	the	“equilateral”	one	

equilateral	 local	

from	Liguori	et	al.	2010	



Where	does	NG	come	from		
(in	standard	inflaQon)?	

§  Falk	et	al.	(1993)	found	fNL	∼ ξ ∼ ε2 (from	non-linearity	in	the	inflaton	
potenQal	in	a	fixed	de	SiVer	space)	in	the	standard	single-field	slow-roll	
scenario	

§  Gangui	et	al.	(1994),	using	stochasQc	inflaQon	found	fNL	∼ ε, η (from	
second-order	gravitaQonal	correcQons	during	inflaQon).	Acquaviva	et	al.	
(2003)	and	Maldacena	(2003)	confirmed	this	esQmate	(up	to	numerical	
factors	and	momentum-dependent	terms)	with	a	full	second-order	
approach.	Weinberg	extended	the	calculaQon	of	the	bispectrum	to	1-
loop.	One	of	these	terms	gives	rise	to	the	so-called	“consistency	
relaQon”,	according	to	which	found	fNL	=	-	5/12(ns-1)		It	has	been	shown	that	this	term	can	be	gauged	away	by	a	non-linear	rescaling	of	
coordinates,	up	to	sub-leading	terms.	Hence	the	only	residual	term	is	
proporQonal	to	ε i.e.	to	the	amplitude	of	tensor	modes.	See	however	
comments	on	this	point,	later	on.



Bispectrum	of	a	self-interacQng	scalar	
field	in	de	SiVer	space	

Consider a scalar field χ with cubic self-interactions, i.e. with a term λχ3/3! In 
the Lagrangian. Call δχ the fluctuations around its v.e.v.. Its two and  
three-point functions in Fourier space (Falk et al. 1993; Gangui et al.  
1994; Bernardeau et al. 2004), after the rescaling                 r ead: 

where the Green’s function reads 
 
 
The bispectrum is (ζ being a function of order 1)  



Bispectrum	of	standard	inflaQon	

In	the	case	of	standard	slow-roll	single-field	inflaQon	one	finds	(Acquaviva	et	
al.	2003;	Maldacena	2003)	the	simple	shape		

where	the	factor	in	front	of	the	local	shape	is	proporQonal	to	the	Qlt	nS-1.	But	…		
is	it	observable?	



Single-field	InflaQon	bispectra	

Maldacena	2003	



Separability	
The	above	shapes	share	the	important	property	of	being	separable,	i.e.	
	

	
	
This	important	property	greatly	simplifies	the	calculaQon	of	the	bispectrum.	



 
there are more shapes of non-Gaussianity from 

inflation than ... stars in the sky 
	



StarQng	point:	the	curvature	
(gravitaQonal	potenQal)	bispectrum	



Models	behind	bispectrum	shapes		
(...	a	few	of	them)	

•  local	shape:	MulQ-field	models,	Curvaton,	EkpyroQc/cyclic,	etc.	...	

•  equilateral	shape:	Non-canonical	kineQc	term,	DBI,	K-inflaQon,	
Higher-derivaQve	terms,	Ghost,	EFT	approach	

•  orthogonal	shape:	DisQnguishes	between	variants	of	non-canonical	
kineQc	term,	higher-derivaQve	interacQons,	Galilean	inflaQon	

•  flafened	shape:	non-Bunch-Davies	iniQal	state	and	higher-
derivaQve	interacQons,	models	where	a	Galilean	symmetry	is	
imposed.	The	flat	shape	can	be	wriVen	in	terms	of	equilateral	and	
orthogonal.	

		
	



NG	shapes:	local	

Babich et al. astro-ph/0405356   

Bispectrum	peaks	for	squeezed	triangles	k1<<k2~k3			

€ 

F(1,x2,x3)x2
2x3

2

Non-linearities develop outside the horizon during or immediately after inflation 
(e.g. multifield models of inflation) 
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Babich et al.  (2004)   € 

F(1,x2,x3)x2
2x3

2

Bispectrum	peaks	for		equilateral	triangles:	k1=k2=k3	

NG	shapes:	equilateral	

Single	field	models	of	inflaQon	with	non-canonical	kineQc	term	L=P(ϕ,	X)	where		X=(∂	ϕ)2	
(DBI	or	K-inflaQon)	where	NG	comes	from	higher	derivaQve	interacQons		of	the	inflaton	
field		
Example:		
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NG	shapes:	flaVened	

Bispectrum	peaks	for	flaVened	triangles	k2	=	k1+k3			

(typical	of	NG	from	excited	iniQal	states,	see	Meerburg	et	al.	arXiv:0901.4044;	Chen	et	al.	hep-th/
0605045;	Holman	&	Tolley	arXiv:0710.1302;	or	from	higher	derivaQve	interacQons,	Fasiello,	Bartolo,	
Matarrese,	RioVo	arXiv:1004.0893)		



Warning:	this	is	not	a	blind	search	for	NG	

•  DetecQng	a	non-zero	primordial	bispectrum	(e.g.	non-zero	fNL)	
proves	that	the	iniQal	seeds	were	non-Gaussian.	Similarly	for	
the	trispectrum,	etc.	…	

•  Not	detecQng	non-zero	fNL	however,	doesn’t	prove	
Gaussianity!	

•  There	are	infinitely	many	ways	PNG	can	evade	observaQonal	
bounds	opQmized	to	search	for	fNL	and	similar	higher-order	
parameters		



A	worked	example		
(Scherrer	&	Schaefer	1995)	

•  Assume	the	linear	density	contrast	δ	is	non-Gaussian.	
•  By	the	central	limit	theorem,	the	gravitaQonal	potenQal	φ	(which	yields	large-scale	

CMB	anisotropies)	tends	to	be	much	more	Gaussian.	Indeed,	by	solving	Poisson’s	
equaQon,		



InflaQon	in	the	scaling	limit		
(Matarrese,	Ortolan	&	Lucchin	1989)	

MulQplicaQve	stochasQc	process	



NG	is	generic	in	the	late-Qme		
“scaling	limit”	



NG	is	generic	in	the	late-Qme		
“scaling	limit”	

Unfortu
nately,	t

his	idea
	turned	

out	to	c
oncern	s

uper-Hu
bble	modes!!		



Why	is	this	NG	dynamics	not	difrectly	affecQng	
observable	perturbaQon	modes?	

•  This	NG	dynamics	has	to	do	with	fluctuaQons	w.r.t.	the	global,	i.e.	
super-horizon,	average;	observable	fluctuaQons	instead	have	to	be	
computed	on	top	of	the	local	mean	(i.e.	w.r.t	to	our	Hubble	
volume).	See	Salopek,	Bond	&	Bardeen	1989;	Kofman	et	al.	1991		

•  If	the	underlying	noise	is	“white”,	because	of	the	Markov	property,	
any	cross-talk	between	super-Hubble	and	sub-Hubble	modes	
disappears	and	observable	fluctuaQons	become	nearly	Gaussian.	
See:	Mollerach,	Matarrese,	Ortolan	&	Lucchin	1991	

•  Is	this	really	the	final	word?	
•  The	noise	is	not	really	white:	colored	noise	leads	to	cross-talk	and	

potenQally	observable	effects	(Matarrese,	Musso	&	RioVo	2004)	
•  The	super-Hubble	dynamics	can	be	related	to	the	so-called	NG	

landscape	(Nurmi	et	al.	2013;	LoVerde	et	al.	2013).	
•  PotenQally	interesQng	consequences	(e.g.	intermiVency)	yet	to	be	

explored	…	



Non-Gaussianity	&	
Cosmic	Microwave	Background	(CMB)	
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NG	CMB	simulated	maps	

Liguori,	Yadav,	Hansen,	Komatsu,	Matarrese	&	Wandelt	2007	Gaussian	 non-Gaussian	

temperature	

polarizaQon	



Planck	2015	results	XVII:	
Planck	collaboraQon:	A&A	594,	A17	(2016)	

	
•  Constrain	(with	high	precision)	and/or	detect	primordial	non-Gaussianity	(NG)	

as	 due	 to	 (non-standard)	 inflaQon	 (NG	 amplitude	 and	 shape	 measure	
deviaQons	 from	 standard	 inflaQon,	 perturbaQon	 generaQng	 processes	 aqer	
inflaQon,	iniQal	state	before	inflaQon,	...)		

•  We	 test:	 local,	 equilateral,	 orthogonal	 shapes	 (+	 many	 more)	 for	 the	
bispectrum	 and	 constrain	 primordial	 trispectrum	 parameter	 gNL	 (τNL	
constrained	in	previous	release).	

•  Currently	we	are	working	at	a	final,	Planck	 legacy	release,	which	will	 improve	
the	 2015	 results	 in	 terms	 of	more	 refined	 treatment	 of	 E-mode	 polarizaQon	
(including		lower	and	higher	l.			



