

SZ clusters as cosmological probes

Jean-Baptiste Melin CEA Saclay, France

Le CMB de A à Z, XIII^{ème} Ecole de Cosmologie, Cargèse

2017 November 12-18

Outline

- Galaxy clusters, the Sunyaev-Zel'dovich (SZ) effect, blind SZ catalogues
- Cosmology from SZ cluster counts
- Solutions to the tension?

Galaxy clusters

http://www.projet-horizon.fr/rubrique38.html

Galaxy clusters

- Galaxies
 - 10-1000 per cluster
 - M_{gal} ~ 0.02 M_{cluster}
- Gas
 - Hydrogen, helium
 - $T_{gas} \sim 10^{7-8} \text{ K}, 1-10 \text{ keV}$
 - M_{gas} ~ 0.1 M_{cluster}
- Dark matter
 - R_{cluster} ~ 1 Mpc
 - M_{cluster} ~ 10¹⁴ 10¹⁵ M_{\odot}

Abell 1689

http://chandra.harvard.edu/photo/2008/a1689/

Galaxy clusters

- Galaxies [optical]
 - 10-1000 per cluster
 - M_{gal} ~ 0.02 M_{cluster}
- Gas [X-ray, SZ effect]
 - Hydrogen, helium
 - $T_{gas} \sim 10^{7-8} \text{ K}, 1-10 \text{ keV}$
 - M_{gas} ~ 0.1 M_{cluster}
- Dark matter [lensing]
 - R_{cluster} ~ 1 Mpc
 - $\,M_{cluster}\,{\sim}\,10^{14}-10^{15}\,\,M_{\odot}$

http://enfantvege.canalblog.com/archives2012/05/21/24294587.html

Sunyaev and Zeldovich 1970,1972

Sunyaev and Zeldovich 1970,1972

Sunyaev and Zeldovich 1970,1972

Credit: ACT

Credit: SPT, K. Vanderlinde

Credit: ESA

★ SZ flux (\propto gas mass) closely related to total mass → clean detection

★ SZ flux (∝ gas mass) closely related to total mass → clean detection

★ SZ flux (\propto gas mass) closely related to total mass → clean detection

★ SZ effect independent of redshift → detection of high redshift clusters

Most massive clusters in the Universe in 0.5 < z < 1 detected by Planck Tens of massive clusters in 1 < z < 2 detected by SPT

The SZ Matched Multi-Filter (MMF)

Planck maps

adopted by the three collaborations (Planck, SPT, ACT)

The SZ Matched Multi-Filter (MMF)

Planck maps

S/N=5.9

Matched filtered SZ map

Matched filtered SZ map

S/N=5.9

MMF used for Planck Coll. 2011 VIII (ESZ) Planck Coll. 2013 XXIX (PSZ1) Planck Coll. 2015 XXVII (PSZ2) Blind SZ catalogues

1653 SZ sources with S/N>4.5 (35,000 deg²)

Planck Collaboration XXVII 2015

Main properties of the three catalogues

Warning: non-uniform redshift knowledge for Planck, PSZ2 should contain z>0.6 objects not visible here (optical follow-up still on-going)

Outline

 Galaxy clusters, the Sunyaev-Zel'dovich (SZ) effect, blind SZ catalogues

- Cosmology from SZ cluster counts
- Solutions to the tension?

Cosmology from cluster counts

Cluster abundance and evolution are very sensitive to cosmological parameters $\sigma_8 \ \Omega_m$

 \rightarrow independent from primary CMB, BAO, SNIa

The cosmological samples

Highly reliable candidate sub-samples + Selection function under control

The Planck SZ cosmological analysis

Observations
$$\frac{dN}{dz}$$
 (need redshifts !)TO BE COMPARED WITHPredictions $\frac{dN}{dz} = \int d\Omega \int dM_{500} \hat{\chi}(z, M_{500}, l, b) \frac{dN}{dz \, dM_{500} \, d\Omega}$ \uparrow
completeness \uparrow
mass function
Tinker et al. 2008
Watson et al. 2013

