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Large-scale structure consistency relations
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Power spectrum response function
Effect of long wavelength perturbations on small scales n-point correlation functions.

The effect on the small scale power spectrum determines the squeezed limit of (n + 2)-point
correlation functions

The bispectrum in the squeezed limit is well described by the response of the small scale power spectrum to the
presence of a long wavelength perturbation.

(}I_I)I%)B(k, kl7 q) = Rl(kv :uk,q)Pm(k)PL(Q)

@ "Bias-like” expansion in terms of local gravitational observables.
P (k|x) Sin
—— 1= Ro(k (kzk]~--)(’)--...
Pm (k) ; O( ) ] (w)
A Barreira, F Schmidt ( 2017)

P Valageas (2013)
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Response function expansion at the field level.

Response of the matter density at small scales to the change of the long wavelenght gravitational
potencial

@ Rotational invariance

© The equivalence principle

© Expansion in terms of the long-wavelength gravitational field and its second or higher derivatives.

@ Consistency relation

© Response coefficients

5(k) ey = 5(k)|ay =0 + (’“‘q#zxq)a(k — g) + () (k) + G S(@R R Ao (k) + O(6(0)?, (a/K)5())

Squeezed Bispectrum
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Response coeficcients from perturbation theory

Tree level bispectrum
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Response coeficcients from perturbation theory

Tree level bispectrum
5(k)|l@, = ds(k) +2F2(q, k — q)de(a)de(k — q) + 0(87, a/kb¢(a)8¢(K))

Isotropic response: Aj (k) = %éz(k))

Angular response: A(k) = %6Z(k

lim (3()8(k1)3 (k)Y = (T2 4+ 10 4 245132 Po(@)Pu(ki) + (1 & 2
Jim (3(@)60k)3(k))" = (251 + 2 4 2@k0?) Pe@Pe(i) + (1 0 2)
<Lk Py(q) > Py(k1) )
One loop bispectrum
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Response coeficcients from perturbation theory

Isotropic response coefficient

Tree level bispectrum
5(k)|l@, = ds(k) +2F2(q, k — q)de(a)de(k — q) + O(63, a/k8¢(a)¢ (k)

Isotropic response: Aj (k) = gdz(k))

Angular response: A(k) = %6Z(k
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Fitting function
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Zvonimir Vlaha, Uros Seljak, Man Yat Chu ,Yu Feng (2016)
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q ~ (0.009,0.057)h/Mpc
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Comparison with simulations in the deep non-linear regime

@ nc=-1(D-c7' D)
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Comparison with simulations in the deep non-linear regime
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Bispectrum

The consistency relation improves the fitting!
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Conclusions

@ We write the model for squeezed bispectrum model based on the response of short-wavelength density contrast
to a long-wave length perturbation.

@ We include explicitly the consistency relation contribution.

5(K)|e, = 6(k)la,—o + (’“’q#a(qw(k —q) + S(@) A () + G SRR Ay () + OB(a)? (a/k)5(a))

@ Response functions are found from the fit of the free parameter in the fitting function that includes the BAO
oscillations.

@ We validated the model with measurements from N-Body simulations.
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@ The model can be extended to describe the squeezed galaxy bispectrum in redshift space.



Theride
YU __o8