CMB	bispectrum	representaQon		

a	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Gaunt	integrals	



OpQmal	fNL	bispectrum	esQmator	
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Leaving	aside	complicaQons	coming	from	breaking	of	staQsQcal	isotropy		
(sky-cut,	noise,	…),	one	can	see	that	we	are	extracQng	the	3-point		
funcQon	from	the	data	and	fi�ng	theoreQcal	bispectrum	templates	to	it	
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OpQmal	fNL	bispectrum	esQmator	

The theoretical template needs to be written in separable form. This can be 
done in different ways and alternative implementations differ basically in terms 
of the separation technique adopted and of the projection domain. 

o    KSW (Komatsu, Spergel & Wandelt 2003) separable template fitting + Skew-Cl  

      extension (Munshi & Heavens 2010)  

o    Binned bispectrum (Bucher, Van Tent & Carvalho 2009) 

o    Modal expansion (Fergusson, Liguori & Shellard 2009) 



Going	beyond	the	standard	approach	
•  in	Verde,	Jimenez,	Alvarez-Gaume,	Heavens	&	Matarrese	2013	we	

provided	an	exact	expression	for	the	mulQ-variate	joint	probability	
distribuQon	funcQon	of	non-Gaussian	fields	primordially	arising	from	local	
transformaQons	of	a	Gaussian	field.	

•  We	applied	our	expression	to	the	non-Gaussianity	esQmaQon	from	CMB	
maps	and	the	halo	mass	funcQon	where	we	obtain	analyQcal	expressions.		

•  We	also	provided	analyQc	approximaQons	and	their	range	of	validity.	And	
for	the	CMB	we	gave	a	fast	way	to	compute	the	PDF	which	is	valid	up	to	
more	than	7σ	for	fNL	values	not	ruled	out	by	current	observaQons,	which	
consists	of	expressing	the	PDF	as	a	combinaQon	of	bispectrum	and	
trispectrum	of	the	temperature	maps.		

•  The	resulQng	expression	is	valid	for	any	kind	of	non-Gaussianity	and	is	not	
limited	to	the	local	type.		

These	results	may	serve	as	the	basis	for	a	fully	Bayesian	analysis	of	the	non-	
Gaussianity	parameter.	
	
	



Going	to	higher	order?	

It	may	become	important	if	we	want	to	detect	NG	in	observables	where	fNL	is	large		(e.g.	in	
high-redshiq	probes)	and/or	if	both	fNL	(à	leading	order	bispectrum)	and	gNL	(leading-order	
trispectrum)	are	both	depending	on	the	same	underlying	physical	coupling	constant	that	we	
aim	at	determining.	Note:	The	one	above	is	a	contracted	form;	more	combinaSons	in	the	
general	expression.	 Verde,	Jimenez,	Alvarez-Gaume,	Heavens	&	Matarrese	2013	



Bispectrum	shapes	(modal	representaQon)	

Local	 Equilateral	

Orthog.	 ISW-lensing	



The	2015	Planck	bispectrum	(modal)	Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Fig. 3. CMB temperature and polarisation bispectrum reconstructions for Planck SMICA maps using the full set of polynomial modes with
nmax = 2001 and with signal-to-noise weighting. The top bispectra are the symmetric pure temperature TTT (left) plotted with `  1500 and
E-mode polarisation EEE (right) shown for 30  `  1100. Below are the mixed temperature/polarisation bispectra with TTE on the left (with E
multipoles in the z-direction) and TEE on the right (with T multipoles in the z-direction). All SN thresholds are the same.

Fig. 4. Comparison of CMB polarzation bispectrum EEE reconstructions for Planck NILC, SEVEM and Commander foreground-separated maps
with signal-to-noise weighting. Note that these results are not as internally consistent between the four methods, also comparing SMICA shown
in figure 3 which is closest to NILC. We will compare the underlying modal coe�cients below to demonstrate these di↵erences quantitatively.

17

TTT	 EEE	

TTE	 EET	

(S/N	
weighted)	



Planck	TTT:	2013	vs	Planck	2015	

2013	 2015	

Method:	modal	bispectrum	reconstrucQon	(Fergusson,	Liguori,	Shellard	2010,	2011)	

Primordial	NG	Planck	results:	Ade	et	al.,	Planck	2015	results.	XVII	



Planck	TTT:	2013	vs	Planck	2015	

2013	 2015	

ISW-lensing	signature	



fNL	from	Planck	bispectrum	(KSW)	

Planck Collaboration: Planck 2015 Results. Constraints on primordial NG
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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fNL	esQmators	comparison	

SMICA	 SEVEM	

NILC	 Commander	



fNL	cleaned	maps	comparison	(modal)	

T+E	
ISW-lensing	



ISW-lensing	bispectrum	from	Planck	(2013)	

The coupling between weak lensing and 
Integrated Sachs-Wolfe (ISW) effects is the 
leading contamination to local NG. We have 
detected the ISW lensing bispectrum with a 
significance of 2.6 σ  

SMICA 

Results	for	the	amplitude	of	the	ISW-lensing	bispectrum	
from	 the	 SMICA,	 NILC,	 SEVEM,	 and	 C-R	 foreground-cleaned	
maps,	 for	 the	 KSW,	 binned,	 and	 modal	 (polynomial)	
esQmators;	error	bars	are	68%	CL.	

The	 bias	 in	 the	 three	 primordial	 fNL	 parameters	 due	 to	 the	
ISW-lensing	signal	for	the	4	component-separaQon	methods.	

Skew-Cl detection of ISW-lensing signal 

SMICA 



Constraint	on	4-point	funcQon	from	
local	NG	(Planck	2013)	

τNL<	2800	@	95%	CL	

Power	spectrum	of	the	power	modulaQon	reconstructed	from	143	X	217	GHz	maps.	Shading	shows	the	68%,	95%	and	99%	CL	intervals	from	
simulaQons	 with	 no	 modulaQon	 or	 kinemaQc	 signal.	 The	 dashed	 lines	 are	 when	 the	 mean	 field	 simulaQons	 include	 no	 kinemaQc	 eects,	
showing	a	clear	detecQon	of	a	modulaQon	dipole.	The	blue	points	show	the	expected	kinemaQc	modulaQon	dipole	signal	from	simulaQons,	
along	with	1σ	error	bars	(only	first	four	points	shown	for	clarity).	The	solid	line	subtracts	the	dipolar	kinemaQc	signal	in	the	mean	fields	from	
simulaQons	including	the	expected	signal,	and	represents	out	best	esQmate	of	the	non-kinemaQc	signal	(note	this	is	not	just	a	subtracQon	of	
the	 power-spectra	 since	 the	mean	 field	 takes	 out	 the	 fixed	 dipole	 anisotropy	 in	 real	 space	 before	 calculaQng	 the	 remaining	modulaQon	
power).	The	doVed	line	shows	the	expected	signal	for	τNL	=	1000.	



Planck	constraints	on	primordial	
trispectrum	amplitudes	

•  In	the	2015	release	we	obtained	also	constraints	
on	3	fundamental	shapes	of	the	trispectrum	
(transform	of	4-pt	funcQon)	

•  We	plan	to	extend	this	analysis	in	2017	Planck	
analysis	



Standard	inflaQon	i.e.	
	

•  single	scalar	field	(single	clock)	
•  canonical	kineQc	term	
•  slow-roll	dynamics	
•  Bunch-Davies	iniQal	vacuum	state	
•  Einstein	gravity	

	
predicts	Qny	(up	to	O(10-2))	primordial	NG	signal	
	
à	no	(presently)	detectable	primordial	NG	

Standard	inflaQon	is	sQll	alive		
...	and	in	very	good	shape!	



Beyond	“standard”	shapes	
	
In	2015	we	constrained	fNL	for	a	large	number	of	primordial	models	beyond	the		
standard	local,	equilateral,	orthogonal	shapes,	including	
	

ü  Equilateral	family	(DBI,	EFT,	ghost)	
ü  FlaVened	shapes	(non-Bunch	Davies)	
ü  Feature	models	(oscillatory	bispectra,	scale-dependent)	
ü  DirecQon	dependence		
ü  Quasi-single-field	
ü  Parity-odd	models	

	
•  No	evidence	for	NG	found,	constraints	on	parameters	from	the	models	

above	

•  Extended	survey	of	feature	models	with	respect	to	2013,	600	->	2000	
modes,	including	polarizaQon.		



ImplicaQons	for	inflaQon	
•  No	evidence	for	primordial	NG	of	the	local,	equilateral,	orthogonal	type.	
						consistent	with	the	simplest	scenario:	standard	single-field	slow	roll.	
	

•  Other	possibiliQes	are	however	not	ruled	out.	Constraints	on	fNL	are		
						converted	into	constraints	on	relevant	model	parameters,	for	example:	
	

								-	Curvaton	decay	fracQon	rD	>	19%	(from	local	fNL,	T+E)	
	

								-	Speed	of	sound	in	EffecQve	Field	Theory	cS	>	0.024	(from	equil.	+	ortho.	fNL)	
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N  90, we find
�  0.7 95% CL , (96)

dramatically restricting the allowed parameter space of this
model.

Power-law k-inflation: These models (Armendariz-Picon et al.
1999; Chen et al. 2007b) predict f equil

NL = �170/(81�), where
ns � 1 = �3�, c2

s ' �/8. Assuming a prior of 0 < � < 2/3,
our constraint f equil

NL = �42 ± 75 at 68% CL (see Table 9)
leads to the limit � � 0.05 at 95% CL. On the other hand,
Planck’s constraint on ns � 1 yields the limit 0.01  � 
0.02 (Planck Collaboration XXII 2013). These conflicting lim-
its severely constrain this class of models.