Completeness (z, M₅₀₀)

from (θ_{500} , Y_{500}) to (z, M_{500})

$$\hat{\chi} = \int dY_{500} \int d\theta_{500} P(z, M_{500} | Y_{500}, \theta_{500}) \chi(Y_{500}, \theta_{500}, l, b)$$
function of (z, M₅₀₀)
need scaling laws
depends on cosmology
need scaling laws
depends on cosmology
independent of cosmology

Completeness (Y_{500}, θ_{500})

 $\chi(Y_{500},\theta_{500},l,b)$

Completeness (z, M₅₀₀)

from (θ_{500} , Y_{500}) to (z, M_{500})

$$\hat{\chi} = \int dY_{500} \int d\theta_{500} P(z, M_{500} | Y_{500}, \theta_{500}) \chi(Y_{500}, \theta_{500}, l, b)$$
function of (z, M₅₀₀)
need scaling laws
depends on cosmology
need scaling laws
depends on cosmology
independent of cosmology

Scaling laws

from (θ_{500} , Y_{500}) to (z, M_{500})

$$\bar{\theta}_{500} = \theta_* \left[\frac{h}{0.7} \right]^{-2/3} \left[\frac{(1-b) M_{500}}{3 \times 10^{14} M_{sol}} \right]^{1/3} E^{-2/3}(z) \left[\frac{D_A(z)}{500 \text{ Mpc}} \right]^{-1},$$
$$E^{-\beta}(z) \left[\frac{D_A^2(z) \bar{Y}_{500}}{10^{-4} \text{ Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) M_{500}}{6 \times 10^{14} M_{sol}} \right]^{\alpha}$$

Scaling laws

from (θ_{500} , Y_{500}) to (z, M_{500})

$$\bar{\theta}_{500} = \theta_* \left[\frac{h}{0.7} \right]^{-2/3} \left[\frac{(1-b) M_{500}}{3 \times 10^{14} M_{sol}} \right]^{1/3} E^{-2/3}(z) \left[\frac{D_A(z)}{500 \text{ Mpc}} \right]^{-1}$$
$$E^{-\beta}(z) \left[\frac{D_A^2(z) \bar{Y}_{500}}{10^{-4} \text{ Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) M_{500}}{6 \times 10^{14} M_{sol}} \right]^{\alpha}$$

α, Y* determined on X-ray data

Scaling laws

from (θ_{500} , Y_{500}) to (z, M_{500})

$$\bar{\theta}_{500} = \theta_* \left[\frac{h}{0.7} \right]^{-2/3} \left[\frac{(1-b) M_{500}}{3 \times 10^{14} M_{sol}} \right]^{1/3} E^{-2/3}(z) \left[\frac{D_A(z)}{500 \text{ Mpc}} \right]^{-1},$$
$$E^{-\beta}(z) \left[\frac{D_A^2(z) \bar{Y}_{500}}{10^{-4} \text{ Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) M_{500}}{6 \times 10^{14} M_{sol}} \right]^{\alpha}$$

1-b : bias between X-ray and true mass $M_{500,x}=(1-b)M_{500}$

Simulations indicate 1-b=0.8 (but high dispersion !) We used 1-b=0.8 with a flat prior in [0.7,1] **in 2013**

Mass bias priors 2015

Von der lin	den et al. 2014 Hoel	kstra et al. 20	15
R		1	
	Prior name	Quantity	Value & Gaussian errors
	Weighing the Giants (WtG)	1 – b	0.688 ± 0.072
	Canadian Cluster Comparison		
	Project (CCCP)	1 - b	0.780 ± 0.092
	CMB lensing (LENS)	1/(1-b)	0.99 ± 0.19
	Baseline 2013	1 - b	0.8 [-0.1, +0.2]

Notes. CMB lensing directly measures 1/(1 - b), which we implement in our analysis; purely for reference, that constraint translates approximately to $1 - b = 1.01^{+0.24}_{-0.16}$. The last line shows the 2013 baseline — a reference model defined by 1 - b = 0.8 with a flat prior in the [0.7, 1] range.

NEW (CMB halo lensing) !!!

Hasselfield et al. 2013

De Hann et al. 2016

Outline

 Galaxy clusters, the Sunyaev-Zel'dovich (SZ) effect, blind SZ catalogues

- Cosmology from SZ cluster counts
- Solutions to the tension?

