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The work presented in this paper is dedicated to the cosmological constraints that can be ob-
tained from the thermal Sunyaev Zeldovich (tSZ) effect angular power spectrum. The numerical
computations of the tSZ power spectrum is carried out with a new module added to the Boltzmann
code CLASS which allows for a straightforward interfacing with the Markov Chain Monte Carlo
(MCMC) sampler Montepython. We revisit the Planck Collaboration constraints on the parameter
combination σ8

8
Ω3

m
, and show that the trispectrum contribution to the covariance matrix can not

be neglected for the measured multipoles ` . 1000, in agreement with a recent analysis by Horowitz
and Seljak. Unlike in the Planck analysis, the whole set of cosmological parameters are sampled
in our MCMC analysis, along with the mass bias B ≡ (1 − b)−1. The amplitude of the modelled
tSZ power spectrum is found to scale with the parameter combination: F ≡ σ8(Ωm/B)3/8h−1/5.
We present the constraints on the F -parameter from the Planck 2015 Compton-y parameter power
spectrum data: F = 0.487 ± 0.013. Interestingly, our best-fit tSZ power spectrum extrapolated at
` = 3000 matches perfectly the ACT/SPT data. To accommodate the SZ constraint on F with
Planck 2015 Cosmic Microwave Background (CMB) temperature anisotropy data, we find that the
mass bias has to be set to B = 1.61 ± 0.16, i.e. (1 − b) = 0.62 ± 0.06. In the last part of this
analysis, the dark energy equation of state is set as a free parameter, w. Although the current
tSZ data does not allow for the determination of w, we find that adding a prior on the Hubble
parameter h = 0.72± 0.03, corresponding to the latest local measurements, enables a constraint on
w that is competitive with the one obtained from the CMB lensing data. Our results for the wCDM
cosmology are: w = −1.13±0.14, σ8 = 0.819±0.041 and Ωm = 0.275±0.025, consistent with CMB
constraints.

I. INTRODUCTION

The Sunyaev Zeldovich (SZ) effect [1] is a frequency
dependent distortion of the cosmic microwave back-
ground (CMB) due to the inverse Compton scattering of
the CMB photons off the electrons in the intra-cluster
medium (ICM). The ICM is assumed to be a diffuse
plasma at hydrostatic equilibrium within the dark mat-
ter potential wells. There are two main components to
the SZ effect. One that is due to the internal motion
of the electrons, the so-called thermal SZ effect (tSZ),
and one caused by the bulk motion of the gas when the
cluster is moving with respect to the CMB rest-frame,
the so-called kinetic SZ effect (kSZ). The contribution
from the kSZ effect is at least one order of magnitude
smaller than the tSZ effect, when we compare the an-
gular anisotropy power spectra of the CMB temperature
anisotropy associated with each component. Therefore
the kSZ contribution is neglected in this work.

If we assume the electrons in the ICM gas to be non-
relativistic, the frequency dependence of the tSZ effect is
described by the spectral function

gν (x) = x coth (x/2)− 4, with x =
hν

kBTCMB

. (1)

This means that the temperature of the CMB photons

that transit across a galaxy cluster is shifted by

∆T

TCMB

= gνy, (2)

where the Compton-y parameter, which sets the ampli-
tude of the effect, contains the information relative to the
thermal properties of the ICM

y ≡
∫

ds
nekBTe

mec2
σT =

∫
ds

Pe

mec2
σT, (3)

where σT is the Thomson cross-section, ne and Pe are the
electron number density and pressure, respectively, and
ds is the line element along the line of sight.

The most recent measurements of the all-sky y-map
were performed by the Planck Collaboration in 2015.
Recall that the main products of the Planck mission
are temperature maps of the CMB at angular resolu-
tions from 33 arcmin to 5 arcmin, with nine frequency
bands centered at 30, 44, 70, 100, 143, 217, 353, 545 and
857 GHz. So, based on the tSZ spectral signature (1), it
is possible to extract two types of information from the
Planck maps.

First, one can apply a series of algorithms [2] to identify
individual clusters. The Planck collaboration reported
several hundreds of resolved clusters (RC) up to redshift
z ' 1 and within the mass range 1014 − 1015M�. The
mass of a candidate cluster is not directly accessible. It is



2

deduced from the scaling relation between the integrated
Compton-y contribution over the solid angle spanned by
the cluster,

Y ≡
∫
ydΩ (4)

and the over-density mass M500, with respect to the
critical density of the universe. By neglecting all con-
tributions due to non-gravitational processes, assuming
spherical collapse for the dark matter halo and hydro-
static equilibrium of the ICM, a simple model to relate
the physical parameters of clusters can be built [3]. The
integrated Compton parameter Y can be related to the
cluster total mass M through a simple power law. The
Y −M relation can then be tested against data and sim-
ulations [4]. However, not only hydrostatical equilibrium
may not be reached, due to non-thermal pressure in the
halo [5], there may also be issues related with systematics
of the X-ray observations that can affect the mass esti-
mate. To account for these facts, a free parameter, the
so-called mass bias B, is introduced in order to translate
M500 into the ‘true’ halo mass. As we shall see, the mass
bias plays a crucial role for the cosmological parameter
extraction from the tSZ effect.

Second, apart from the cluster catalogue, the wide sky
coverage and the multiple frequency bands of the Planck
mission allows to compute the all-sky Compton param-
eter y-map. This is done using the Modified Internal
Linear Combination Algorithm (MILCA) and Needlet In-
dependent Linear Combination (NILC) methods for com-
ponents separation [6, 7]. Then, the statistical properties
of the Compton y parameter can be analyzed in harmonic
space, in a way similar to the CMB temperature maps.
The main observable we consider here is the tow-points
correlator that yields the angular anisotropy power spec-
tra of the y-maps in harmonic space, denoted Cy

2

` . Note
that even low mass or not individually resolved clusters
also contribute to this observable, although they can not
be detected individually. Higher oder correlators have
also been considered in recent works [8, 9], but we chose
to not discuss them, as our main focus here is to iden-
tify the best constraints that can be set on our the cos-
mic evolution based on the tSZ power spectrum alone.
To estimate the angular power spectrum of the y-maps
it is necessary to correct for the beam convolution as
well as statistical noise due to mode-coupling induced by
masking foreground-contaminated sky regions. For the
SZ data, this is done by exploiting the XSPECT method
[10] that uses cross-power spectra between different y-
maps.

