Extension of Evolution Mapping to Velocity Statistics

Matteo Esposito

with Ariel Sánchez, Julien Bel

Future Cosmology, IESC - April 24th, 2023

Evolution mapping: linear $P(k)$

We can classify cosmological parameters according to their impact on $P(k)$

$$
P_{L}(k, z)=P\left(k \mid \underline{A_{s}}, n_{s}\right) \times T(k) \times \underline{D(z)}
$$

Cosmological parameters

Evolution mapping: linear $P(k)$

$$
P_{L}\left(k \mid z, \Theta_{s}, \Theta_{e}\right)=P_{L}\left(k \mid \Theta_{s}, \sigma_{12}\left(z, \Theta_{s}, \Theta_{e}\right)\right)
$$

- Impact of evolution parameters on $P(k)$ can be fully described by $\sigma_{12}(z)$, the rms linear variance of the density field in spheres with $\mathrm{R}=12 \mathrm{Mpc}$.
- Lost when using quantities that explicitly depend on $\mathrm{h}\left(\sigma_{8}, \Omega_{i}\right)$.

Sánchez (2020); Sánchez et al. (2022)

Evolution mapping: non-linear $P(k)$

- Given Θ_{s}, all Θ_{e} and z leading to the same σ_{12} give indistinguishable $P_{\mathrm{L}}(k)$.
- Evolution mapping is a good approximation also for the $P_{\mathrm{NL}}(k)$.
- Deviations are larger at high k and increase with σ_{12}.

Sánchez (2020); Sánchez et al. (2022)

Evolution mapping: velocity field

- Extend evolution mapping to the statistics of the velocity field which are an essential ingredient for the modelling of the redshift space power spectrum.

$$
\vec{v}=a \frac{\mathrm{~d} \vec{x}}{\mathrm{~d} t}=\frac{\mathrm{d} \vec{x}}{\mathrm{~d} \ln \sigma_{12}} a \frac{\mathrm{~d} \ln \sigma_{12}}{\mathrm{~d} t} \quad \begin{aligned}
a \frac{\mathrm{~d} \ln \sigma_{12}}{\mathrm{~d} t} & =f a H \\
\theta & \equiv \frac{\nabla \cdot \vec{v}}{f a H}
\end{aligned}
$$

Trajectories of particles in terms of σ_{12} are almost identical in cosmologies that only differ in shape parameters.

Can be calculated from linear theory and used to map one cosmology to another.

Evolution mapping: velocity divergence $P(k)$

- Evolution mapping is a good approximation also for the $P_{\theta \theta}(k)$.
- Deviations on small scales are smaller than for the $P_{\delta \delta}(k)$.
- This approach can be applied in general to the full particle phasespace and thus to all kind of statistics.

Backup slides

The algorithm

- A8signthe Areticheatledrubical qedlée(fy) - Loop over the grid points (ofange बQtside the sphere: - ckip the stepiére on the grid - Fainty inside the sphere:
- calculate the mean velocity - Gather the artectas in the interpolated nsice the cubrgal getis that have the tetrahedron and assion it its center of the shere as one of their vertices weight
- Intersecting the sphere (red Traw hle: eanay tessellation on these particles

The algorithm

- Intersecting the sphere (red triangle):
- Draw random points inside the tetrahedra
- Linearly interpolate the velocity for those points that fall inside the sphere (orange dots)
- Use those points to calculate the average velocity and the volume of the intersection
 with MC

A simpler approximation

- The Delaunay approach assumes a constant gradient of the field inside each tetrahedron.
- The simplest approximation is to assume the field to be constant inside each Voronoi cell.
- We can use a glass of random points to sample the field in this approximation.
- Faster and comparable results.

Comparison to fitting functions

- Bel et al. (2019) proposed a set of N -body calibrated parametric equations for $P_{\theta \theta}(k, z)$ and $P_{\delta \theta}(k, z)$.

$$
\begin{aligned}
& P_{\theta \theta}(k)=P_{\theta \theta}^{\mathrm{L}}(k) \mathrm{e}^{-k\left(a_{1}+a_{2} k+a_{3} k^{2}\right)} \\
& P_{\delta \theta}(k)=\left[P_{\delta \delta}^{\mathrm{NL}}(k) P_{\theta \theta}^{\mathrm{L}}(k)\right]^{\frac{1}{2}} \mathrm{e}^{-\frac{k}{k_{\delta}}-b k^{6}}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
a_{1}=-0.817+3.198 \sigma_{8}(z) \\
a_{2}=0.877-4.191 \sigma_{8}(z) \\
a_{3}=-1.199+4.629 \sigma_{8}(z) \\
b=0.091+0.702 \sigma_{8}^{2}(z) \\
1 / k_{\delta}=-0.048+1.917 \sigma_{8}^{2}(z)
\end{array}\right.
$$

- Usage of Mpc / h units in σ_{8}, introduces an implicit dependence on h, making the fitting functions unreliable when varying this parameter.

Comparison to fitting functions

$$
P_{\theta \theta}(k)=P_{\theta \theta}^{\mathrm{L}}(k) \mathrm{e}^{-k\left(a_{1}+a_{2} k+a_{3} k^{2}\right)}
$$

$P_{\delta \theta}(k)=\left[P_{\delta \delta}^{\mathrm{NL}}(k) P_{\theta \theta}^{\mathrm{L}}(k)\right]^{\frac{1}{2}} \mathrm{e}^{-\frac{k}{k_{\delta}}-b k^{6}}$

A problem with velocities

- Gadget4 produces snapshots at the closest synchronisation point to the required z.
- An optional setting forces snapshots at a specific z at the cost of biased velocities.
- The particle positions get synchronised with a drift to the required redshift while velocities remain unchanged.
- This produces (at first order) an overall shift in the amplitude of the $P_{\theta \theta}(k, z)$.

Emulating the non-linear $P(k)$

CASSANDRA

Evolution mapping reduces the required number of parameters to describe $P(k \mid z)$.

Emulator results must be corrected by $\Delta g\left(\sigma_{12}\right)$

Linear level

$$
\begin{array}{r}
v_{j}(k, a)=i \frac{k_{j}}{k^{2}} \mathcal{H} f(a) \delta_{\mathrm{m}}(k, a) . \quad \Theta_{k} \equiv \frac{i k_{j} v_{j}(k, a)}{H a} \\
P_{\Theta \Theta}(k, a)=f^{2} P_{m}(k, a)
\end{array}
$$

$$
\begin{array}{rl}
\frac{\mathrm{d} \sigma_{12}}{\mathrm{~d} t}=\sigma_{12}(z) \frac{\mathrm{d} D(z)}{\mathrm{d} a} \frac{\mathrm{~d} a}{\mathrm{~d} t}=f(a) H(a) \sigma_{12} & v=a \frac{\mathrm{~d} x}{\mathrm{~d} t}=a \frac{\mathrm{~d} x}{\frac{\mathrm{~d} \sigma_{12}}{} \frac{\mathrm{~d} \sigma_{12}}{\mathrm{~d} t}=\tilde{v} \sigma_{12} f a H} \\
\tilde{\Theta}_{k} \equiv i k_{j} \tilde{v}_{j}(k, a)=-\frac{\delta_{m}(k, a)}{\sigma_{12}} & P_{\tilde{\Theta} \tilde{\Theta}}(k, a)=\frac{P_{m}(k, a)}{\left(\sigma_{12}\right)^{2}}
\end{array}
$$