Flat Models and higher derivative interactions: Flat NG can
characterize inflationary models which arise from independent
interaction terms di↵erent from the (⇡̇)3 and ⇡̇(r⇡)2 discussed
in Sect. 2 (see also Sect. 9.2). An example is given by mod-
els of inflation based on a Galilean symmetry (Creminelli et al.
2011a), where one of the inflaton cubic interaction terms allowed
by the Galilean symmetry, M3[⇡̈(@i@ j⇡)2/a4 � 2H⇡̇⇡̈2 + 3H3⇡̇3],
contributes to the flat bispectrum with an amplitude f flat

NL =

(35/256)(M3H)/(✏M2
Pl) (Creminelli et al. 2011a). Here, ⇡ is the

relevant inflaton scalar degree of freedom, ✏ the usual slow-roll
parameter and a the scale factor and H the Hubble parame-
ter during inflation. Our constraint f flat

NL = 37 ± 77 at 68% CL
(see Table 11) leads to (M3H)/(✏M2

Pl) = 270 ± 563 at 68%
CL. These interaction terms are similar to those arising in gen-
eral inflaton field models that include extrinsic curvature terms,
e.g., parameterized in the E↵ective Field Theory approach as
M2⇡̇(@i j⇡)2/a4 (Bartolo et al. 2010a), which contribute to a flat
bispectrum with an amplitude f flat

NL = (50/108) M2/(c2
s ✏M2

Pl). In
this case, we obtain M2/(c2

s ✏M2
Pl) = 80 ± 166 at 68% CL.

9.2. Implications for Effective Field Theory of Inflation

The e↵ective field theory approach to inflation (Weinberg 2008;
Cheung et al. 2008) provides a general way to scan the NG pa-
rameter space of inflationary perturbations. For example, one
can expand the Lagrangian of the dynamically relevant degrees
of freedom into the dominant operators satisfying some under-
lying symmetries. We will focus on general single-field models
parametrized by the following operators (up to cubic order)

S =
Z

d4x
p�g

2
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6
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PlḢ
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s
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where ⇡ is the scalar degree of freedom (⇣ = �H⇡). The mea-
surements on f equil

NL and f ortho
NL can be used to constrain the mag-

nitude of the inflaton interaction terms ⇡̇(@i⇡)2 and (⇡̇)3 which
give respectively f EFT1

NL = �(85/324)(c�2
s � 1) and f EFT2

NL =

�(10/243)(c�2
s � 1)

h

c̃3 + (3/2)c2
s

i

(Senatore et al. 2010, see also
Chen et al. 2007b; Chen 2010b). These two operators give rise
to shapes that peak in the equilateral configuration that are,
nevertheless, slightly di↵erent, so that the total NG signal will
be a linear combination of the two, possibly leading also to
an orthogonal shape. There are two relevant NG parameters,
cs, the sound speed of the the inflaton fluctuations, and M3
which characterizes the amplitude of the other operator ⇡̇3.
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Fig. 22. 68%, 95%, and 99.7% confidence regions in the param-
eter space ( f equil

NL , f ortho
NL ), defined by thresholding �2 as described

in the text.
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Fig. 23. 68%, 95%, and 99.7% confidence regions in the single-
field inflation parameter space (cs, c̃3), obtained from Fig. 22 via
the change of variables in Eq. (98).

Following Senatore et al. (2010) we will focus on the dimension-
less parameter c̃3(c�2

s � 1) = 2M4
3c2

s/(ḢM2
Pl). For example, DBI

inflationary models corresponds to c̃3 = 3(1 � c2
s )/2, while the

non-interacting model (vanishing NG) correspond to cs = 1 and
M3 = 0 (or c̃3(c�2

s � 1) = 0).
The mean values of the estimators for equilateral and orthog-

onal NG amplitudes are given in terms of cs and c̃3 by

f equil
NL =

1 � c2
s

c2
s

(�0.275 + 0.0780A)

f ortho
NL =

1 � c2
s

c2
s

(0.0159 � 0.0167A) (98)
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N  90, we find
�  0.7 95% CL , (96)

dramatically restricting the allowed parameter space of this
model.

Power-law k-inflation: These models (Armendariz-Picon et al.
1999; Chen et al. 2007b) predict f equil

NL = �170/(81�), where
ns � 1 = �3�, c2

s ' �/8. Assuming a prior of 0 < � < 2/3,
our constraint f equil

NL = �42 ± 75 at 68% CL (see Table 9)
leads to the limit � � 0.05 at 95% CL. On the other hand,
Planck’s constraint on ns � 1 yields the limit 0.01  � 
0.02 (Planck Collaboration XXII 2013). These conflicting lim-
its severely constrain this class of models.

Flat Models and higher derivative interactions: Flat NG can
characterize inflationary models which arise from independent
interaction terms di↵erent from the (⇡̇)3 and ⇡̇(r⇡)2 discussed
in Sect. 2 (see also Sect. 9.2). An example is given by mod-
els of inflation based on a Galilean symmetry (Creminelli et al.
2011a), where one of the inflaton cubic interaction terms allowed
by the Galilean symmetry, M3[⇡̈(@i@ j⇡)2/a4 � 2H⇡̇⇡̈2 + 3H3⇡̇3],
contributes to the flat bispectrum with an amplitude f flat

NL =

(35/256)(M3H)/(✏M2
Pl) (Creminelli et al. 2011a). Here, ⇡ is the

relevant inflaton scalar degree of freedom, ✏ the usual slow-roll
parameter and a the scale factor and H the Hubble parame-
ter during inflation. Our constraint f flat

NL = 37 ± 77 at 68% CL
(see Table 11) leads to (M3H)/(✏M2

Pl) = 270 ± 563 at 68%
CL. These interaction terms are similar to those arising in gen-
eral inflaton field models that include extrinsic curvature terms,
e.g., parameterized in the E↵ective Field Theory approach as
M2⇡̇(@i j⇡)2/a4 (Bartolo et al. 2010a), which contribute to a flat
bispectrum with an amplitude f flat

NL = (50/108) M2/(c2
s ✏M2

Pl). In
this case, we obtain M2/(c2

s ✏M2
Pl) = 80 ± 166 at 68% CL.

9.2. Implications for Effective Field Theory of Inflation

The e↵ective field theory approach to inflation (Weinberg 2008;
Cheung et al. 2008) provides a general way to scan the NG pa-
rameter space of inflationary perturbations. For example, one
can expand the Lagrangian of the dynamically relevant degrees
of freedom into the dominant operators satisfying some under-
lying symmetries. We will focus on general single-field models
parametrized by the following operators (up to cubic order)
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where ⇡ is the scalar degree of freedom (⇣ = �H⇡). The mea-
surements on f equil

NL and f ortho
NL can be used to constrain the mag-

nitude of the inflaton interaction terms ⇡̇(@i⇡)2 and (⇡̇)3 which
give respectively f EFT1

NL = �(85/324)(c�2
s � 1) and f EFT2

NL =

�(10/243)(c�2
s � 1)

h

c̃3 + (3/2)c2
s

i

(Senatore et al. 2010, see also
Chen et al. 2007b; Chen 2010b). These two operators give rise
to shapes that peak in the equilateral configuration that are,
nevertheless, slightly di↵erent, so that the total NG signal will
be a linear combination of the two, possibly leading also to
an orthogonal shape. There are two relevant NG parameters,
cs, the sound speed of the the inflaton fluctuations, and M3
which characterizes the amplitude of the other operator ⇡̇3.
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Fig. 22. 68%, 95%, and 99.7% confidence regions in the param-
eter space ( f equil

NL , f ortho
NL ), defined by thresholding �2 as described

in the text.
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Fig. 23. 68%, 95%, and 99.7% confidence regions in the single-
field inflation parameter space (cs, c̃3), obtained from Fig. 22 via
the change of variables in Eq. (98).

Following Senatore et al. (2010) we will focus on the dimension-
less parameter c̃3(c�2

s � 1) = 2M4
3c2

s/(ḢM2
Pl). For example, DBI

inflationary models corresponds to c̃3 = 3(1 � c2
s )/2, while the

non-interacting model (vanishing NG) correspond to cs = 1 and
M3 = 0 (or c̃3(c�2

s � 1) = 0).
The mean values of the estimators for equilateral and orthog-

onal NG amplitudes are given in terms of cs and c̃3 by
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-	DBI	inflaQon:	cS	>	0.087	(T+E)	



Summary	of	Planck	2015	results	on	PNG	
•  Constraints	on	local,	equilateral,	orthogonal	bispectra	improved	by	up	to	15%	

w.r.t.	2013	

•  First	PNG	analysis	using	polarizaQon	data	

•  Constraints	on	T+E	(2015)	confirm	T	results	with	significantly	reduced	error	
bars	

	
•  2013	hints	of	NG	in	oscillatory	feature	models	remain	in	T,	but	decrease	

significantly	when	polarizaQon	is	included;	look-elsewhere	effect	fully	
accounted	for;	new	esQmator	for	high-frequency	oscillaQons	covering	10	
Qmes	more	parameter	space	

•  New	constraints	on:		
–  isocurvature	NG:	polarizarQon	data	crucial	in	this	respect	
–  tensor	NG	analyzed:	parity-odd	T	limit	consistent	with	WMAP	(and	with	

null	result)	
–  trispectrum	due	to	cubic	NG	(gNL	for	a	variety	of	shapes)	
	

•  2015	analysis	contains	largely	extended	analysis	of	NG	templates	

•  à	2017	analysis	(“Planck	legacy”	paper)	will	further	improve	on	standard	
shapes	(owing	to	refined	treatment	of	E-mode	polarizaQon	maps),	add	some	
extra	shapes	(scale-dependent	fNL,	conformal	symmetry,	…).	Search	for	
features	in	both	PS	and	bispectrum.	