The final power spectrum obtained with this proce-
dure does not contain exclusively the contribution from
the tSZ effect associated with galaxy clusters, CtSZ

` . It
also contains a contribution from several foregrounds:
notably, the cosmic infrared background (CIB), radio
sources (RS) and infrared point sources (IR). Moreover,

on small angular scales (` & 1400) the y2 power spectrum
is dominated by correlated noise (CN). The frequency
dependence of the power spectra for these foregrounds
can be accurately estimated using the Full Focal Plane
(FFP6) simulations [11] and physically motivated models
[12]. Nevertheless, their normalisations remain undeter-
mined and have to be treated as free parameters. There-
fore, for the measured power spectrum Ĉy

2

` , we assume a
five components model:

Cy
2

` = CtSZ

` +ACIBC
CIB

` +AIRC
IR

` +ARSC
RS

` +ACNC
CN

` ,
(5)

where CCIB

` , CIR

` , CRS

` , CCN

` are the foreground contami-
nants, tabulated and reported in table V. (A hat refers
to the measured signal and no hat refer to the model.)

Since correlated noise largely dominates over other
foregrounds and the tSZ component at high multipoles,
its amplitude can be set by fitting the signal at ` = 2742:

ACN = Ĉy
2

2742/C
CN

2742 = 0.903, (6)

as can be computed with the numerical values in the
last line of table (V). This leaves three undetermined
foreground parameters, namely ACIB, AIR and ARS.

A crucial information can be extracted from the cat-
alogue of confirmed clusters detected via the SZ effect:
the power spectrum of the combined foregrounds can not
be larger than the difference between the measured total
power spectrum, Ĉy

2

` , and the power spectrum associ-
ated with the projection of the SZ signal from resolved
clusters on the y-map, ĈRC

` . If we neglect systematic and
statistical uncertainties, this means that the foreground
amplitudes have to satisfy the following inequality:

ACIBC
CIB

` +AIRC
IR

` +ARSC
RS

` +ACNC
CN

` < Ĉy
2

` −ĈRC

` . (7)

This condition is implemented in the maximum likelihood
analysis for the determination of cosmological parameters
based on the Planck 2015 SZ data, presented bellow.

The tSZ power spectrum CtSZ

` is modeled analytically,
following the halo model of Komatsu and Seljak [13]. It
is sensitive to the cosmological parameters, in particular:
the reduced Hubble constant, h = (H0/100) ; the am-
plitude of clustering, σ8 ; the matter density parameter
Ωm = 1 − Ωde; and the equation of state parameter of
dark energy, wde.

In the next section, the main steps of the calculation
of the tSZ power spectrum and its numerical implemen-
tation are recalled. This includes a discussion on the use
of the concentration mass relations for the virial mass to
overdensity mass conversion. In section III, we present
the settings of our MCMC analysis and we show the
importance of the non-gaussian contribution to the co-
variance matrix. Our results regarding cosmological con-
straints are given in section IV: we start by revisiting the
Planck 2015 analysis, then we include the trispectrum in
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the covariance matrix and finally we perform a MCMC
sampling were the mass bias as well as the six cosmolog-
ical parameters are varying. In the last part of section
IV, we explore the constraining power of the tSZ data
with respect to the equation of state parameter of dark
energy. In section V, we summarise our main results and
conclusions.

II. ANALYTICAL MODEL FOR THE THERMAL
SUNYAEV ZELDOVICH POWER SPECTRUM

In this section we describe our model for the compu-
tation of the tSZ angular power spectrum. The main in-
gredients are the halo mass function (HMF), the pressure
profile of the ICM and the linear matter power spectrum.
We consider only the 1-halo contribution, as the 2-halo
term contribution to the tSZ power spectrum is not sig-
nificant, given the precision of the current data, see e.g.
[14].

For the numerical calculations of the tSZ power spec-
trum (and trispectrum), we have developed a version
of class augmented with a tSZ module. The code is
dubbed class_sz and is available on the internet 1. Our
code agrees with the fortran code szfast [15] within one
percent for the the computation of the tSZ power spec-
trum.

The tSZ angular power spectrum is calculated via an
integration over mass and redshift of the two dimensional
Fourier transform of the halo pressure profile,

CtSZ

` =

∫ zmax

zmin

dz
dV

dz

∫ lnMmax

lnMmin

d lnM
dn

d lnM
|y` (M, z)|2 ,

(8)
where V is the comoving volume of the universe per stera-
dian. Its derivative with respect to redshift is expressed
as

dV

dz
= (1 + z)

2
dA (z)

2
cH0/H (z) . (9)

In our code, the integration over redshift is carried out
with a simple trapezoidal rule from zmin = 0 and up to
zmax = 6. At higher redshift the number density of halos
is vanishingly small. In fact setting zmax = 3 as in [16]
also gives accurate results.

The integration over the mass is performed using a
Gaussian quadrature method within the mass range de-
termined by

Mmin = 1011h−1M� and Mmax = 5× 1015h−1M�.
(10)

1 website: https://github.com/borisbolliet

The two dimensional Fourier transform of the halo pres-
sure profile reads as

y` =
σT

mec2
4πr500
`2500

∫ +∞

0

dxx2
sin (`x/`500)

`x/`500
Pe (x) , (11)

where x ≡ r/r500 with r the radial distance to the center
of the halo, r500 the radius of the sphere containing the
overdensity mass M500c with respect to the critical den-
sity of the universe, and `500 ≡ dA/r500 with dA (z) the
physical angular diameter distance at redshift z. For the
pressure profile, we use a standard generalized Navarro-
Frenk-White (NFW) functional:

Pe (x) = C × P0 (c500x)
−γ

[1 + (c500x)
α

]
(γ−β)/α

, (12)

where C is a dimension-full quantity that depends on the
over-density massM500c (via the Y −M scaling relation).
It is given by

C = 1.65h2
70

(H/H0)
8/3

[
h

70
M500c

3× 1014M�

]2/3+0.12

eV cm−3.

(13)
The reader is referred to Appendix D of [17] for further
details regarding this parametrization.

In our main analysis, the values of {γ, α, β, P0, c500} are
set to their best-fit values obtained within the Planck
2013 (P13) analysis of clusters X-ray data [18]. In
class_sz, the best-fit pressure profile of Arnaud et al
2010 (A10) [19], based on XMM Newton data set, is
also readily available. The user may also specify cus-
tom values of the NFW parameters. To account for the
differences in mass estimates from weak-lensing and X-
rays observation, we use a mass bias B to rescale the
over-density mass M500c used in the Fourier transform
if the pressure profile as M500c := M500c/B. Note that
this rescaling not only affects the normalization of the
pressure profile but also its scale dependence via `500.

