

Designing a CMB experiment

- 1. CMB photons
- 2. CMB detectors
 2.1 Coherent detection techniques
 2.2 Incoherent detectors: TESs, KIDs
- 3. CMB instruments design

2.2 Coherent detection techniques: Kinetic Inductance Detectors (KIDs)

- Recent development: P. Day et al., Nature 2003
- Very fast developments
- Kinetic inductance variation of a superconducting absorber in a resonant circuit

Some slides from Andrea Tartari (INFN Pisa) and Alessandro Monfardini (IN Grenoble)

Superconductivity: what happen below T_c?

- Microscopic theory: Bardeen-Cooper-Schrieffer (BCS)
 - Coulomb interaction between electrons: shielded by crystal lattice
 - Coupling of 2 electrons with energy close to the Fermi level by phonon exchange
- Results = boson = "Cooper pair"
 - \blacktriangleright Mass = 2m_e
 - Charge = 2e
 - > Binding energy: $2\Delta \approx 3.5k_BT_c$ $2\Delta(T) \sim \text{fraction of meV}$ (detector case)
 - Typical size (coherence length):
 #1µm (depends on material)
 - Dissipation less movement

Kinetic inductance

- Cooper pairs:
 - Coherent movement due to E field
 - Without any collision
 - High kinetic energy
 - \checkmark Acts as an additional inductive term:

$$U_k = \frac{1}{2} \int_V m_s n_s v^2 dV = \frac{1}{2} L_k l^2$$

> In practice: $L_{tot} = L_{geo} + L_k$

(Andrea Tartari)

Kinetic Inductance Detectors

(Microwave Kinetic Inductance Detectors MKIDs)

- LC resonant circuit
- Effect of photon absorption:
 - > If $hv > 2\Delta$: Cooper pair breaking
 - Change of kinetic inductance and ohmic losses
 - Change of resonance
 - ✓ Shift in resonant frequency:
 - $1/\sqrt{C(L_m+L_k)}$

 $\checkmark\,$ Decrease of the quality factor

• Al KIDs: $T_c \approx 1.1 \text{K so } \nu > 100 \text{GHz}$ > T < T_c/10

MKIDs: realisation of resonant circuit

• 2 solutions:

Short circuit at $\lambda/4$ (Mazin)

MKID resonance

MKIDs: readout system

• Excitation with multiple frequencies:

MKIDs noise

- Generation-recombination noise (GR):
 - fluctuations in the number density of quasiparticles (e-) from optical and thermal excitations
 - ✓ Low T required to reduce the number of quasiparticles (T<200mK) to reduce the thermal part
 - > Optical part:

 $NEP_{GR}^{2} = \frac{2\Delta P}{\eta_{pb}} \qquad \text{[Yates et al., arXiv:1107.4330v1]}$

- ✓ η_{pb} : efficiency of converting energy into quasiparticles
 - $\circ \eta_{pb} = 1$ for photon energy close to 2Δ
 - $\circ~$ Approach 0.57 for photon energy higher than 2Δ
- ✓ Depends on power background P

MKIDs: examples

• Aluminium MKIDs ($T_c=1.1K$)

- NIKA instrument (Néel IRAM KIDs Array)
 - > 132 pixels at 150 GHz at 100mK
 - > 224 pixels at 240GHz at 100mK
 - IRAM 30m telescope
 - ▶ NEPs $\approx 8.10^{-17}$ W/ \sqrt{Hz} at 150GHz

NIKA 2 @ 30m IRAM telescope (Néel IRAM KIDs Array)

- 6.5 arc-min FoV (\equiv IRAM 30m)
- Close to background-limited
- Dual-band imaging + polarization
- Derived from NIKA R&D

- Dual-band (1.25mm and 2mm)
- Polarization @ 1.25mm
- KID Arrays Detectors:
 - 1000 pixels @ 2mm
 - 2 × 2000 pixels @ 1.25mm

Antenna coupled KIDs

Efficiency still limited... R&D ongoing

APC (Alessandro Traini)

KIDs fast evolution

MKIDs: conclusions

- Very promising detector
 - Very fast and active developments around the world
- Advantages:
 - Easier to manufacture than TESs
 - Multiplexing easier than TESs
 - Faster than TESs
- Difficulties:
 - Lower TRL wrt TES
 - > No real full polarimeter up to now
 - No sensitivity below ~110GHz (Al KIDs)
 - Readout power consumption

System aspects

- Detectors sensitivity ~ 10⁻¹⁷W to 10⁻¹⁸W
- Instrumental design
 - Risk of sensitivity degradation
- The whole system has to be designed carefully!
 - System approach
 - Detectors to be tested with their subsystems in realistic conditions

Detectors trade-offs

Color code:	Meet specs Limitati	on Critical
	TESs	KIDs
Sensitivity		R&D
Frequency range		Limited by energy gap
Time constant	ms range	Fraction of ms
Multiplexing	Complex at cold T	Natural
Fabrication complexity	10's process steps	Few steps
Sensitivity to Cosmic Rays	Balistic phonons	R&D
Power consumption	Low freq. electronics	Engineering
Pol sensitivity	Antenna coupled	R&D
Sensitivity to δT	Bath temperature	
Sensitivity to B	Readout (SQUIDs)	Intrinsic sensitivity
TRL	TESs: 5-6	3-4