CMB	spectral	distorQons	from	acousQc	
wave	dissipaQon	probe	a	large	range		
of	scales,	much	more	than	CMB/LSS	
	
Many	addiQonal	modes!		

If	µ-anisotropies	are	measured		(δµ	~	Φ2):	
	

ü  Tµ correlaQon:	primordial	local	fNL	(Pajer	&	Zaldarriaga	2013)	
					or	other	squeezed	shapes,	e.g.	excited	iniQal	states	(Ganc	&	Komatsu	2013)		

ü  µµ	correlaQon:	primordial	local	trispectrum,	τNL	(Bartolo,	Liguori,	Shiraishi	2016)	
ü  TTµ	bispectrum:	primordial	local	trispectrum,	gNL	(Bartolo,	Liguori,	Shiraishi	2016)	
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Figure 1. Power which disappears from the anisotropies appears in the monopole as spectral distortions. CMB
damped and undamped power spectra were calculated using analytic approximations [33–36]. Scale range
probed by the CMB anisotropy experiments such as COBE-DMR, WMAP, Planck, SPT and ACT is marked
by the shaded region on the left side of the plot. Spectral distortions probe much smaller scales up to the
blackbody photosphere boundary at ` ⇠ 108.

spectrum. The energy stored in the perturbations (or the sound waves in the primordial radiation
pressure dominated plasma) on the dissipating scales, however, does not disappear but goes into the
monopole spectrum creating y, µ and i-type distortions, see Fig. 1. This e↵ect was estimated initially
by Sunyaev and Zeldovich [2] and later by Daly [43] and Hu, Scott and Silk [44]. Recently, the
energy dissipated in Silk damping and going into the spectral distortions was calculated precisely in
[45], correcting previous calculations and also giving a clear physical interpretation of the e↵ect in
terms of mixing of blackbodies [45, 46] 2. The calculations in [45] showed that photon di↵usion just
mixes blackbodies and the resulting distortion is a y-type distortion which can comptonize into i-type
or µ-type distortion, depending on the redshift. We can write down the (fractional) dissipated energy
(Q ⌘ �E/E�) going into the spectral distortions as [45, 46]

dQ
dt
= �2

d
dt

Z
k2dk
2⇡2 P�i (k)

2
6666664
1X

`=0

(2` + 1)⇥2
`

3
7777775 ⇡ �2

d
dt

Z
k2dk
2⇡2 P�i (k)

h
⇥2

0 + 3⇥2
1

i
, (2.1)

where ⇥`(k) are the spherical harmonic multipole moments of temperature anisotropies of the
CMB, t is proper time and P�i (k) = 4

0.4R⌫+1.5 P⇣ ⇡ 1.45P⇣ , P⇣ = (A⇣2⇡2/k3)(k/k0)ns�1+ 1
2 dns/d ln k(ln k/k0),

the amplitude of comoving curvature perturbation A⇣ is equivalent to �2
R in Wilkinson Microwave

2See [47] for a slightly di↵erent way of calculating µ-type distortions and also [48].
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Kathri	&	Sunyaev	2013,	arXiv:	1303.7212	

PNG	with	CMB	spectral	distorQons	

Credits:	M.	Liguori	
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Figure 2. Expected 1� errors on gNL (top panel) and ⌧NL (bottom panel) estimated from TTµ

(colored lines) and TTTT (black lines) in the cosmic-variance dominated case (i.e., Nµµ
` = 0). Solid

and dashed lines are the full radiation transfer case (Eqs. (3.25) and (3.31) for TTµ) and the SW case
(Eqs. (3.26) and (3.34) for TTµ), respectively. In the TTµ cases, we consider several nonzero ⌧NL’s
with fNL = 0. For ⌧NL = 0, �gNL and �⌧NL obtained from TTµ scale like 1/ ln(`

max

/2) and 1/`

max

,
respectively (see Eqs. (4.4) and (4.7)). It is apparent that, if ⌧NL  1000, for `

max

 1000, TTµ

always outperforms TTTT , because C

µµ,G
` + C

µµ,⌧NL
` ⌧ C

TT
` . At larger `

max

, TTµ remains clearly
superior to TTTT for gNL measurements. For ⌧NL estimation the comparison is instead dependent
on the fiducial value of ⌧NL; see main text for further discussion.

– 13 –

Bartolo,	Liguori	&	Shiraishi	2016	

For	Gaussian	iniQal	condiQons,	dissipated	power		
in	small	patches	is	isotropically	distributed	
	
If	local	NG	is	present,	large	scale	modulaQon	of	
the	small-scale	power	arise	=>	Tm	correlaQons	
(Pajer,	Zaldarriaga	2013,	Emami	et	al.	2015)	

TTµ, gNL

TTµ, τNL

Φ=ΦG +ΦNG =ΦG + fNLΦG

2 ,

ΦG =ΦS +ΦL ⇒ΦNG =ΦS
2 +ΦL

2 + 2 fNLΦSΦL

Φ∝ΦS 1+ 2 fΦL( )⇒
δ Φ2

Φ2 =
δµ
µ
~ 4 fNLΦL

⇒
δT
T L

δµ
µ

∝ fNLCℓ

PNG	with	CMB	spectral	distorQons	



Chern-Simons	gravitaQonal	term	
Lagrangian: 

PeculiariSes	of	the	Chern-Simons	gravitaSonal	term	
	

•  Parity	breaking	
•  Vanishing	in	the	background		
•  Invariant	under	a	Weyl	transformaQon	of	the	metric		
•  Surface	term	without	the	coupling	funcQon	f(ϕ)	

The Chern-Simons term arises from an effective field 
theory expansion of the fundamental theory 

Weyl	tensor	

Bartolo	&	Orlando	2017	



Effects	on	PGW	

Right-handed PGW 
become GHOST fields 
when kphys >MCS  

     λR= +1 , λL= -1  

•  SOLUTION:	put	an	UV	energy	
cut-off	in	the	theory		

Parity	breaking	signatures	in	tensor	power	
spectrum	are	suppressed	

•  bispectrum:	two	gravitons-one	scalar	
correlator	has	interesQng	features		

i.  Parity	breaking	signatures	are	not	
suppressed		

ii.  squeezed	shape	



Enhancing	SST	
Shiraishi,	Liguori,	Fergusson	2017	

See	also	Bartolo	et	al.	2015	



CORE:	CMB	bispectrum	forecasts	

from:	Finelli	et	al.	2016	



Primordial	Non-Gaussianity	(PNG)	&	the	
Large-Scale	Structure	(LSS)	of	the	Universe		

	
(=	primordial	NG	+	NG	from	gravitaQonal	instability)	



PNG	and	LSS	
ü  PNG	in	LSS	(to	make	contact	with	the	CMB	definiQon)	can	be	defined	through	a	
ü  potenQal	Φ defined	starQng	from	the	DM	density	fluctuaQon	δ	through	Poisson’s	
ü  equaQon	(use	comoving	gauge	for	density	fluctuaQon,	Bardeen	1980)		

 
ü  Assuming	the	same	model	

 
     
     Φ	on	sub-horizon	scales	reduces	to	minus	the	large-scale	gravitaQonal	potenQal,	

φL	 is	 the	 linear	 Gaussian	 contribuQon	 and	 fNL	 and	 gNL	 are	 dimensionless	 non-
linearity	parameters	(or	more	generally	non-linearity	funcQons).		

	
									CMB	and	LSS	convenQons	may	differ	by	a	factor	1.3	for	fNL,	(1.3)2	for	gNL	

δ = −
3
2
ΩmH

2⎛

⎝
⎜

⎞

⎠
⎟
−1

∇2Φ

€ 

Φ = φL + fNL (φL
2 − 〈φL

2 〉) + gNL (φL
3 − 〈φL

2〉φL ) + ...



Searching	for	PNG	with	rare	events	
•  Besides	 using	 standard	 staQsQcal	 esQmators,	 like	 (mass)	 bispectrum,	 trispectrum,	

three	 and	 four-point	 funcQon,	 skewness,	 etc.	 …,	 one	 can	 look	 at	 the	 tails	 of	 the	
distribuQon,	i.e.	at	rare	events.		

•  Rare	 events	 have	 the	 advantage	 that	 they	 oqen	 maximize	 deviaQons	 from	 what	 is	
predicted	by	a	Gaussian	distribuQon,	but	have	the	obvious	disadvantage	of	being	rare!	
But	remember	that,	according	to	Press-Schechter-like	schemes,	all	collapsed	DM	halos	
correspond	 to	 (rare)	 high	 peaks	 of	 the	 underlying	 density	 field	 (note:	 density,	 not	
gravitaQonal	potenQal	maxima).	