Numerically, the integral in (12) is performed with
Romberg’s method between x = 10−6 and x = 10. To
speed up our MCMC analysis, since we were not inter-
ested in varying the NFW parameters in this work, we
have tabulated the Fourier transform of the P13 and A10
pressure profiles. The python code for the interpolation,
and the tabulations, can be found in the subdirectory
sz_auxiliary_files of class_sz.

The differential number density of halos in Eq. (8)
depends on both mass and redshift and is written as

dn

d lnM
= − 1

2f (σ)
ρm (zmin)

M

d lnσ2

d lnM
(14)

where σ2 is the variance of the matter over-density field
over a sphere of radius R (M, z) ≡ [3M/4πρm (z)]

1/3, i.e.

σ2 (M, z) ≡
∫ ∞

0

dk

k

k3

2π2
P (k, z)W (kR)

2 (15)
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where P (k) is the linear matter power spectrum, W is
the top-hat window function and f (σ) is the so-called
halo mass function (HMF) whose parametrisation can
be deduced from N-body simulations.

To simplify the task of accounting for the redshift de-
pendency, σ2 (M, z) can be factorized as

σ2 (M, z) = σ2 (M, zmin)× [D (zmin) /D (z)]
2 (16)

where D (z) is the linear growth rate for matter pertur-
bations.

Then, instead of σ2 (M, z), one can introduce an
auxiliary variable, ν (M, z), defined via ν (M, z) =
δ2crit/σ

2 (M, z), where δcrit = 1.6865 is the critical over-
density for spherical collapse [20]. Since the HMF, now
a function of ν, is generally parametrized in terms of the
over-density mass M

X
, we apply a chain rule:

dn

d lnM
=

d lnM
X

d lnM

dn (M
X
, z)

d lnMX

≈ d lnM
X

d lnM

1

8πR3

d lnσ2

d lnR
f (ν)

(17)

with R ≡ [3M
X
/4πρm (zmin)]

1/3, where ν := ν (M
X
, z)

and where we assumed d lnM
X
/d lnM ≈ 1 for the sec-

ond equality [15]. In fact, to write dn/d lnM in this
manner, an interpolation of σ2 (MX , zmin) = σ2 (R) is
needed for all masses M

X
between Mmin and Mmax, so

one can deduce ν and subsequently evaluate the HMF. A
similar interpolation for d lnσ2/d lnR is required. In our
code, to obtain the interpolating functions for σ2 and its
derivative, given the linear matter power spectrum P (k)
computed at z = zmin, we evaluate σ2 (R) at various radii
R between Rmin = 0.0034h−1Mpc (M1 ' 1.8 × 104M�)
and Rmax = 54.9h−1Mpc (M2 ' 7.5× 1016M�).

At each R within this range, the integral (15) is per-
formed with Romberg’s method. Eventually, the inter-
polation for σ2 and its derivative with respect to R is
obtained in terms of Chebyshev polynomials.

In class_sz, we have implemented four different pa-
rameterisations of the HMF: (i) the Bocquet et al. 2015
(B15) calibration obtained with the Magneticum sim-
ulations, that captures the impact of baryons [21], as
our main model; (ii) the Tinker et al. 2008 (T08)
parametrization which is based on GADGET2 simulations
[22]; (iii) the Tinker et al. 2010 (T10) calibration, an
updated version of T08 [20] ; (iv) the Jenkins et al. 2001
(J01) parameterisation [23]. For instance, B15 or T08
HMF’s are expressed as

f (σ) = A

[(σ
b

)−a
+ 1

]
exp

(
− c

σ2

)
, (18)

with σ = δcrit/
√
ν. The phenomenological parame-

ters entering the HMF’s are redshift dependent. The

redshift dependency is generally parameterized via p =
p0 (1 + z)

pz for a parameter p = A, a, b, c.
Like we saw in formula (17), the HMF is specified in

terms of the over-density mass M
X
. This could be e.g.

M
200m

(over-density with respect to the mean matter den-
sity), M180m as for the J01 HMF, or M500c (over-density
with respect to the critical density). Different strategies,
corresponding to different choices ofM

X
for the the HMF

have been employed for the calculation of the tSZ power
spectrum:

• The Planck Collaboration [8], as well as the authors
of [9, 16], have chosen to perform the integral in (8)
with the massM being understood asM

500c
. Then,

no conversion is needed to compute the pressure
profile which takes M

500c
as an input. The HMF

chosen by the authors of the aforementioned papers
is always T08. In the Tinker et al article [22] (and
in the reference for the updated T10 HMF too), the
parameters of the HMF are tabulated for different
over-density masses. Hence, by an interpolation, it
is possible to deduce the HMF parameters values
corresponding to M500c . This procedure is one of
the implementations available in class_sz, and we
refer to the code for further details on the conver-
sion and interpolation.

• In szfast based articles, such as [14, 15, 21], the
mass being integrated over is the virial mass Mvir .
A conversion from the virial mass to the over-
density mass is needed twice: for the HMF and
for the pressure profile. The conversion is carried
out using the Concentration-Mass (CM) relation
for dark matter halos, such as the one obtained in
Duffy et al 2008 (D08) [24]. In class_sz, we have
implemented several CM relations, including D08,
Klypin et al 2010 (K10) [25], Sanchez-Conde et al
2014 (SC14) [26] and Zhao et al 2009 (Z09) [27].
Again, for further details regarding the conversion
method the reader is refered to our code.

These two strategies have led to different conclusions
regarding the cosmological parameter constraints ob-
tained from the SZ power spectrum data. In particular,
szfast based analysis have found a higher value of σ8

than the Planck Collaboration, by about two standard
deviations. Here we show that this discrepancy is not
due to the use of different HMF as claimed in [21] but,
in fact, to the ambiguity of the use of the CM relation.