How to reconcile Planck CMB and SZ counts?

- Mass calibration? $P(z, M_{500}|Y_{500}, \theta_{500})$
- New physics? Neutrino mass?
- Baryonic effects in the mass function? $\frac{dN}{dz \, dM_{500} \, d\Omega}$
- Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$
- Primary CMB?

How to reconcile Planck CMB and SZ counts?

- New physics? Neutrino mass?
- Baryonic effects in the mass function? $\frac{dN}{dz \, dM_{500} \, d\Omega}$
- Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$
- Primary CMB?

Tension can disappear if primary CMB is used with clusters to constrain the Y-M normalisation and cosmo parameters jointly

→1-b=0.58 ± 0.04

larger $\sum m_{\nu}$ further reconciles the results. When we combine the SPT_{CL} and *Planck*+WP datasets with information from baryon acoustic oscillations and supernovae Ia, the preferred cluster masses are 1.9 σ higher than the $Y_{\rm X}$ calibration and 0.8 σ higher than the σ_v calibration. Given the scale of these shifts (~44% and ~23% in mass, respectively), we execute a goodness of fit test; it reveals no tension, indicating that the best-fit model provides an adequate description of the data. Using the

Direct constraints on 1-b

Salvati et al. 2017

How to reconcile Planck CMB and SZ counts?

• Mass calibration? $P(z, M_{500}|Y_{500}, \theta_{500})$

New physics? Neutrino mass?

- Baryonic effects in the mass function? $\frac{dN}{dz \, dM_{500} \, d\Omega}$
- Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$
- Primary CMB?

Planck CMB+SZ and the neutrino masses

Planck SZ: a non-zero neutrino mass helps but...

Planck Results XXIV 2015

How to reconcile Planck CMB and SZ counts?

- Mass calibration? $P(z, M_{500}|Y_{500}, \theta_{500})$
- New physics? Neutrino mass?

- Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$
- Primary CMB?

Baryonic effects in the mass function

- Cui et al. 2012 → increase in cluster counts
- Velliscig et al. 2014 \rightarrow 20% decrease in cluster counts
- Martizzi et al. 2014 → 5-10% decrease in cluster counts
- Cusworth et al. 2014 → 15% decrease in cluster counts
- Bocquet et al. 2015 \rightarrow no effect on cluster counts

How to reconcile Planck CMB and SZ counts?

- Mass calibration? $P(z, M_{500}|Y_{500}, \theta_{500})$
- New physics? Neutrino mass?
- Baryonic effects in the mass function? $\frac{dN}{dz \, dM_{500} \, d\Omega}$

• Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$

• Primary CMB?

Selection function of SZ surveys?

Planck Results XX 2013

The Cai & De Zotti dust model

Model based on Herschel data of field and cluster galaxies (Alberts et al. 2014, 2016) and on luminosity functions and spectral energy distributions from Cai. et al. 2013

No cross-check with Planck 857GHz & no information on spatial distribution

PSZ2 distribution and Cai & De Zotti model (0<z<1)

Melin et al. submitted to A&A

Dust in clusters: best fits

Melin et al. submitted to A&A

External slope of the fitted GNFW profile

Dust in clusters: impact on survey completeness

Melin et al. submitted to A&A

Maximum: ~<9% loss in [0.5,0.8]

Negligible shifts in cosmological parameters Does not help to reconcile low-z and high-z counts

How to reconcile Planck CMB and SZ counts?

- Mass calibration? $P(z, M_{500}|Y_{500}, \theta_{500})$
- New physics? Neutrino mass?
- Baryonic effects in the mass function? $\frac{dN}{dz \, dM_{500} \, d\Omega}$
- Selection function of SZ surveys? $\chi(Y_{500}, \theta_{500}, l, b)$

Primary CMB anisotropies actually constrain A_se^{-2τ} (see E. Komatsu's lecture)