•  Matarrese,	Verde	&	 Jimenez	 (2000)	and	Verde,	 Jimenez,	Kamionkowski	&	Matarrese	
showed	that	clusters	at	high	redshiq	(z>1)	can	probe	NG	down	to	fNL	~	102.	AlternaQve	approach	 by	 LoVerde	 et	 al.	 (2007).	 DeterminaQon	 of	mass	 funcQon	 using	 stochasQc	
approach	 (first-crossing	 of	 a	 diffusive	 barrier)	 Maggiore	 &	 RioVo	 2009.	 Ellipsoidal	
collapse	used	by	Lam	&	Sheth	2009.	Saddle-point	+	diffusive	barrier	 (Paranjape	et	al.	
2010).	Log-Edgeworth	expanQon:	LoVerde	&	Smith	2011.	Excursion	sets	studied	with	
correlated	steps:	Paranjape,	Lam	&	Sheth	2011;	Paranjape	&	Sheth	2011,	...	and	many,	
many	more.	Excellent	agreement	of	analyQcal	formulae	with	N-body	simulaQons	found	
by	Grossi	et	al.	2009;	Desjacques	et	al.	2009;	Pillepich	et	al.	2010;	…	and	many	others	
aqerwards.		

•  Halo	(galaxy)	clustering	and	halo	(galaxy)	higher-order	correlaQon	funcQons	represent	
further	and	more	powerful	implementaQons	of	this	general	idea.		



NG	vs	halo	mass	funcQon	

•  The	halo	mass	funcQon	(à-la-Press-Schechter)	
can	be	a	useful	tool	to	probe	PNG	as	it	
essenQally	depends	exponenQally	on	the	PNG	
parameters	(Matarrese,	Verde	&	Jimenez	
2000),	by	modulaQng	the	criQcal	overdensity	
for	collapse.	Its	calculaQon	can	be	done	along	
the	lines	of	the	original	PS	approach,	using	a	
steepest-descent	approximaQon	to	deal	with	
(small)	PNG.		



NG	vs.	halo	mass	funcQon	

•  Relevant	effects:		
–  non-Markovianity,	already	there	in	the	Gaussian	case,	unavoidable	in	NG	case	
–  non-spherical	collapse	
–  connecQng	random	walks	w.	DM	halos	

•  Dealing	with	rare	events	i.e.	tails	of	NG	distribuQon		
•  ValidaQon	with	N-body	simulaQons	crucial	(although	very	rare	events/tails	

not	probed	by	finite	number	of	realizaQons	à	analyQcal	treatments	
welcome!)	

•  Understanding/definiQon	of	connecQon	between	analyQcal/numerical	
quanQQes	and	real	observables	à	to	what	level	is	this	affecQng	NG	(e.g.	
fNL)	measurements?	

•  A	more	fundamental	quesQon:	should	we	necessarily	go	on	with	
(extended)	Press-Schechter-like	approaches?	Are	alternaQve	approaches	
viable:	e.g.	Smoluchowski	equaQon	for	non-Poissonian	random	process	
(earliest	aVempt	by	Silk	&	White	1978)			



Different	approaches		
to	the	NG	halo	mass	funcQon		

Paranjape	et	al.	2010	



Bias:	halos	(ègalaxies)	do	not	trace	the	
underlying	(dark)	maVer	distribuQon		

•  Following	the	original	proposal	by	Kaiser	(1984),	introduced	for	
galaxy	clusters	and	later	for	galaxies,	we	are	used	to	parametrize	
our	ignorance	about	the	way	in	which	DM	halos	clusters	in	space	
w.r.t.	the	underlying	DM,	via	some	“bias”	parameters,	e.g.	(Eulerian	
bias)	

•  					δhalo	(x)	=	b1	δmaVer	(x)	+	b2	δ2maVer	(x)	+	…	

•  or	via	some	non-linear	and	non-local	expression	(e.g.	as	a	funcQon	
of	the	Lagrangian	posiQon	of	the	proto-halo	center	of	mass.		

•  The	resulQng	non-linear	and	non-local	affects	the	staQsQcal	
distribuQon	of	the	halos	introducing	further	NG	effects.	

•  The	various	bias	parameters	can	be	generally	dealt	with	either	as	
purely	phenomenological	ones	(i..e.	to	be	fiVed	to	observaQons)	or	
predicted	by	a	theory	(e.g.	Press-Schechter	+	Lagrangian	PT).	



Dark	maVer	halo	clustering	as		
a	powerful	constraint	on	PNG	

Dalal, Dore’, Huterer & Shirokov 2007 

Dalal et al. (2007) have shown that halo  
bias is sensitive to primordial non-
Gaussianity through a scale-dependent 
correction term (in Fourier space) 
 
                  Δb(k)/b  α  2 fNLδc / k2 

  This opens interesting prospects for  
  constraining or measuring NG in LSS but  
  demands for an accurate evaluation of the 
  effects of (general) NG on halo biasing. 

 δhalo = b δmatter 



Start from results obtained in the 80’s by 
Grinstein & Wise 1986, ApJ, 310, 19; 
Matarrese, Lucchin & Bonometto 1986, 
ApJ, 310, L21 giving the general 
expression for the peak 2-point function as 
a function of N-point connected correlation 
functions of the background linear (i.e. 
Lagrangian) mass-density field  

 

 

 

 

(requires use of path-integral, cluster 
expansion, multinomial theorem and 
asymptotic expansion). The analysis of NG 
models was motivated by a paper by 
Vittorio, Juszkiewicz and Davis (1986) on 
bulk flows. 

Clustering	of	peaks	(DM	halos)		
of	NG	density	field	



Halo	bias	in	NG	models	
•  Matarrese	 &	 Verde	 2008	 applied	 this	 relaQon	 to	 the	 case	 of	 NG	 of	 the	

gravitaQonal	 potenQal,	 obtaining	 the	 power-spectrum	 of	 dark	 maVer	
halos	modeled	as	high	“peaks”	(up-crossing	regions)	of	height	ν=δc/σR	of	the	underlying	mass	density	field	(Kaiser’s	model).	Here	δc(z)	is	the	criQcal	overdensity	for	collapse	(at	redshiq	a)	and	σR	is	the	rms	mass	fluctuaQon	
on	scale	R	(M	~	R3).	

•  Account	 for	moQon	 of	 peaks	 (going	 from	 Lagrangian	 to	 Eulerian	 space),	
which	implies	(Catelan	et	al.	1998)		

					
																			1+	δh(xEulerian)	=	(1+δh(xLagrangian))(1+δR(xEulerian))	
	
				and	(to	linear	order)	b=1+bL	(Mo	&	White	1996)	to	get	the	scale-dependent	

halo	 bias	 in	 the	 presence	 of	NG	 iniQal	 condiQons.	Correc?ons	may	 arise	
from	second-order	bias	and	GR	terms.	

	
•  AlternaQve	approaches	(e.g.	based	on	1-loop	calculaQons)	by	Taruya	et	al.	

2008;	Matsubara	2009;	 Jeong	&	Komatsu	2009.	Giannantonio	&	Porciani	
2010	 improve	 fit	 to	 N-body	 simulaQons	 by	 assuming	 dependence	 on	
gravitaQonal	potenQal)	à	extension	to	bispectrum	by	Baldauf	et	al.	2011.	
Leistedt	et	al.	(2014)	include	gNL	and	fNL	in	analysis	os	QSO	clustering.	



Halo	bias	in	NG	models	
•  Extension	to	general	(scale	and	configuraQon	dependent)	NG	is	
Straigh�orward	(Matarrese	&	Verde	2008)	
	
•  In	full	generality	write	the	f	bispectrum	as	Bf(k1,k2,k3).	The	relaQve		
NG	correcQon	to	the	halo	bias	is		

	
	
	
•  It	also	applies	to	non-local	(e.g.	“equilateral”)	PNG	(DBI,	ghost		
inflaQon,	etc..	)	and	universal	PNG	term!!	(à	see	also	Schmidt	&		
Kamionkowski	2010).	

€ 

×
1

MR (k)



Halo	bias	in	NG	models	
Matarrese	&	Verde	2008	

form	factor:	

factor	connecQng	the	smoothed	linear	overdensity	with	the	primordial	potenQal:	

transfer	funcQon:	
window	funcQon	defining	the	radius	R	of	a		
proto-halo	of	mass	M(R):	

power-spectrum	of	a	Gaussian	
gravitaQonal	potenQal		
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As we expected, the statistical errors are independent of tracer density n in the sample variance limited case, while
they scale as 1/n in the Poisson limit. This behavior becomes very clear in the numerical results shown in Figure 1.