On figure 1 we present the tSZ power spectrum com-
puted in different setting. First, we observe on the top-
left panel that the choice of the pressure profile is of no
importance for ` < 103. Second, on the top-right panel
we see that the choice of the HMF does affect slightly
the amplitude of the power spectrum. It is true that B15
yields a smaller power spectrum than T08 or T10 when
the HMF are evaluated at M200m , but this difference is
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too small to explain the discrepancy on the σ8 constraints
obtained by the Planck Collaboration and szfast based
analysis. The bottom panels correspond to the tSZ power
spectrum computed using T08 HMF at the over-density
mass M

1600m
(left panel) and M

200m
(right panel) for sev-

eral CM relations. This means that the mass integration
is performed over the virial mass, converted to the over-
density mass M200m or M1600m for the HMF and to M500c

for the pressure profile, via the CM relations. When the
HMF is specified at M

1600m
, all the results are consistent

for the multipole range of interest ` < 103. This is ex-
pected because with Ωm ' 0.3, one has M1600m ' M500c ,
so that the mass that is used for the pressure profile is
actually almost the same as the mass used in the HMF.
But when the HMF is specified at M

200m
, all the results

disagree. This time, the amplitude of the discrepancy is
significant and shall affect the constraints on cosmolog-
ical parameters. In particular, we see that the D08 CM
relation leads to an underestimation of the tSZ power
spectrum compared to the spectrum obtained with T08
HMF computed at M

500c
(and no CM relation is used)

which corresponds to the solid black line on both pan-
els. Hence, to fit the Planck SZ data the use of D08 CM
relation requires a larger tSZ amplitude (larger σ8 ) com-
pared to the method used by the Planck Collaboration.

The fact that the CM relations disagree at M
200m

is
certainly due to the different cosmological settings of the
N-body simulations which were employed to build these
relations. The szfast method (using virial mass to over-
density mass conversion) would be consistent if one would
calculate a new CM relation for each particular setting
of the cosmological parameters. In principle, this could
be done with the mandc code provided by Zhao et al in
[27]. For our analysis, we have preferred to adopt the
same strategy as the Planck Collaboration and avoid the
ambiguity related to the CM relation.

We shall now investigate the influence of the cosmo-
logical parameters and the mass bias on the tSZ power
spectrum. This enables us to determine the parameter
combination that is best measured from the y-map data.

The effects of the cosmological parameters and the
mass bias on the tSZ power spectrum are illustrated in
figure 2. The optical depth at reionization, τreio, has no
impact on the amplitude of the tSZ power spectrum (less
than one percent relative variation for 0.04 ≤ τreio ≤ 0.12)
and therefore it is not shown on the figure. For the mul-
tipole range of interest (` < 103), the equation of state
(EoS) of dark energy w (bottom left panel) and the spec-
tral index ns (bottom right panel) have a minor effect
on the amplitude of the tSZ power spectrum. When
one looks at higher multipoles, the spectral index shifts
the location of the peak of the power spectrum (towards
smaller angular scales for larger ns) and the EoS changes
the amplitude of the peak (increase of power for larger

w). The mass bias B, the Hubble parameter h, the ampli-
tude of clustering σ8, and the matter density parameter
Ωm are the determining parameters for the amplitude of
the tSZ power spectrum. We find that the scaling of the
tSZ power spectrum is well approximated by

CtSZ

` ∝ σ8.1
8

Ω3.2
m B−3.2h−1.7 for ` . 103, (19)

in agreement with [28] for the scaling with σ
8
and Ωm, but

now accounting for B and h. This means that the param-
eter combination that is best measured by experiments
probing the tSZ power spectrum at multipoles ` . 103 is

F ≡ σ
8

(Ωm/B)
3/8

h−1/5. (20)

This is the parameter combination that we will system-
atically quote. Note that similarly to [8], we opted for
a replacement of the decimal numbers in Eq. (19) with
the closest integers. The F -parameter differs from the
parameters quoted in previous works [8, 14], i.e. σ

8
Ω3/8

m .
It has the advantage of accounting for the degeneracy be-
tween the amplitude of the tSZ power spectrum and the
mass bias as well as the Hubble parameter. In the most
recent analysis by Salvati et al [16] and Hurier & Lacasa
[9] the degeneracy with the mass bias was taken into ac-
count, however the exponent quoted in these works is in
contradiction with ours.

III. MAXIMUM LIKELIHOOD ANALYSIS

We use the SZ information contained in the y-maps
in order to set constraints on cosmological parameters.
To do so, we sample the parameter space via the Monte
Carlo Markov Chain (MCMC) method and extract the
joint posterior probability distributions for the input pa-
rameters.

The universe is assumed to be spatially flat with an
effective number of ultra-relativistic species Neff = 3.046.
The input cosmological parameters that are varied are:
the amplitude of the primordial power spectrum of scalar
curvature perturbations As; the spectral index of the
primordial power spectrum ns; the optical depth at re-
ionization τreio; the angular size of the sound horizon at
decoupling θs; the reduced density parameter of baryons
Ωbh

2; the reduced density parameter of cold dark mat-
ter Ωch

2 and wde. Hence, h, σ8 and Ωm are obtained as
derived parameters.

In addition, the amplitude of the tSZ power spectrum
strongly depends on the mass bias B, via the pressure
profile of the ICM. Therefore, B is also treated as an
input varying parameter in this analysis. To recap, the
sampled parameter space is eleven dimensional:

As , ns , τreio, θs,Ωbh
2,Ωch

2, w,B︸ ︷︷ ︸
CtSZ

` : slow param.

, ACIB, AIR, ARS︸ ︷︷ ︸
CFG

` : fast param.

(21)
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Figure 1: The tSZ power spectrum computed with class_sz in different settings: for two pressure profiles (top left), for several
halo mass function evaluated at the over-density mass M200m using Klypin et al 2010 concentration mass relation for the
conversion from the virial mass to the over-density mass (top right), with the Tinker et al 2008 halo mass function evaluated
at the over-density masses M1600m (bottom left) and M200m (bottom right) for several concentration mass relations. The solid
black line on the bottom panels is the best-fit power spectrum to the Planck SZ data obtain from our MCMC analysis with
trispectrum (the corresponding cosmological parameters best-fit values are available on the code’s webpage) and computed
with Tinker et al 2008 halo mass function evaluated at M500c , so that no concentration-mass relation is needed. The ACT and
SPT data points are shown as a landmark.

with eight slow parameters which affect the amplitude
of the tSZ power spectrum, and three fast parameters
that set the amplitude of the foregrounds. The sampling
is performed with Montepython [29] using the Cholesky
decomposition method for an optimal treatment of fast
and slow parameters [30].

Weak uniform priors are imposed on the varying pa-
rameters to avoid the sampling of unrealistic regions of
the parameter space. These priors are reported in table
I. For each parameter, the allowed range of value is wide
enough so that changing the upper or lower bound does
not affect the posterior probability distribution.

The data for the total y2 power spectrum is deduced
from the y-map of the Planck survey. It is the same as
the one used for the MCMC analysis carried out by the
Planck collaboration, described in [8]. We refer to this
analysis as PLC15. For completeness, the Planck 2015
measured power spectrum Ĉy

2

` data points and error bars

min. max. min. max. min. max.