	Planck		Planck+lensing		Planck+WP	
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
$\Omega_{ m b} h^2$	0.022068	0.02207 ± 0.00033	0.022242	0.02217 ± 0.00033	0.022032	0.02205 ± 0.00028
$\Omega_{ m c}h^2$	0.12029	0.1196 ± 0.0031	0.11805	0.1186 ± 0.0031	0.12038	0.1199 ± 0.0027
100θ _{MC}	1.04122	1.04132 ± 0.00068	1.04150	1.04141 ± 0.00067	1.04119	1.04131 ± 0.00063
τ	0.0925	0.097 ± 0.038	0.0949	0.089 ± 0.032	0.0925	$0.089^{+0.012}_{-0.014}$
<i>n</i> _s	0.9624	0.9616 ± 0.0094	0.9675	0.9635 ± 0.0094	0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_{\rm s})$	3.098	3.103 ± 0.072	3.098	3.085 ± 0.057	3.0980	$3.089^{+0.024}_{-0.027}$
$\overline{\Omega_{\Lambda}}$	0.6825	0.686 ± 0.020	0.6964	0.693 ± 0.019	0.6817	$0.685^{+0.018}_{-0.016}$
$\Omega_{\rm m}$	0.3175	0.314 ± 0.020	0.3036	0.307 ± 0.019	0.3183	$0.315^{+0.016}_{-0.018}$
σ_8	0.8344	0.834 ± 0.027	0.8285	0.823 ± 0.018	0.8347	0.829 ± 0.012

Planck Results XVI **2013**

Planck Results XIII 2015

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	-
$\overline{\Omega_{\mathrm{b}}h^2\ldots\ldots\ldots\ldots}$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	_
$\Omega_{\rm c} h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	Planck+WP
100 <i>θ</i> _{MC}	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	68% limits
τ	0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.02205 ± 0.00028
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	0.02203 ± 0.00023 0.1199 ± 0.0027
<i>n</i> _s	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	1.04131 ± 0.00063
H_0	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	0.089 ^{+0.012} _{-0.014}
$\Omega_{\Lambda} $	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.9603 ± 0.0073
$\Omega_m \ldots \ldots \ldots \ldots \ldots$	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	$3.089^{+0.024}_{-0.027}$
$\Omega_{\rm m} h^2$	0.1426 ± 0.0020	0.1415 ± 0.0019	0.1413 ± 0.0011	0.1427 ± 0.0014	$0.685^{+0.018}_{-0.016}$
$\Omega_{\rm m}h^3$	0.09597 ± 0.00045	0.09591 ± 0.00045	0.09593 ± 0.00045	0.09601 ± 0.00029	$0.315_{-0.018}^{+0.016}$
σ_8	0.829 ± 0.014	0.8149 ± 0.0093	0.8154 ± 0.0090	0.831 ± 0.013	0.829 ± 0.012
$\sigma_8\Omega_{ m m}^{0.5}\dots\dots\dots$	0.466 ± 0.013	0.4521 ± 0.0088	0.4514 ± 0.0066	0.4668 ± 0.0098	
$\sigma_8 \Omega_{ m m}^{0.25}$	0.621 ± 0.013	0.6069 ± 0.0076	0.6066 ± 0.0070	0.623 ± 0.011	Planck Results XVI 2013

TT,TE,EE+lowP 68% limits 0.02225 ± 0.00016 Planck Intermediate Results XLVII 2016 0.1198 ± 0.0015 Planck+WP 1.04077 ± 0.00032 68% limits $\tau = 0.058^{+0.012}_{-0.012}$ lollipop+PlanckTT; (5) 0.079 ± 0.017 0.02205 ± 0.00028 3.094 ± 0.034 0.1199 ± 0.0027 0.9645 ± 0.0049 1.041<u>31 ± 0.0</u>0063 $0.089^{+0.012}_{-0.014}$ Lollipop + Planck TT lowP + Planck TT 67.27 ± 0.66 0.9603 ± 0.0073 0.6844 ± 0.0091 0.12 $3.089^{+0.024}_{-0.027}$ 0.3156 ± 0.0091 0.09 $0.685^{+0.018}_{-0.016}$ 0.1427 ± 0.0014 0.06 $0.315\substack{+0.016\\-0.018}$ 0.09601 ± 0.00029 0.03 0.829 ± 0.012 0.831 ± 0.013 3.003.053.103.15 $\ln(10^{10}A_s)$ 0.945 0.960 0.975 0.78 0.81 0.84 0.87 σ_8 n_s 0.4668 ± 0.0098 Planck 0.623 ± 0.011