We also notice the errors often depend on volume in a way which di↵ers from the usual V �1/2 scaling. This happens
when the k-integral for the Fisher matrix element diverges at low-k, so that most of the statistical weight comes from
the survey scale k

min

= 2⇡/V 1/3. This divergence always occurs for ⌧
NL

, so the ⌧
NL

constraint is always dominated
by the largest-scale modes in the survey (i.e. a few modes). For f

NL

this depends on the level of Poisson noise; in the
sample variance limit the statistical weight is dominated by the largest scale modes, but in the Poisson dominated
limit the statistical weight is distributed over a range of scales between k

min

and k
eq

.
We also note that in the Poisson dominated case, the last line of (32) can be rewritten:

�(⌧
NL

) = 30.6

✓

1

b
g

� 1

◆

2

(k
eq

R
0

(z)4n
0

(z))
1

nV
(Poisson dominated) (33)

i.e. �(⌧
NL

) only depends on n, V through the total number of tracers (nV ) in the Poisson-dominated case.

FIG. 1: Statistical errors on fNL (bottom) and ⌧NL (middle) and gNL (top) for varying tracer density n, for our fiducial survey
with volume V = 25 h�3 Gpc3, redshift z = 0.7, tracer bias bg = 2.5 and maximum wavenumber k

max

= 0.1 h Mpc�1. The
‘marginalized’ case (dashed lines) refers to marginalization over Gaussian bias and a 20% Gaussian prior on 1/n

e↵

around
the fiducial value 1/n

e↵

= 1/n. When forecasting each parameter {fNL, ⌧NL, gNL}, the other two parameters are set to zero.
Constraining gNL is discussed in Section III E, while degeneracies and their covariance are discussed in Section VI.

The analytic results in this subsection are approximate (we have assumed n
s

= 1 and T (k) = 1) and shouldn’t be
used in forecasting. In Figure 1 we show the numerical results and in the next subsection we give fitting functions
which work at the few percent level and include the e↵ect of non-trivial n

s

and T (k).

D. Fitting functions

Motivated by the analytically discussion of the previous Section, here we present fitting functions for �(f
NL

) and
�(⌧

NL

) as functions of (V, z, b
g

, n), while fixing all of the parameters of the background cosmology to the Planck 2013
values, as explained in Section II. Moreover, we take k

max

= 0.1h Mpc�1 throughout.
As a first step, we define the quantity

�(n, z) =
b2
g

n

n
0

(z)
= b2

g

✓

n

1.17⇥ 10�5h3 Mpc�3

◆

D2(z) (34)

PNG	with	LSS:	2-point	funcQon	

Ferraro	&	Smith	2014	

Sample	variance	limited	

Single	tracer	

13

FIG. 4: Statistical errors on fNL (bottom solid curve), ⌧NL (middle solid curve) and gNL (top solid curve) in a multitracer
analysis, with varying M

min

and N = 50 mass bins equally spaced on a log scale. When forecasting a given parameter
{fNL, ⌧NL, gNL}, the other two are set to zero. Here the volume is V = 25 h�3 Gpc3, the redshift z = 0.7 and k

max

= 0.1
h Mpc�1. Note the ‘sample variance plateau’ at M

min

⇠ 3 ⇥ 1013 h�1M�. The upper dashed line shows the Planck Fisher
forecast �(gNL) = 6.7⇥ 104 from [22]. The middle dashed line is the Planck �(⌧NL) ⇡ 720, obtained by fitting a Gaussian to
the upper part of the ⌧NL posterior for L

max

= 50 (Figure 19 of [1]).

where the minus sign appears because the covariance matrix is the inverse of the Fisher matrix.
An analytic calculation along the lines of Section III C suggests that there should always be a moderate negative

correlation between f
NL

and ⌧
NL

in the single-tracer case. Figure 5 shows the numerical results for our fiducial survey.
Note that having to marginalize over b

g

and 1/n
e↵

makes f
NL

and ⌧
NL

more degenerate and harder to distinguish.

B. Multiple tracer

The multi-tracer case is more interesting since f
NL

and g
NL

are no longer degenerate due to the di↵erent dependence
of �

f

and �
g

on halo mass (or equivalently on Gaussian bias). Following Section V, we assume perfect measurements of
all halos above some minimum mass M

min

, and use the Fisher matrix formalism to compute the correlation coe�cients
Corr(f

NL

, ⌧
NL

) and Corr(f
NL

, g
NL

). Numerical results are shown in Figure 6.
Let’s consider the f

NL

� ⌧
NL

case first. In the region with high M
min

the tracer density is low and we are deeply
in the Poisson dominated regime, with correlation coe�cient close to �0.5, in agreement with Figure 5. Decreasing
M

min

allows more tracers to be included and the correlation becomes more negative, as expected from the previous
discussion. As soon as M

min

reaches the sample variance plateau, f
NL

and ⌧
NL

start to decorrelate, reaching nearly
zero correlation at M

min

⇠ 1010h�1M�.
Joint constraints on f

NL

, ⌧
NL

were also studied in [11], who found poor prospects for distinguishing the two, and
generally weak constraints on ⌧

NL

, if the stochastic bias from ⌧
NL

is not included. We therefore conclude that
stochastic bias is a very powerful observational probe of ⌧

NL

.
In the f

NL

� g
NL

case, the two are completely degenerate in the Poisson limit of high M
min

and are therefore
observationally indistinguishable using halo bias. Close to the sample variance plateau they decorrelate partially, to
become highly negatively correlated again in the region of sample variance cancellation. We conclude that f

NL

, g
NL

are not perfectly degenerate in a multi-tracer analysis, but are always significantly correlated (see also [10] for a
detailed discussion of the degeneracy between f

NL

and g
NL

).

MulS	tracer	
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peak height, and hence no change in the abundance of
massive halos. However, δ and φ are correlated, imply-
ing that rare peaks are systematically raised or lowered,
depending upon the sign of fNL. Therefore, we expect
changes in the mass function and the correlation func-
tion.

In the appendix, we derive expressions for the abun-
dance and clustering of regions above a given threshold,
which then give the clustering and mass function of halos
in the Press-Schechter model. However, we can derive the
form of the halo correlation function using a very simple
argument. The halo correlation function is usually pa-
rameterized in terms of the halo bias b, which is the rate
of change of the halo abundance as the background den-
sity is varied. Writing the matter overdensity as δ and
the halo overdensity as δh, we can define the halo bias as

δh = b δ. (6)

It is normally assumed that b → const on large scales,
but we will not make this assumption here. Consider a
long-wavelength mode, providing a background density
perturbation δ and corresponding potential fluctuation
φ. In the absence on nongaussianity, this perturbation
raises subthreshold peaks above threshold, and thereby
enhances the abundance of super-threshold peaks by bLδ,
where bL is the usual (Gaussian) Lagrangian bias. For
nonzero fNL, the long-wavelength mode also enhances the
peak height by 2fNLφpδpk, and we will focus on peaks
near threshold, such that δpk ≃ δc. This provides an
additional enhancement factor, giving a total

δh = bL(δ + 2fNLφpδc). (7)

In Fourier space, the potential and density modes are
related by φ = (3Ωm/2ar2

Hk2)δ, and so we see that the
nongaussian bias acquires a correction

∆b(k) = 2bLfNLδc
3Ωm

2ag(a) r2
Hk2

, (8)

where again bL refers to the usual Lagrangian bias for
halos of this mass with Gaussian fluctuations. The total
Lagrangian bias is then bL(k) = bL + ∆b(k).

Since we have been working with the clustering of
peaks in the initial density distribution, the above ex-
pression for the bias applies only to the early-time, La-
grangian bias. Translating these results to late-time, Eu-
lerian bias is straightforward, however. The bias of Eule-
rian halos is simply b = 1+bL : the excess of halos in some
Eulerian volume with overdensity δ is bδ = bLδ + δ. The
first term corresponds to the excess of peaks in the initial
Lagrangian volume, which are advected into the Eulerian
volume. The second term arises because an Eulerian vol-
ume with overdensity δ has δ times more mass than an
average volume, and therefore δ times more peaks.

In summary, local NG generates a scale-dependent cor-
rection to the bias of galaxies and halos, of the form

∆b(k) = 2(b − 1)fNLδc
3Ωm

2a g(a)r2
Hk2

(9)

FIG. 1: Slice through simulation outputs at z = 0 gener-
ated with the same Fourier phases but with fNL =−5000,
−500, 0, +500, +5000 respectively from top to bottom. Each
slice is 375 h−1 Mpc wide, and 80 h−1 Mpc high and deep.
We can easily match by eye much of the large scale struc-
ture; for example, an overdense region sits on the left, while
an underdense region (void) falls on the right, in all panels.
Note that for positive fNL, overdense regions are more evolved
and produce more clusters than their Gaussian counterparts,
while underdense regions are less evolved (e.g. grid lines are
still visible). For negative fNL, underdense regions are more
evolved, producing deeper voids, while overdense regions are
less evolved, as illustrated by the grid lines apparent in the
left of the top panel.

where b here now refers to the Eulerian bias of the tracer
population. In subsequent sections, we show that this
simple expression, despite the underlying assumptions
and approximations in its derivation, matches surpris-
ingly well the halo clustering measured in our numerical
simulations.