109As 1.8 2.7 Ωbh
2 0.0199 0.0245 ACIB 0 10

ns 0.8 1 Ωch
2 0.09 0.15 AIR 0 10

τreio 0.04 0.12 w -2 -0.5 ARS 0 10

100θs 1.03 1.05 B 1.11 1.67

Table I: Uniform priors imposed on the input parameter space
for the MCMC analysis.

σy
2

` are reported in table V. At low multipoles, the sig-
nal is contaminated by emissions from the galactic dust,
while at high multipoles, the signal is dominated by corre-
lated noise. Hence, the likelihood calculation is restricted
to the effective multipole range 10 ≤ `eff ≤ 959.5. The
effective multipoles, `eff , are at the middle of the eigh-
teen bins spanning this interval and used in PLC15. The
bin sizes were chosen by minimizing the correlations be-
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Figure 2: Influence of various parameters on the tSZ power spectrum: the mass bias B (top left); the reduced Hubble parameter
h (top right); the amplitude of clustering σ8 (middle left); the matter density parameter Ωm (middle right); the equation of state
of dark energy w (bottom left); and the spectral index ns (bottom right). These calculations were carried out with class_sz.
When one parameter is varied, the other are kept constant and set to their best-fit values from our MCMC analysis of the
Planck 2015 SZ data (these are available on the code’s webpage). The ACT and SPT data points are shown as a landmark.

tween adjacent bins at low multipole and by maximizing
the signal-to-noise ratio at high multipole [28].

In addition to the uniform priors of table I, we used
a rejection criterion for the amplitudes of the fore-
ground components. Like we saw in section I, there is
an upper bound for the combined foregrounds fixed by
the power spectrum of the y-map obtained by project-
ing the confirmed clusters of the Planck 2015 SZ cat-

alogues, ĈRC

` (where stands for Resolved Clusters). At
each new proposed values for the foreground amplitudes
{ACIB, AIR, ARS}, we ensure that the inequality in (7) is
satisfied for the seven multipole bins between `eff = 257.5
and `eff = 1247.5, otherwise the point is rejected. (Above
`eff = 1247.5 the power spectrum ĈRC

` is affected by the
resolution of the y−map and can not be used. Bellow
`eff = 257.5, statistical and systematic uncertainties are
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important and (7) is no longer applicable.) The data
for the power spectrum of the projected resolved clus-
ters ĈRC

` and associated error bars σRC

` is also reported
in table V, see [8, 28] for details.

At each step of the MCMC sampling, the likelihood is
computed according to − lnL = 1

2χ
2 with

χ2 ≡
∑

a≤a′

(
Cy

2

`aeff
− Ĉy

2

`aeff

) [
M−1

]
aa′

(
Cy

2

`a
′

eff

− Ĉy
2

`a
′

eff

)
,

(22)
where a, a′ are indices for the multipole bins running from
a = 1 (`eff = 10) to a = 18 (`eff = 959.5), Cy

2

`aeff
is the

model y2 power spectrum, Ĉy
2

`aeff
are the data points and

M is the binned covariance matrix.
Unlike PLC15, our covariance matrix accounts for the

non-gaussian contributions, i.e. auto-correlations and
correlations between multipole bins, arising from the tSZ
trispectrum calculation. Hence, the coefficient of the co-
variance matrix relative to multipole bins a and a′ reads
as

Maa′ =
(
σy

2

`aeff

)2
δaa′ +

`aeff (`aeff + 1) `a
′

eff(`
a′

eff + 1)

4π2

Taa′

4πfsky

,

(23)
where σy

2

`aeff
are the measured error bars (third column

of table V), fsky = 0.47 is the Planck sky coverage, and
Taa′ is the binned trispectrum whose computation is de-
tailed hereafter. The trispectrum T``′ of the Compton y
parameter is assumed to be dominated by the tSZ effect
contribution. Its computation follows the same proce-
dure as the tSZ power spectrum, with the fourth power
of the y parameter in the integrand:

T``′ =

∫
dz
dV

dz

∫
d lnM

dn

d lnM
|y` (M, z)|2 |y`′ (M, z)|2 ,

(24)
where the redshift and mass ranges are the same as for
the power spectrum, see (8). For the eighteen multipole
bins of our analysis, the binned trispectrum that enters
the covariance matrix (23) is

Taa′ =
∑

`∈a

∑

`′∈a′

T``′

NaNa′
, (25)

where a and a′ denotes two multipole bins containing
respectively Na and Na′ multipoles.

In figure 3 we show the trispectrum against the gaussian
error. As noted by Horowitz & Seljak [14], the trispec-
trum largely dominates the gaussian errors until ` ≈ 500.
Moreover, as can be seen on the figure, the difference be-
tween the binned and unbinned trispectra is negligible
so one can safely approximate the binned trispectrum by

the unbinned value corresponding to the effective multi-
poles of the given bins. Hence, we can avoid the time
consuming interpolation required for the binning. Both
amplitudes of the power spectrum and trispectrum of the
SZ effect are sensitive to the cosmological parameters h,
Ωm, σ8 and to the mass bias B. At each step of the
MCMC sampling, when a new set of parameters is pro-
posed, the trispectrum is computed simultaneously to the
power spectrum in order to deduce the likelihood (22).

The trispectrum contribution to the covariance matrix
was considered in the analysis by Horowitz & Seljak [14]
and Salvati et al [16]. However, the tSZ power spectrum
data points that were used in those analysis were the one
obtained in the PLC15 analysis which did not account
for the trispectrum. Recall that the tSZ data points are
obtained after substracting the foregrounds to the total
y2 data. Since the foreground amplitudes are estimated
from the MCMC analysis, they are affected by the inclu-
sion of the trispectrum. In the next section we present
the updated tSZ data points resulting from the analysis
with trispectrum. As we shall see, the trispectrum al-
lows for larger foreground amplitudes and hence lead to
a smaller tSZ amplitude lessening the tension with ACT
and SPT data at ` = 3000, compared to what was ob-
tained without trispectrum in PLC15.

IV. RESULTS

In this section we present the results of three MCMC
analysis. First, we performed an analysis without trispec-
trum in a flat ΛCDM universe. Second, we include the
trispectrum in the covariance matrix. Third, we consider
a wCDM cosmology and present the constraints on the
equation of state parameter of dark energy obtained from
the SZ data.

