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Fivolution mapping: linear P(k)

We can classify cosmological parameters according to their impact on P(k)

Pr(k,z) = P(k|£, ns) X T'(k) x D(z)
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Fivolution mapping: linear P(k)

P(k) x k/ (Mpc)
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® Impact of evolution parameters on
P(k) can be fully described by 012 (2),

the rms linear variance of the density
field in spheres with R =12 Mpc.

* Lost when using quantities that
explicitly depend on h (o3, ().

Sanchez (2020); Sanchez et al. (2022)



FEivolution mapping: non-linear P(k)
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*Given Oy, all O, and z leading to

the same o5 give indistinguishable
PL(k).

® Evolution mapping is a good
approximation also for the Pni(k).

® Deviations are larger at high k and

increase with o-.

Sanchez (2020); Sanchez et al. (2022)



FEivolution mapping: velocity field

® Extend evolution mapping to the statistics of the velocity field which are an

essential ingredient for the modelling of the redshift space power spectrum.
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Trajectories of particles in terms of 012~ Can be calculated from linear
are almost identical in cosmologies that theory and used to map one

only differ in shape parameters. cosmology to another.



Fvolution mapping: velocity divergence P(k)

PQ@(,ZC) X ]{/(Mpc)z
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® Evolution mapping is a good
approximation also for the Pyy (k).

® Deviations on small scales are
smaller than for the Pjss(k).

® This approach can be applied in
general to the full particle phase-
space and thus to all kind of
statistics.
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1I'he algorithm
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1I'he algorithm

® Intersecting the sphere (red
triangle):

® Draw random points inside
the tetrahedra

* Linearly interpolate the
velocity for those points that

ga(ﬁ Slside the sphere (orange K//%/ \\ / / \ 7&\\
W

® Use those points to calculate S
the average velocity and the — X7
volume of the intersection
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A simpler approximation

® The Delaunay approach assumes a constant
gradient of the field inside each
tetrahedron.

® The simplest approximation is to assume
the field to be constant inside each Voronoi
cell.

® We can use a glass of random points to
sample the field in this approximation.

® Faster and comparable results.
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Comparison to fitting functions

®Bel et al. (2019) proposed a set of N-body calibrated parametric equations for
Pyo(k, z) and Psg(k, 2).

ap = —0.817 4+ 3.198 0g(2)

as = 0.877 — 4.191 0g(2)

az = —1.199 + 4.629 o5(2)

L kg b= 0.091+0.702 05 (2
Pso(k) = [Pys-(k) Py(k)]* e % " o2 y
l/k(s = —0.048 + 1.917 o3 (Z)

Pyo(k) = Py (k) e~ Hertazktask?)

® Usage of Mpc/h units in og, introduces an implicit dependence on £,
making the fitting functions unreliable when varying this parameter.
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Comparison to fitting functions
PH@(]C) — Pglg(k) e_k(a1+a2k-|—a3k2)
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A problem with velocities

Time (arbitrary units)

® Gadget4 produces snapshots at the closest
synchronisation point to the required z.

® An optional setting forces snapshots at a
specific z at the cost of biased velocities.

® The particle positions get synchronised
with a drift to the required redshift while

velocities remain unchanged.

® This produces (at first order) an overall
shift in the amplitude of the Pyg(k, 2).
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F:mulating the non-lnear P(k

shape evolution
/_/H
Standard approach: & = (wc, Wh, Mg WK s WDE, W0, Was - - - Z)

Evolution mapping: & = (wc, WhH, Ng, O 12)

Model 1
h = 0.67

Redshift z

Model 2
h = 0.55

CASSANDRA

Evolution mapping
reduces the required
number of parameters

to describe P(k|z).

Emulator results must
be corrected by Ag(o12)



v ikivi(k, a)
vi(k,a) = ik—;H f(a)éy(k,a). O, = T
Poo(k,a) = fAP, (k,a)
do dD(z) da d dx d 3
d_;z = 015(2) 0 dr = fla)H(a)o,, V= ad—: = CZKTZ% = Vo, fal
Ok, a) P,(k,a)
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