III. NUMERICAL SIMULATIONS

We numerically simulate the growth of structure in
nongaussian cosmologies using the adaptive P3M par-
allel N-body code GRACOS

2 [63, 64]. Non-gaussian ini-
tial conditions were generated using the following pro-
cedure. First, we generated a Gaussian random poten-
tial field φ(x) using a power-law power spectrum with a
scalar (density) index ns = 0.96, and normalized so that

2 http://www.gracos.org

•  Single	tracer,	V	=	25	Gpc3	h-3,	staQsQcal	power	~	Planck		
	
•  MulQ-tracer	techniques	have	the	power	to	reach	σfNL	~	1	(local)	

•  Significant	degeneracies	between	fNL,	gNL,	τNL	
Credits:	M.	Liguori	



CIB	power	spectrum	
•  CIB	power	spectrum	is	integrated	over	a	large	volume.	Ideal	for	scale	
					dependent	bias	(Tucci	et	al.	2016)	

•  Seriously	contaminated	by	dust,	but	future	full-sky	satellite	B-mode		
					experiments	with	many	(high-)frequency	channels	allow	very	accurate	
					component	separaQon.	

(Finelli	et	al.	2016)	(Tucci	et	al.	2016)	

Credits:	M.	Liguori	



PNG	with	LSS:	the	galaxy	bispectrum	
	Let’s	follow	Tellarini	et	al.	(2016)	

with	the	2-nd	order	gravity-kernel		

Second-order	(Eulerian)	PT	yields:	

aaaaaa	

aaaaaa	

aaaaaa	



PNG	with	LSS:	the	galaxy	bispectrum	
	

aaaaaa	

aaaaaa	

aaaaaa	

........….......The		quanQty		δ(x)		is		expressed				



PNG	with	LSS:	the	galaxy	bispectrum	

One	can	introduce	a	long-short	spli�ng	of	the	gravitaQonal	potenQal	and	DM	density	field,	
such	that,	for	local	NG	one	easily	finds	(for	local	NG)	

with	

In	Lagrangian	space	one	can	then	introduce	the	expansion		

where	the	subscript	l	has	been	dropped	and	the	5	bij	represent	our	(generally	
unknown)	bias	parameters		



PNG	with	LSS:	the	galaxy	bispectrum	

One	can	then	move	to	the	final	Eulerian	posiQon	of	the	galaxy	by	using	the	conservaQon		
law	(Catelan	et	al.	1998)		

to	find	

where	s2	and	n2	are	suitable	expansion	terms	and	the	Eulerian	bias	parameters	read:	



PNG	with	LSS:	the	galaxy	bispectrum	

Aaaa	
aaa	

Aaaa	
aaa	à	scale-dependent	bias	term			



Table 1: Forecasts for �
f

NL

from the bispectrum of BOSS, eBOSS, DESI and Euclid, assuming the
fiducial values p = {bfid10 , bfid20 , ffid

NL = 0}, as described in section 4.1. Forecasts from the power spectrum
are obtained considering only the tree-level, with the fiducial model p = {bfid10 , ffid

NL = 0}. The results
with marginalisation over the bias factors are shown on the left columns (bias float), while those
without on the right (bias fixed). The numbers inside the parenthesis in the superscripts are the
predictions for �

f

NL

considering the fiducial value for the non-linear bias to be bfid20 +1, while those in
the subscripts assume bfid20 � 1.

Power Spectrum Bispectrum
Sample �

f

NL

�
f

NL

�
f

NL

�
f

NL

bias float bias fixed bias float bias fixed

BOSS 21.30 13.28 1.04(0.65)(2.47) 0.57(0.35)(1.48)

eBOSS 14.21 11.12 1.18(0.82)(2.02) 0.70(0.48)(1.29)

Euclid 6.00 4.71 0.45(0.18)(0.71) 0.32(0.12)(0.35)

DESI 5.43 4.37 0.31(0.17)(0.48) 0.21(0.12)(0.37)

BOSS + Euclid 5.64 4.44 0.39(0.17)(0.59) 0.28(0.11)(0.34)

We then performed idealised forecasts of �
f

NL

, the accuracy of the determination of local fNL, that
could be obtained from measurements of the galaxy bispectrum using data from surveys like BOSS,
eBOSS, DESI and Euclid. Our findings suggest that the bispectrum of galaxies in current and future
surveys will provide competitive fNL constraints even if the covariance between triangle configurations
degrades our idealised forecasts by a factor of 5. In particular, current BOSS data should allow for
Planck-like constraints on fNL, while future surveys like Euclid and DESI will contain the statistical
power to shrink the bound by an additional factor of three.

We leave as a challenge for future work to obtain improved predictions for �
f

NL

fully accounting
for the covariance: this will be necessary if we are to completely understand the power of bispectrum
measurements to constrain fNL compared to alternative approaches, such as the multi-tracer technique
or the position-dependent power spectrum.
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PNG	with	LSS:	Bispectrum	

•  Fisher	matrix	forecast.	Tree-level	bispectrum.	Local	NG	iniQal	condiQons.	
					In	redshiq	space.	Covariance	between	different	triangles	neglected	(opQmisQc).	

•  The	bispectrum	could	do	beVer	than	the	power-spectrum.	

•  fNL	~	1	achievable	with	forthcoming	surveys?	

•  Many	issues,	e.g.	full	covariance,	accurate	bias	model,	GR	effects,	survey		
					geometry,	esQmator	implementaQon	…	SQll,	great	potenQal:	3D	vs	2D	(CMB).	

	
	
	



GR	effects	on	the	PS	and	bispectrum	

•  In	full	generality	GR	effects	(including	also	
redshiq-space	distorQons,	lensing,	etc	…)	have	to	
be	taken	into	account	both	in	the	galaxy	power-
spectrum	and	bispectrum,	as	well	as	in	the	DM	
evoluQon.		

•  Recently,	Bertacca,	Raccanelli,	Bartolo,	Liguori,	
Matarrese	&	Verde	(2017)	obtained	for	the	first	
Qme	the	complete	expression	for	the	galaxy	
bispectrum	(which	is	obviously	VERY	complex)	to	
be	soon	compared	with	observaQons.	



Equilateral	PNG:	theoreQcal	uncertainQes	 11
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FIG. 6: One sigma error bar on f eq.
NL as a function of the maximal redshift zmax. Two horizontal lines correspond to f eq.

NL = 40
(the current strongest bound from the CMB) and f eq.

NL = 10. Each panel shows the constraints with and without marginalization
over the EFT and bias parameters. Di↵erent lines correspond to di↵erent combinations of the tree-level and the one-loop power
spectrum and bispectrum. As a reference we also plot a line for the ideal case with no theoretical error and no marginalization.

are the most important for the neutrino mass, one should
have relative errors smaller than 0.1 � 0.5% (depending
on the redshift) which seems quite challenging. Other
parameters, such as b2, bG

2

or Rp, require precision of
1� 10%.

B. Equilateral non-Gaussianities

Let us now consider the constraints on primordial NG
of equilateral shape. Our pNG constraints are solely ob-
tained from the shape dependence of the tree level bis-
pectrum and the power spectrum will be used to break
degeneracies with bias parameters. We will note on ex-
plicit scale dependent bias at the end of this section.

Bispectrum.—In Fig. 6 we plot �(f eq.
NL) as a function of

zmax for di↵erent galaxy abundance scenarios. In the
ideal case, with neither theoretical errors nor marginal-
ization, f eq.

NL ⇠ 1 can be reached at high redshift. This
means that in principle there are enough modes in the
perturbative regime. In practice, the theoretical error
and marginalization degrade the constraints significantly.

Including the theoretical errors only changes �(f eq.
NL)

by a factor of 3 with the one-loop bispectrum and an ad-
ditional factor of 3 with the tree-level bispectrum. Notice
that, as in the case of neutrinos, there is a large di↵erence
between the results from the tree-level and the one-loop
bispectrum. This is due to the fact that including higher
loops increases kmax and reduces the error for k < kmax.

Marginalization degrades the constraints by additional
factor of few. This is not surprising given that the grav-
itational contributions are not very orthogonal to the
equilateral shape. With our simple model for the one-
loop bispectrum of biased tracers, the current Planck

limits can be reached with a survey that would map the
distribution of galaxies up to redshift z ⇠ 1.5. With a
more realistic model which will contain more bias pa-
rameters, the results are expected to get weaker. Going
to higher redshifts, our analysis indicates that reaching
f eq.
NL ⇠ 10 will be very challenging.

Scale dependent bias.— Equilateral NG do not a↵ect only
the bispectrum. They can also contribute to the power
spectrum through a scale dependent bias of the form

�b1(k) ⇡ 9(b1 � 1)f eq.
NL · ⌦m�c

H2
0R

2(z)

D+(z)T (k)
. (49)

(This form can be obtained by taking the squeezed limit
k1 ⌧ k2,3 of (36) as a correction to the power of short
scale modes k2,3 with the characteristic size R(z), the
Lagrangian size of objects observed at redshift z. b1 �
1 and �c = 1.686 typically appear in the simplest halo
models that relate the change in the power to the bias
parameters [30].) We choose the same time dependence
as for the counter terms in the power spectrum: R(z) =
R0D+(z)/D+(0). The power spectrum is modified in the
following way

Pg(k, z) = (b1 +�b1(k))
2P (k, z) , (50)

and one can put constraints on f eq.
NL measuring its shape

carefully. However, the amplitude of �b1(k) is very
small, typically R2H2 ⇠ 10�6. Note that compared to
the similar term in the bispectrum, the e↵ect of the scale
dependent bias at some scale k is R2k2 times smaller. For
perturbative scales Rk < 1, and we expect weaker limits
on f eq.