IV.A. Analysis without trispectrum

The Planck 2015 analysis (PLC15) did not include the
trispectrum in the covariance matrix. They used T08
HMF evaluated at the over-density mass M500c , along
with the A10 pressure profile, allowing the foreground
amplitudes as well as σ8 and Ωm to vary while other pa-
rameters were set to their Planck 2013 CMB TT+lowP
best-fit values. The Compton parameter was integrated
between z = 0 and z = 3, the mass function between
M = 1013M� and M = 5× 1015M�. Two MCMC anal-
ysis without trispectrum were carried out by the Planck
Collaboration. First, with a mass bias set to B = 1.25
(b = 0.2 in the notations of [8]). Second, with B = 1.67
(corresponding to b = 0.4). For B = 1.25, they obtained
σ

8
(Ωm/0.28)

3/8
= 0.80+0.01

−0.03, while for B = 1.67 they get
σ8 (Ωm/0.28)

3/8
= 0.90+0.01

−0.03. The difference between the
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Figure 3: Left panel: The normalized trispectrum of the tSZ effect corresponding to the best-fit model of our MCMC analysis
of the Planck 2015 SZ data (see the code’s webpage for the best-fit parameter values) plotted against the gaussian error from
the Planck 2015 analysis (dashed line). The binned trispectrum is shown in black and the unbinned trispectrum is shown in
grey. Right panel: The best-fit models for the tSZ component (black dashed line) and the foregrounds (grey lines) obtained
from our MCMC analysis of the Planck 2015 SZ data. The best-fit total y2 power spectrum appears as the solid black line.
The data points used in our analysis are shown in grey. The gaussian contribution to the error bars corresponds to the vertical
grey lines, and the error bars that account for the trispectrum contribution, which was used in our MCMC analysis, are shown
in black.

central values resulting from these two analysis is due to
the degeneracy between the amplitude of the tSZ power
spectrum and the mass bias, CtSZ

` ∝ B−3.2 as discussed in
section II. In a preliminary analysis, we have successfully
reproduced the PLC15 constraints.

For our main analysis without trispectrum, we also
used T08 HMF evaluated at the over-density massM

500c
.

We have set the pressure profile to P13 and integrated
between z = 0 and z = 6, and between M = 1011h−1M�
and M = 5 × 1015h−1M�. We allowed the six cos-
mological parameters to vary along with the mass bias
B, and the foreground amplitudes. Since the mass
bias is now taken as a varying parameter, the param-
eter σ

8
(Ωm/0.28)

3/8 is not relevant anymore because the
bounds on the marginalized posterior likelihood for this
parameter are determined by the bounds on the prior
distribution of the bias, namely: B = 1.11 and B = 1.67.
Nevertheless, the marginalized posterior likelihood for
the F -parameter defined in (20), is well approximated
by a gaussian and does not depend on the choices of the
input prior probability distributions. The contours are
shown in red on figure 5. The F -parameter constraint
is F = 0.489 ± 0.005 at 68% C.L. and the foreground
amplitudes are ACIB = 0.44+0.09

−0.07, AIR = 1.94+0.15
−0.14, ARS =

0.3+0.06
−0.3 . As we shall see in the next section, the width

of the marginalized posterior probability distributions for
the F -parameter and the foreground amplitudes obtained

without trispectrum are largely underestimated.

IV.B. Analysis with trispectrum

When the trispectrum is included in the covariance
matrix, the width of the 68% C.L. intervals is increased
drastically, due to the enhanced degeneracy between the
amplitude of the tSZ power spectrum with the CIB fore-
ground at low multipoles (` . 400). The trispectrum
allows for a smaller tSZ component to the y-map, cor-
responding to a larger CIB and IR foreground contribu-
tions to fit the signal at ` & 400, see figure 3. For the
F -parameter as determined by our analysis with trispec-
trum we obtain

F = 0.487± 0.013, (26)

and the foreground amplitudes are ACIB = 0.38 ± 0.18,
AIR = 2.12± 0.19, ARS = 0.33+0.07

−0.33. The best-fit models
for the tSZ and combined foregrounds are shown on fig-
ure 4 against Planck y2 data (left panel) and ACT/SPT
tSZ measurements at ` = 3000 (right panel). The fore-
ground dominate over the tSZ contribution after ` ≈ 400,
as can be seen on the left panel. The black data points
end error bars correspond to the tSZ signal obtained
by marginalising over the foregrounds, and propagating
the corresponding errors: ĈtSZ

` = Ĉy2

` − CFG

` . On the
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Figure 4: Left panel: The best-fit models for the tSZ component (solid black line) and the combined foregrounds (dashed grey
line) obtained from our MCMC analysis of the Planck 2015 SZ data, extrapolated until ` = 3000. The open circles correspond
to projected tSZ signal from the Planck 2013 cluster catalogue. The continuous grey line is the best-fit total y2 power spectrum.
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contribution. The black data points are the updated tSZ data points obtained after marginalizing the total y2 power spectrum
over the foregrounds (determined by our MCMC analysis). Right panel: The black data points are the updated tSZ data points
obtained after marginalizing the total y2 power spectrum over the foregrounds. The black curve is our best-fit tSZ power
spectrum. The grey data points and dashed line are the results of the Planck 2015 SZ analysis. We also included the ACT and
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right panel of the figure, we have also reported the tSZ
data points obtained the PLC15 analysis with the cor-
responding best-fit tSZ model, against our results. Like
we said, the trispectrum increases the modeled error bars
at low multipoles, which leads to a lower tSZ component
than without trispectrum and larger foreground ampli-
tudes. The contours of the analysis with trispectrum are
shown in black on figure 5. In addition to the broad-
ening of the marginalized posetrior probability distribu-
tions, we see that the IR component, which dominates
around ` = 1000, is sensibly higher in the analysis with
trispectrum. Due to this, our best-fit tSZ model flattens
significantly at large multipoles compared to the best-
fit model of the PLC15 analysis. Now, the best-fit tSZ
model and updated data points are in an almost per-
fect agreement with ACT/SPT data at high multipoles.
Whether this is a coincidence or an indication of the ro-
bustness of the tSZ signal modelling remains an open
question, as numerical simulation continue to find a tSZ
component that is about fifty percents larger than the
tSZ amplitude predicted within the halo model [15].

