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Extracting the maximum information
from the observations is a challenge!

We need models able to access the whole range of
scales measured in the surveys.
The modelling of higher-order correlation functions is
complex.
SPT and EFTofLSS provide a good description of data
up to k ∼ 0.2h/Mpc.

Squeezed bispectrum model valid at small scales.

⟨δ(k1)δ(k2)δ(k3)⟩ = (2π)3δD(k1 + k2 + k3)B(k1,k2,k3)

Consistency Relation of LSS.

Response functions approach.
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Large-scale structure consistency relations

⟨δqδk1
· · · δkn ⟩

′
q→0 = −PδL (q, τ)

n∑
a=1

D+(τa)

D+(τ)

q · ka

q2
⟨δk1

· · · δkn ⟩
′

Consequence of symmetries

τ ′ = τ x′ = x+ n(τ)

v′(x, τ) = v(x′, τ ′)− ṅ(τ)

Φ′(x, τ) = Φ(x′, τ ′)− (n̈(τ) +H(τ)ṅ) · n

The LSS consistency relations are a
consequence of the Equivalence
principle!

Are valid at any order in perturbations
theory.

M.Peloso,M.Pietron(2013), A.Kehagias,A.Riotto(2013), P. Creminelli,J.Norena,M. Simonovic,F.Vernizzi(2013)
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Φ′(x, τ) = Φ(x′, τ ′)− (n̈(τ) +H(τ)ṅ) · n
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The LSS consistency relations are a
consequence of the Equivalence
principle!

Are valid at any order in perturbations
theory.

M.Peloso,M.Pietron(2013), A.Kehagias,A.Riotto(2013), P. Creminelli,J.Norena,M. Simonovic,F.Vernizzi(2013)



Power spectrum response function

Effect of long wavelength perturbations on small scales n-point correlation functions.

The effect on the small scale power spectrum determines the squeezed limit of (n+ 2)-point
correlation functions

The bispectrum in the squeezed limit is well described by the response of the small scale power spectrum to the
presence of a long wavelength perturbation.

lim
q→0

B(k,k′, q) = R1(k, µk,q)Pm(k)PL(q)

”Bias-like” expansion in terms of local gravitational observables.

Pm(k|x)
Pm(k)

− 1 =
∑
O

RO(k)
(
k̂ik̂j · · ·

)
Oij···(x)

A Barreira, F Schmidt ( 2017)

P Valageas (2013)
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Response function expansion at the field level.
Response of the matter density at small scales to the change of the long wavelenght gravitational

potencial
1 Rotational invariance

2 The equivalence principle
3 Expansion in terms of the long-wavelength gravitational field and its second or higher derivatives.
4 Consistency relation
5 Response coefficients

δ(k)|ΦL = δ(k)|ΦL=0 +
(k − q) · q

q2
δ(q)δ(k − q) + δ(q)∆1(k) + q̂iq̂jδ(q)k̂ik̂j∆θ(k) +O(δ(q)2, (q/k)δ(q))

Squeezed Bispectrum

lim
q→0

⟨δ(q)δ(k1)δ(k2)⟩′ = Pm(q)Pm(k1)

[
k1.q

q2
+R1(k1) +Rθ(k1)(k̂1.q̂)

2

]
+ (1 ↔ 2)

Ri(k) =
⟨δ(k)∆i(−k)⟩′

Pm(k)

M Biagetti,J Calles, L Castiblanco,K Gonzalez,J Noreña. (2022)

https://arxiv.org/pdf/2212.11940.pdf
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Response coeficcients from perturbation theory

Tree level bispectrum
δ(k)|ΦL

= δℓ(k) + 2F2(q,k − q)δℓ(q)δℓ(k − q) + O(δ
3
ℓ , q/kδℓ(q)δℓ(k))

Isotropic response: ∆1(k) = 10
7

δℓ(k))

Angular response: ∆(k) = 4
7
δℓ(k

lim
q→0

⟨δ(q)δ(k1)δ(k2)⟩
′
=

(
k1.q

q2
+

10

7
+

4

7
(q̂.k̂1)

2
)

Pℓ(q)Pℓ(k1) + (1 ↔ 2)

q ≪ k Pℓ(q) ≫ Pℓ(k1)

One loop bispectrum
lim
q→0

⟨δ(q)δ(k1)δ(k2)⟩
′
= B211 + B

I
321 + B

II
321 + B411

M Biagetti,J Calles, L Castiblanco,K Gonzalez,J Noreña. (2022)

 arXiv:2212.11940
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Fitting function

R1(k) =
10

7
+
∑
n=1

S1
nk

n+

(∑
m=0

O1
mkm

)
Pnw(k)e−Σ2k2

sin(ωk + ϕ)

Rs(k) =
4

7
+
∑
n=1

Sθ
nk

n+

(∑
m=0

Oθ
mkm

)
Pnw(k)e−Σ2k2

sin(ωk + ϕ)

Zvonimir Vlaha, Uros Seljak, Man Yat Chu ,Yu Feng (2016)

q ∼ (0.009, 0.057)h/Mpc

k ∼ (0.094, 0.565)h/Mpc
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Conclusions
We write the model for squeezed bispectrum model based on the response of short-wavelength density contrast
to a long-wave length perturbation.

We include explicitly the consistency relation contribution.

δ(k)|ΦL
= δ(k)|ΦL=0 +

(k − q) · q
q2

δ(q)δ(k − q) + δ(q)∆1(k) + q̂iq̂jδ(q)k̂ik̂j∆θ(k) +O(δ(q)2, (q/k)δ(q))

Response functions are found from the fit of the free parameter in the fitting function that includes the BAO
oscillations.
We validated the model with measurements from N-Body simulations.

The model can be extended to describe the squeezed galaxy bispectrum in redshift space.
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