NL than what we get from the three-point function.
To test this expectation we do a simple forecast using

just the model described by Eq. (50). We do not include

•  The	LSS	bispectrum	allows	in	principle	Qght	constraints	also	on	non-local		
					shapes	(e.g.	equilateral)	

•  Naive	mode	counQng	suggest	σfNL	~	1	for	equilateral	might	be	achievable	by		
					pushing	kmax	high	enough	

•  However,	in	the	non-linear	regime	we	have	to	model	the	gravitaQonal		
					bispectrum	with	high	accuracy.	Very	challenging.	Equilateral	is	more	correlated	
					than	local	to	non-linear	gravitaQonal	bispectrum,	so	bigger	problem.	

Baldauf	et	al.	2016	

Credits:	M.	Liguori	



Controversial	issues	on	non-Gaussianity	
	



Is	the	single-field	consistency	relaQon	
observable?	

The	observability	of	the	so-called	“Maldacena	consistency	relaQon”,	related	to	the	
above	bispectrum	for	single	field	inflaQon,	in	CMB	and	LSS	data	has	led	to	a	long-
standing	controversy.	Recently,	various	groups	have	argued	that	the	(1-ns)	term	is	
totally	unobservable	(for	single-clock	inflaQon),	as,	in	the	strictly	squeezed	limit	(one	of	
the	wave-numbers	going	to	0),	this	term	can	be	gauged	away	by	a	suitable	coordinate	
tranformaQon.	Cabass,	Schmidt	and	Pajer	(2017)	argued	that	the	term	survives	up	to	a	
“renormalizaQon”	which	further	reduces	it	by	a	factor	of	~	0.1	if	one	applies	Conformal	
Fermi	Coordinates	to	get	rid	of	such	a	“gauge	mode”.	
	
•  Is	this	(CFC	approach)	the	only	way	to	deal	with	this	term?		
•  Can	we	aim	at	an	exact	descripQon,	which	is	not	affected	by	“spurious	PNG”?	

The	cispectrum	for	single-field	inflaQon	(Gangui	et	al.	1995;	Acquaviva	et	al.	2001;		
Maldacena	2001)	can	be	represented	as:	



fNL-like	effects	from	non-linear	GR	effects?		

•  Second	order	DM	dynamics	in	GR	leads	to	(post-
Newtonian)	δ	ζ	-like	terms	which	mimic	local	primordial	
non-Gaussianity	(Bartolo,	Matarrese	&	RioVo	2005).	Verde	
&	Matarrese	2009	include	this	GR	term	in	halo	bias.	The	
same	GR	term	can	be	trivially	recovered	by	a	short-long	
mode	spli�ng,	leading	to	a	resummed	non-linear	
contribuQon	δ	e-2ζ	(Bruni,	Hidalgo	&	Wands	2014).	This	
comes	from	the	modulaQon	of	sub-horizon	scales	due	to	
modes	entering	the	horizon	at	any	given	Qme.	

•  In	the	comoving	gauge	(suitable	for	calculaQon	of	halo	bias)	
this	would	correspond	to	an	fNL	=	-5/3	in	the	pure	squeezed	
limit.		

•  Is	such	a	GR	NG	signature	detectable	via	some	cosmological	
observables?	



from:	Bartolo,	Matarrese,	Pantano	&	RioVo	2010	

Poisson	gauge				

Comoving	and	synchronous	gauge				

PNG-like	GR	(actually	PN)	terms	

fNL-like	terms	generated	by	non-linear	GR	evoluQon	



Long	and	short	modes	
In	each	patch,	the	comoving	spaQal	element	is		
	
ds2(3)	=	e2ζ	δij	dxi	dxj		
	
There	 is	 a	 global	 background	 which	 must	 be	 defined	
with	respect	to	some	scale	λ0,	at	least	as	large	as	all	the	
other	 scales	 of	 interest,	 i.e.,	 at	 least	 as	 large	 as	 our	
presently	 observable	 Universe.	 It	 is	 important	 to	
disQnguish	this	from	the	scale	of	the	separate	universe	
patches,	λP	 .	This	 is	 large	enough	for	each	patch	to	be	
treated	 as	 locally	 homogeneous	 and	 isotropic,	 but	
patches	must	be	sQtched	together	to	describe	the	long-
wavelength	perturbaQons	on	a	scale	λL	≫	λP	.	Thus,			

λ0	>	λL	≫	λP	≫	λS		
	
The	local	observer	in	a	separate	universe	patch	cannot	
observe	the	effect	of	ζL	,	which	is	locally	homogeneous	
on	the	patch	scale	λP	 .	However,	 local	coordinates	can	
be	 defined	 only	 locally	 and	 the	 long	 mode	 curvature	
perturbaQon	 is	 observable	 through	 a	 mapping	 from	
local	to	global	coordinates.		

from:	Bartolo	et	al.	2016	



Observability	of	GR	non-lineariQes	
•  In	the	halo	bias	case	the	effect	is	unobservable.	Indeed,	as	pointed	out	by	

Dai,	Pajer	&	Schmidt	2015	and	de	PuVer,	Doré	&	Green	2015,	a	local	physical	
redefiniQon	of	the	mass,	gauges	way	such	a	NG	effect	(in	the	pure	squeezed	
limit),	similarly	to	Maldacena’s	fNL	=	-	5/12(ns-1)	single-field	NG	contribuQon.	

•  This	is	true	provided	the	halo	bias	defini?on	is	strictly	local.	Are	there	
significant	excepQons?	Are	all	non-linear	GR	effects	fully	accounted	for	by	
“projecQon	effects”?	

•  However,	this	dynamically	generated	GR	non-linearity	is	physical	and	cannot	
be	gauged	away	by	any	local	mass-rescaling,	provided	it	involves	scales	
larger	than	the	patch	required	to	define	halo	bias,	but	smaller	than	the	
separaQon	between	halos	(and	the	distance	of	the	halo	to	the	observer).		

•  Hence	one	would	expect	it	to	be	in	principle	detectable	in	the	maVer	
bispectrum.	Similarly,	the	observed	galaxy	bispectrum	obtained	via	a	full	GR	
calculaQon	must	include	all	second-order	GR	non-lineariQes	on	such	scales	
(only	as	projec?on	effects?)	



Beyond	Separate	Universes	...	
•  The	Separate	Universe	approach	proved	very	useful	for	many	applicaQons,	

but:	
•  The	effect	of	the	external	world	cannot	be	always	described	by	linear	

theory	à	the	usual	idenQficaQon	large	scales	=	linear	theory	is	only	
qualitaQve	and	can	become	misleading	in	some	cases:	e.g.	perturbaQons	
of	order	N	>>	1	give	the	leading	contribuQon	to	N-th	order	moments,	such	
as	<δN>c	.	And,	we	know	from	non-linear	Newtonian	dynamics		that		<δN>c	
~	<δ2>N-1	on	all	scales	(for	scale-free	spectra).	

•  Well	inside	a	given	Separate	Universe	assuming	that	the	only	non-linearity	
is	described	by	Newtonian	physics	can	be	too	restricQve.	The	relevance	of	
non-linear	GR	effects	in	sub-patch	dynamics	depends	upon	the	specific	
problem.	

•  It	would	be	interesQng	to	see	the	effects	of	using	e.g.	the	Silent	Universe	
descripQon	to	account	for	deviaQons	of	the	patch	from	purely	spherical	
behavior	(remember	that	over-dense	patches	evolve	towards	oblate	
ellipsoids;	even	under-dense	ones	can	collapse	to	oblate	ellipsoids,	owing	
to	Qdal	effects	of	surrounding	maVer).		

•  InteresQng	recent	approach	using	Local	Tide	ApproximaQon	(Ip	&	Schmidt	
2017)	goes	in	this	direcQon.	



Concluding	remarks	



Short	term	goals	
	

•  Improve	fNL	limits	from	CMB	(Planck)	with	polarizaQon	&	full	data	
•  Look	for	more	non-Gaussian	shapes,	scale-dependenf	fNL,	etc.	...	
•  Make	use	of	bispectrum	in	3D	data	
•  Improve	constraints	on	gNL		

Long	term	goals	
	

•  reconstruct	inflaQonary	acQon	
•  if	(quadraQc)	NG	turns	out	to	be	small	for	all	shapes	go	on	and	search	for	

fNL	~	1	non-linear	GR	effects	and	second-order	radiaQon	transfer	funcQon	
contribuQons.	For	LSS	resort	to	GR-based	N-body	simulaQons!	



ü  InflaQon	provides	a	causal	mechanism	for	the	generaQon	of	
cosmological	perturbaQons	

		
ü  CMB	and	LSS	data	fully	support	the	detailed	predicQons	of	inflaQon	

ü  The	direct	detecQon	of:	

F  primordial	gravitaSonal	waves		
	
F  primordial	non-Gaussianity	

							with	the	specific	features	predicted	by	inflaQon	would	provide	
strong	independent	support	to	the	model	