Depending on the value of the mass bias, the tSZ con-
straints on the F -parameter can be conciled with CMB
constraints.The Planck 2015 CMB TT+lowP chains
yields σ

8
Ω3/8

m h−1/5 = 0.582±0.016. In fact, if we impose
this constraints on σ

8
Ω3/8

m h−1/5, on the F -parameter tSZ
determination, we obtain an estimation of the mass bias:

B = 1.61± 0.16, (27)

which translate into (1−b) = 0.62±0.06 in the notations
of e.g. [31, 32]. This value is in weak tension with the

estimate from most numerical simulations which tend to
favor (1−b) = 0.80. Nevertheless, it is consistent with the
recent weak lensing constraint: (1− b) = 0.73±0.10 [32];
and in a perfect agreement with the estimate extracted
in the same way from cluster number counts (1 − b) =
0.58 ± 0.04 [2]. We also note that for simulations where
the mass dependence of the bias was investigated, it was
shown that the mass bias decreases as a function of the
mass towards (1 − b) ≈ 0.60 for M & 4 × 1014h−1M�
[33]. Our results seem to support such behavior of the
mass bias, since the tSZ signal bellow ` ≈ 103 is mainly
due to the most massive halos, as can be seen on figure
6.

IV.C. Constraints on Dark Energy

In this section, we present a new way of constraining
the equation of state (EoS) for dark energy, w, based on
the SZ cosmological data (all sky y-map) and an inde-
pendent determination of the Hubble parameter. Like
we saw on figure 2, the EoS does not affect the ampli-
tude of the tSZ power spectrum in the multipole range
of interest to us. Nevertheless, the tSZ power spectrum
is an indirect probe of the linear matter power spectrum
and therefore it implicitly probes the known degeneracy
between the EoS, the Hubble parameter and the reduced
matter density. Using the local measurement of the Hub-
ble parameter deduced from up-to-date time-delay cos-
mography measurements of quasars, h = 0.72± 0.03 (see
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Figure 5: Projected (1D and 2D) joint posterior probability distributions for the F -parameter and the foreground amplitudes
from two MCMC analysis, fitting the Planck y2 power spectrum obtained from the 2015 all-sky y-map. The black contours
correspond to the analysis with trispectrum and the red contours to the analysis without trispectrum.

[35] for details), we are able to extract a determination
of w which is competitive with CMB TT+lowP+lensing
constraints.

We carried out a MCMC analysis assuming a flat
wCDM cosmology, where the six base cosmological pa-
rameters, the EoS for dark energy, the mass bias, and the
three foreground amplitudes were sampled from the uni-
form priors reported in table I. The resulting contours are
shown in black on figure 7. Adding one varying param-
eter (the EoS) does not alter significantly the constraint
on F compared to the ΛCDM case. For the wCDM anal-
ysis we get F = 0.491 ± 0.016. As expected, there is
no correlation between the F -parameter and the EoS.
Hence, measuring F does not allow for a determination
of w. Nevertheless, the black contours on figure 7 clearly

reveal the underlying correlations between w, σ8, Ωm and
h.

In a subsequent analysis, we broke these degeneracies
by imposing a gaussian prior on h that corresponds to the
local measurement of the Hubble parameter [35], as well
as the so-called Normalization prior on 109Ase

−2τreio re-
ported in table II. To further reduce the degeneracy, we
also set a gaussian prior on the optical depth at reioniza-
tion τreio = 0.06±0.01 that is a good compromise between
the different measurements of the last decade [17, 34].
Finally we fixed the value of the mass bias to the one
favored by numerical simulations: B = 1.25. The result-
ing contours of this analysis with priors, dubbed tSZ+H

0

on figure 7 are shown in red. The constraint on the F -
parameter remains the same as for the analysis without
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priors. Moreover, we get:

w = −1.13+0.14
−0.13, (28)

for the EoS in addition to σ8 = 0.819 ± 0.041, and
Ωm = 0.275 ± 0.025. To compare these results with
CMB constraints, we use a compressed likelihood in order
to get the TT+lowP+lensing+H0 joint posterior proba-
bility distribution. The technique of compressed likeli-
hood applied to dark energy related data was initiated
in [36]. It is based on the fact that the information con-
tained in the Planck chains for a given model universe
(flat, curved, ΛCDM, etc.) can be efficiently recast in
the form of a low dimensional covariance matrix for a
small set of well chosen cosmological parameter combi-
nations. Then, it is not necessary to re-do the analysis
of the Planck observational data, one can use the com-
pressed likelihood instead. Following [37], we constructed
the compressed covariance matrix relative to the Planck
2015 TT+lowP+lensing wCDM. The essential parame-
ter combinations that encapsulate the information asso-
ciated with the background cosmology are the shift pa-
rameters, R, and the angular scale of the sound horizon
at last scattering `A. They are given by

R ≡
√

ΩmH2
0DA (z?) /c, (29)

`A ≡ πDA (z?) /r∗ = π/θs, (30)

where z? is the decoupling redshift, DA (z) is the comov-
ing angular diameter distance, r? is the comoving size of
the sound horizon at decoupling and θs is the correspond-
ing comoving angular size. In addition, we also use pa-
rameters that carry information relative to the dynamics
of perturbations, namely: As, ns and Ωbh

2 , leading to a
5x5 covariance matrix. In table IV, we give the normal-
ized covariance matrix coefficients, Dij , corresponding to

the compressed likelihood. At each step of the MCMC,
we compute

χ2
CMB =

5∑

i,j=1

(
P − P̄

)
i

[
C−1

]
ij

(
P − P̄

)
j
, (31)

where P ≡
{

Ωbh
2, As, ns, R, `A

}
contains the proposed

values of the parameters and P̄ contains the mean
values of the parameters deduced from the wCDM
TT+lowP+lensing chains (reported in the first column
of the table along with the 68% standard deviations
σi which enter the covariance matrix coefficients Cij =
σiσjDij). Then, the χ2 value for TT+lowP+lensing+H0

(also denoted CMB+H0) is given by χ2 = χ2
CMB + χ2

H0

where χ2
H0

corresponds to the priors on h, 109Ase
−2τreio

and τreio discussed previously (see table II). We find wde =
−1.12+0.11

−0.10, σ8 = 0.844± 0.030, and Ωm = 0.275± 0.024,
in good agreement with the tSZ+H0 analysis and similar
width of the 68% C.L. intervals. This shows that the SZ
power spectrum is a compelling probe for dark energy,
almost as efficient as CMB lensing.

V. SUMMARY AND CONCLUSIONS

In the begining of this article we have reviewed the
calculation of the tSZ power spectrum and trispectrum
based on the halo model. We have implemented it in a
new module for CLASS and made it publicly available on
the internet.

We reconciled szfast based analysis and the Planck
analysis by identifying the source of the discrepancy: it
is due to the use of the concentration mass relation for
the conversion from the halo masses to the over-density
mass.

Then, we revisited the Planck 2015 analysis of the tSZ
power spectrum and updated the tSZ data with the in-
clusion of the trispectrum in the covariance matrix, as
well as varying the whole set of cosmological parameters
instead of only σ8 and Ωm. We found a larger foreground
contribution and a smaller tSZ component to the total y2
power spectrum than PLC15. Our updated tSZ data is
now in perfect agreement with the ACT/SPT measure-
ments at higher multipoles.