F

Planck Results XIII 2015

Results XVI 2013

Planck Results XIII 2015

First conclusions

- ACT, SPT and Planck cluster constraints are in good agreement The size/depth of the samples are different and the analyses made independently
- SZ constraints are limited by uncertainties on scaling relations (Y-M)
- Mass scale (1-b) is the key now.
 Simulation studies, Shear measurements, CMB halo lensing

• Future experiments (eROSITA 2016, Euclid 2020) will provide additional data which will allow a 1% mass scale calibration

Outline

- SZ power spectrum
- Kinetic SZ

• CMB halo lensing

• Dust

SZ maps & power spectrum

SZ maps & power spectrum

Cosmological constraints consistent with SZ cluster counts

Cross Correlation Studies: tSZ x CMB lensing

→Constraints on the normalization of the Y-M relation (crucial for cosmology with clusters)

Hill & Spergel (2014)

Outline

• SZ power spectrum

• Kinetic SZ

• CMB halo lensing

• Dust

kSZ cosmological constraints

prediction from ΛCDM 300 250 200 Z 150 100 50 0 0 -10 0 20 30 40 v^2 (100 km s⁻¹)² Planck Intermediate Results LIII 2017

Looking for the variance of cluster velocities

Lacking both resolution and sensitivity...

kSZ cosmological constraints

Looking for the variance of cluster velocities

prediction from Λ CDM 300 In studies of peculiar velocity fields, the most relevant quantity is the linear line-of-sight velocity (v), or in other words $\langle v^2 \rangle^{1/2}$. We find $\langle v^2 \rangle^{1/2} = (390 \pm 270) \,\mathrm{km \, s^{-1}}$ 68% CL) for the 2D-ILC map. One can see that the value we find is consistent with the velocity dispersion estimated through studies of the peculiar velocity field (e.g., Riess 2000; Turnbull et al. 2012; Ma & Scott 2013; Carrick et al. 2015). -10 0 0 20 30 40

 v^2 (100 km s⁻¹)²

Planck Intermediate Results LIII 2017

Lacking both resolution and sensitivity...

kSZ cosmological constraints: pairwise momentum

SDSS and ACT - Hand et al. 2012 (see also De Bernardis et al. 2017)

DES and SPT - Soergel et al. 2016

Outline

- SZ power spectrum
- Kinetic SZ
- CMB halo lensing
- Dust

(see also A. Lewis' lecture and S. Patil's talk)

Unlensed CMB

(see also A. Lewis' lecture and S. Patil's talk)

Lensed CMB

A2163 simulation

Lensed CMB +5arcmin beam

2.5 deg

A2163 simulation

Lensed CMB +5arcmin beam +instrumental noise

A2163 simulation

Planck @ 143GHz SZ! 2.5 deg

Cluster CMB lensing: application to Planck data

Planck Coll. 2015 XXIV

Cluster CMB lensing: future surveys

Melin & Bartlett 2015 arXiv:1408.5633

does not take into account ability to eliminate contaminating signals

Cluster CMB lensing: future surveys

Melin & Bartlett 2015 arXiv:1408.5633

does not take into account ability to eliminate contaminating signals

Outline

- SZ power spectrum
- Kinetic SZ
- CMB halo lensing

Population Studies

Planck Collaboration XI (2013)

Planck Collaboration XI (2013)

Large-Scale Structure: QSO

Verdier et al. 2016

Radio-quiet subsample (no FIRST counterpart)

LSS science & millimetre surveys

Baryons **Constant** Dark Matter

tSZ (large cluster catalogue)
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓
 ✓

Velocities? ---> kSZ & pSZ

Far-IR (dust)
 Baryon physics? → hot gas, stars
 tSZ & tSZrel

LSS science & millimetre surveys

Baryons **Constant** Dark Matter

Require sensitivity, resolution (at least Planck resolution), large frequency coverage (>350 GHz)