CosmoML: A Machine Learning method to measure the cosmological parameters.

Martín de los Rios \& Mariano Domínguez

November 13, 2017

Table of contents

What is Machine Learning.

- Supervised learning.

O Machine Learning in physics.

2 Measuring the Cosmological Parameters.

- The training sample.
- Applications.

Final Remarks.
(1) What is Machine Learning.

- Supervised learning.
- Machine Learning in physics.
(2) Measuring the Cosmological Parameters.
- The training sample.
- Applications.
(3) Final Remarks.

Martín de los Rios \& Mariano Domínguez
CosmoML: A Machine Learning method to measure the cosmo

Supervised Learning.

Simple Example:ANNz

ANNz: Estimating photometric redshift using artificial neural network. Collister \& Lahav 2003 (0311058)

Martín de los Rios \& Mariano Domínguez

(1) What is Machine Learning.

- Supervised learning.
- Machine Learning in physics.
(2) Measuring the Cosmological Parameters.
- The training sample.
- Applications.
(3) Final Remarks.

What are the cosmological parameters?

Homogeneous and isotropic Universe \rightarrow FRW metric $d s^{2}=d t^{2}-a^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$ $\left(\frac{H}{H_{0}}\right)^{2}=\Omega_{r a d} a^{-4}+\Omega_{m} a^{-3}+\Omega_{\Lambda}-K c^{2} a^{-2}$

How can we measure the cosmological parameters?

Planck Collaboration 2015 (1502.01589)

The training sample.

CAMB: Code for Anisotropies in the Microwave Background (Lewis \& Challinor)

Studying different Machine Learning algorithms.

K-Nearest Neighbour
Random Forest
Support Vector Machine

Measuring the cosmological parameters angular distributions.

de los Rios \& Dominguez et al. (in preparation)

(1) What is Machine Learning.

- Supervised learning.
- Machine Learning in physics.
(2) Measuring the Cosmological Parameters.
- The training sample.
- Applications.
(3) Final Remarks.

Final Remarks

- We developed a ML technique that estimate the cosmological parameters in a more efficient way withouth losing precision.
- This technique can be easily extended to use more cosmological information as features (BAO, ξ, SZ emission, etc.).
- As a first application we study the angular distribution of the cosmological parameters and the Hemispherical Asymmetry.
- We do not found any significant departure from what is expected in an homogeneous and isotropic univese, but we found some features in the distributions that may come from the pixelization.
- We will extend the parameters space and add polarization information in a forthcoming work.
- We will analyze the correlations between the angular distribution of the parameters and the large scale structure (voids, filaments, etc.)
https://martindelosrios.netlify.com

Martín de los Rios \& Mariano Domínguez