We saw that the parameter that is determined by the
SZ data is the F -parameter, which accounts for the fact
that the amplitude of the tSZ power spectrum is not only
set by σ8 and Ωm but also by the the Hubble parameter
and the mass bias.

We used CMB constraints on σ8, Ωm and h to obtain
an estimate of the mass bias, which was found to be in
good agreement with weak lensing estimates and in per-
fect agreement with the SZ number counts constraint and
the prediction for large masses halos from numerical sim-
ulations.
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Figure 7: Projected (1D and 2D) joint posterior probability distribution as obtained from the “tSZ” analysis (all parameters
varying including the mass bias B and the equation of state of dark energy w) and the “tSZ + H0” analysis for which we set
the bias to B = 1.25 and imposed priors on h, Ase−2τreio and τreio (see table II).

Finally, we used the lattest local measurement of the
Hubble parameter and the Planck 2015 normalization
prior in order to constrain the equation of state of dark
energy from the SZ data. We shown that the tSZ power
spectrum is actually a powerful probe of dark energy,
competitive with CMB weak lensing.
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Appendix : SZ Data, Compressed Likelihood and
Normalization Priors

Gaussian priors

h . . . . . . . . . . . 0.72± 0.03

109Ase
−2τreio 1.878± 0.014

τreio . . . . . . . . . 0.06± 0.01

Table II: Gaussian priors imposed on the parameters h,
109Ase

−2τreio and τreio (in order to break the degeneracy
between wde and other cosmological parameters in the tSZ
wCDM analysis). The prior on h is from [35] (quasars time
delay), the prior on Ase−2τreio was obtained from the Planck
chains (see table III) and the prior on the optical depth is a
compromise between the different measurements over the last
decade.
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109Ase
−2τreio

Ωk = 0 and w = −1 . . . . . . . . . . . . 1.880± 0.014

Ωk 6= 0 and w = −1 . . . . . . . . . . . . 1.872± 0.014

Ωk = 0 and w 6= −1 . . . . . . . . . . . . 1.880± 0.014

Ωk = 0 and w = −1 and mν > 0 1.881± 0.014

Normalization prior . . . . . . . . . . . 1.878± 0.014

Table III: The constraints on 109Ase
−2τreio , with pivot scale

k = 0.05Mpc−1, are read out of four sets of Planck 2015 chains
(corresponding to the first four lines of the table) in order
to deduce the Planck 2015 model independent normalization
prior on this parameter combination.

68% C.L. Ωbh
2 109As ns R `A

Ωbh
2 0.02228± 0.00024 1 0.39 0.61 −0.66 −0.44

109As 2.1108± 0.0713 0.39 1 0.60 −0.58 −0.37

ns 0.9681± 0.0057 0.61 0.60 1 −0.85 −0.45

R 1.7447± 0.0068 −0.66 −0.58 −0.85 1 0.51

`A 301.70± 0.14 −0.44 −0.37 −0.45 0.51 1

Table IV: Normalized compressed likelihood for the Planck
2015 TT+lowP+lensing (wCDM) chains. The first column
gives the the mean values and 68%CL standard deviations.
The last five columns are the coefficientsDij of the normalized
covariance matrix. The shift parameter R is defined in Eq.
(30).
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`eff Cy
2

` σy
2

` CRC
` σRC

` CCIB
` CRS

` CIR
` CCN

`

10 0.00508 0.00629 0.000421 0.000160 0.000000 0.000043 0.000007 0.000001

13.5 0.00881 0.00615 0.000710 0.000192 0.000000 0.000142 0.000024 0.000001

18 0.01363 0.00579 0.001251 0.000254 0.000000 0.000296 0.000048 0.000002

23.5 0.02961 0.00805 0.002837 0.000446 0.000000 0.000400 0.000073 0.000004

30.5 0.02241 0.00521 0.003933 0.000460 0.000902 0.000541 0.000111 0.000006

40 0.02849 0.00464 0.005969 0.000510 0.002010 0.001056 0.000224 0.000010

52.5 0.04276 0.00468 0.010318 0.000672 0.003119 0.001647 0.000449 0.000018

68.5 0.04580 0.00429 0.014045 0.000699 0.006278 0.002787 0.000837 0.000030

89.5 0.07104 0.00454 0.024061 0.000896 0.012242 0.004306 0.001400 0.000052

117 0.11914 0.00562 0.032976 0.000936 0.021584 0.006842 0.002701 0.000089

152.5 0.15150 0.00594 0.04710 0.00102 0.045915 0.011264 0.004721 0.000153

198 0.19390 0.00611 0.06238 0.00104 0.070582 0.016744 0.008115 0.000262

257.5 0.28175 0.00687 0.08173 0.00103 0.119786 0.027345 0.014618 0.000456

335.5 0.39837 0.00824 0.101911 0.000978 0.211686 0.043275 0.024893 0.000815

436.5 0.56743 0.00958 0.117412 0.000860 0.332863 0.070587 0.051570 0.001503

567.5 0.76866 0.01242 0.132234 0.000769 0.434931 0.115356 0.107293 0.002934

738 1.1101 0.0165 0.143214 0.000642 0.602030 0.154926 0.197053 0.006334

959.5 1.6614 0.0240 0.156202 0.000544 0.754733 0.207200 0.361713 0.016171

1247.5 2.5217 0.0417 0.175341 0.000492 1.029014 0.287652 0.681036 0.054883

1622 4.5851 0.0987 0.283969 0.000900 1.357567 0.410274 1.295272 0.301480

2109 12.269 0.401 1.36368 0.00365 1.850146 0.657659 2.534448 3.738250

2742 165.6 23.6 54.69 2.31 2.629002 1.117189 4.545315 183.267263

Table V: Planck 2015 data points and error bars for the y2 power spectrum from the all-sky y-map, Cy
2

` , the SZ resolved
cluster catalogue Cy

2

` , and models for the foreground contributions: cosmic infrared background (CIB), infrared sources (IR)
and radio sources (RS). Data points were taken from [8]. The last column is the correlated noise of the instrument, see [10].
The numerical values correspond to the rescaled dimensionless power spectra 1012` (`+ 1)C`/2π and error bars. Only the first
eighteen multipole bins (up to ` = 959.5) are fitted in our MCMC analysis. The last data point at `eff = 2742 is used for the
determination of the correlated noise amplitude.
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