

Designing a CMB experiment

- 1. CMB photons
- 2. CMB detectors
 - 2.1 Coherent detection techniques
 - 2.2 Incoherent detectors: TESs, KIDs
- 3. CMB instruments design

A CMB instrument

- Detectors:
 - Incoherent detectors: TESs or KIDs
 - 1000's detectors needed to increase sensitivity
 - T<300mK: cryogenics needed!</p>

Beam on the sky?

- Fraunhoffer diffraction:
 - > Point Spread Function: $PSF \propto |TF[E_a(x,y)]|^2$
 - $\checkmark\,$ Response of the optics to a point source
 - ✓ $E_a(x,y)$: scalar E field in the aperture (the primary optical element)
- Analysis method: use of time reversal
 - Photon source in place of the detector
 - > Illumination of the telescope: $E_a(x,y)$
 - \checkmark Depends on the detector radiation coupling method
 - PSF estimation

Detector optical coupling: filled array

- ~Uniform illumination:
 - PSF=Airy disc
 - \succ θ = λ/D or f_#λ on focal plane
- CCD-like: pixel size $\leq 0.5 \times f_{\#}\lambda$
 - $\begin{array}{ll} \blacktriangleright & \mbox{Correct sampling of the sky} \\ \checkmark & \mbox{Imply } f_{\#} \approx 2 \mbox{ since pixel size } {\sim} \lambda \end{array}$
 - Fast mapping speed
 - Large number of detectors
 - High sensitivity needed
 - Diffraction limited: sum of all pixels covering the Airy disc
- The detector sees about π sr!
 - Requires a cold enclosure (less than 1K)
 - Background power to be controlled in order to reduce photon noise

[Griffin et al., Applied Optics, 41, 6543, 2002]

The need to control the total detector solid angle

- Example of QUBIC
 - Focal plane detectors: filled array
 - ✓ Bolometric « CCD »
 - $\checkmark\,$ Detectors are sensitive to $\pi\,sr$

• Estimated power background:

Environment T	Power from the sky	Power increase without cold stop	Power increase with cold stop
4K	6.5pW	2pW	o.2pW
6K	6.6pW	4.5pW	o.5pW
10K	6.7pW	ıopW	ıрW

Detector optical coupling: horns

- Horn+telescope define the beam pattern on the sky
- Singlemoded horn: $A\Omega = \lambda^2$
 - Quasi-gaussian beam pattern
 - \succ Optimal horn diameter of about $2 f_{\!\#} \lambda$
 - ▶ Beam pattern given by diffraction limit: $\geq \lambda/D$
 - ✓ Depends on edge taper
 - Controlled detector solid angle
 - ✓ Horn cooled to <4K

[Griffin et al., *Applied Optics*, 41, 6543, 2002]

Mapping with horns

- Beam patterns do not overlap in the sky
 - Requires pointing change to sample the sky (Nyquist criteria)
 - Reduced mapping speed

Antenna coupled detectors

- Antenna directivity = degree to which the radiation received (or emitted) is concentrated in a single direction
 - Importance of controlling the total antenna solid angle
- Use of lenslet or phased-array to increase directivity
 - Situation similar to horns
 - Sidelobes less well controlled
 - > Need of a cold enclosure or a stop

Telescope coupling with lenslet

- Use of a lenslet to increase the antenna directivity
 - PolarBear design (Berkeley)

Use of a cold aperture stop with antenna coupled detectors

• Example of PolarBear instrument:

Far sidelobes

• Sensitivity of your instrument to unwanted directions

Far sidelobes requirements

- Sidelobe rejection needed to induce a parasitic signal lower than 6onK_{CMB} (assuming 30 arcmin resolution):
 - Ground-based experiment at 150GHz: ground rejection ~10⁻¹⁵
 - Space instrument at 150GHz:

Orbit	Source	Max normalised side lobe level
L2	Earth	-99dB
	Moon	-89dB
	Sun	-113dB
LEO	Earth	-150dB
	Moon	-98dB
	Sun	-113dB

Far sidelobes

(qB)

Beam

- Calculation at 150GHz
 1.5m telescope
- Better angular resolution:
 Filled array
- Lower sidelobes: Horn coupled
- Need for extra shielding

Detector coupling trade-offs

C	olor code: Meet spe	cs Limitation	Critical
	Horn coupled	Antenna coupled	Filled array
Angular resolution	Need a larger telescope (edge taper)		
Bandwidth		Di or tri-chroic	
Mapping speed			
Detector number			
Ω_{det} control		Need of a cold	aperture stop
Far sidelobes control	Gain from edge taper		
Weight			
TRL	9 (Planck)	5	9 (Herschel-PACS)

Reflecting optics

• Example of Planck

• Pro:

- > Light
- Compactness
- No chromatic aberrations
- High TRL (Planck, WMAP)

• Cons:

- Difficult to get low f-number
- > Difficult to design a proper re-imaging optics
- High beam ellipticity due to off-axis and large FOV

Refractive telescope

- Example of BICEP2:
 - High Density Polyethylene (HDPE) lenses
- Pro:
 - On axis system
 - ✓ Lower beam ellipticity
 - ✓ Lower aberrations
 - Low f-number feasible

Cons:

- AR coating needed
- Chromatic aberrations
- Difficult to produce large lenses
- Weight (thick lens needed)

Consequences of aberrations: frequency bands repartition

Telescope temperature?

• Assumptions:

Characteristics	Ground-based	Space
Atmosphere	250K, ε=2%-10%	NA
Telescope	240K, ε=2%	50K, ε=1%
Filters	10K, ε=10%	4K, ε=10%
Horns	4K, ε=10%	
Detector NEP	10^{-17} W.Hz ^{-0.5}	3.10^{-18} W.Hz ^{-0.5}
Global efficiency	40%	
Bandwidth $\Delta v/v$	30%	

Telescope temperature? power background

Telescope trade-offs

Color co	ode: Meet specs	Limitat	ion Critical
	Reflective		Refractive
Aberrations	Off-axis, beam ellipticity, could be corrected with extra optics if volume		On-axis
Bandwidth			AR coating needed
Low f-number			
Re-imaging optics	Depends on availab	le volume	
Size			Limited to ~ 30cm
Weight			For cryogenics T
Losses			Depends on material
Modelling	GRASP		
TRL	9 (Planck, Hers	chel)	5

Thermal architecture and cryogenics: ground-based version

- QUBIC example
 - 300mK sufficient for TES ground based experiment
 - Atmosphere dominate power background
 - Fully electrical control of cryogenics
 - Hold time: 24h

Sub-K cryogenic trade-offs

Color code: Meet specs Limitation Critical			
	Sorption fridge	CCDR	ADR
Operating T	зоотК	100mK	100mK
Continuous op	Not available		R&D
Heat sink	1.5К (³ Не) 4К (4Не/ ³ Не)	1.7K	1.8K
Power consumption			
Size			
Weight			
Complexity			
TRL	9 (³ He Herschel) 6 (⁴ He/ ³ He)	3-4 (R&D)	9 (Astro-H) 3-4 (continuous)

Conclusions

- Complexity of CMB instrument
 - Very sensitive detectors
 - Complexe optics
 - Heavy cryogenics
- Not discussed:
 - ➢ Filters
 - Polarisation modulator
 - > Orbit
 - Scanning strategy
 - Calibration
 - > Telemetry
 - Spectroscopy...

Trade-offs are everywhere!

