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The goal

Describe and motivate the state-of-the-art modelling in perturbation theory 
of the redshift-space galaxy power spectrum, 
a main observables in galaxy spectroscopic surveys
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Figure 5: Comparison of the data for the monopole and the quadrupole (the error bars are

there, barely visible) with the best-fit model.

Figure 6: The residuals for the monopole and the quadrupole, for the best-fit model. The fit

is good, with �2/dof = 12/(24� 9).
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Figure 5: Comparison of the data for the monopole and the quadrupole (the error bars are

there, barely visible) with the best-fit model.

l=0
l=2

0.02 0.04 0.06 0.08 0.10 0.12
-0.02

-0.01

0.00

0.01

0.02

0.03

k, h Mpc-1

P
da
ta
/P
be
st
-f
it-
1

best fit @kmax=0.12 h/Mpc, z=0.61

Figure 6: The residuals for the monopole and the quadrupole, for the best-fit model. The fit

is good, with �2/dof = 12/(24� 9).
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PT Challenge: V ~ 600 (Gpc/h)^3           (simulations: T. Nishimichi and M. Takada)

The challenge was blind,  and  were knownns ωb/ωcdm

We can fit the data, without biases in cosmological parameters

Perturbation theory approach to LSS clustering

Nishimichi et al (2006)

PT Challenge: test on simulations over a volume of 600 Gpc3/h3



Lecture 1

• The galaxy distribution as a random 
field 

• Galaxy clustering observables: power 
spectrum & 2PCF

• Initial conditions: the matter power 
spectrum at recombination

• Linear Eulerian Perturbation Theory

• Non-Gaussianity and higher-order 
correlation functions 

• Nonlinear PT and the power spectrum 
at one-loop

• Effective Field Theory of Large-Scale 
Structure

Lecture 2

• Galaxy bias 

• Baryonic Acoustic Oscillations & 
Infrared Resummation

• Redshift-Space Distortions

• Stochastic contributions

• Recent analyses of the BOSS survey

• Neutrinos

• Non-Gaussianity & Higher-Order 
Statistics

• Primordial non-Gaussianity



Cosmological Random Fields



Cosmological perturbations

T (n̂)

ng(~x)

CMB temperature fluctuations

number density of galaxies

Mathematically, these are random fields

We can only study the statistical 
properties of cosmological perturbations



Random fields

If    is a random variable with Probability Distribution Function (PDF)
we can compute: 

h�i =
Z

d�P(�)�

h�2i =
Z

d�P(�)�2

h�ni =
Z

d�P(�)�n

�2
� = h�2i � h�i2

� P(�)

mean

2-nd-order moment

n-th-order moment

variance



Random fields

If         is a random field we can also compute correlation functions�(~x)
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�̄ = h�(~x)i

�(x1) �(x2)

h�(x1)�(x2)i
h�(x1)�(x2)�(x3)i

h�(x1)�(x2) . . .�(xn)i

two-point function

three-point function

n-point function

= h�(x1)ih�(x2)i+ h�(x1)�(x2)ic
= h�(x1)ih�(x2)ih�(x3)i+

+h�(x1)�(x2)ic h�(x3)i+ perm.+

+h�(x1)�(x2)�(x3)ic
…



The galaxy number density and its perturbations as random fields

ng(~x) ⌘ n̄g [1 + �g(~x)]

�g(~x) ⌘ ng(~x)� n̄g

n̄g

galaxy number density

mean galaxy number

galaxy overdensity
or density contrast

N.B. h�g(~x)i ⌘ 0

�g(~x) � �1

The distribution of galaxies



We will write the equations of motions for perturbations and as a function of 
comoving coordinates  and conformal time .⃗x dτ = dt/a(t)

⇢(~x, ⌧) = ⇢̄(⌧)[1 + �(~x, ⌧)] matter 
perturbations�(~x, ⌧)

Matter, peculiar velocities, gravitational potential



We will write the equations of motions for perturbations and as a function of 
comoving coordinates  and conformal time .⃗x dτ = dt/a(t)

~r = a(t) ~x H ⌘
1

a

da

d⌧
= aH

⇢(~x, ⌧) = ⇢̄(⌧)[1 + �(~x, ⌧)]

Velocities have a competent due to the Hubble expansion and one due to peculiar motion 

matter 
perturbations�(~x, ⌧)

Hubble flow

~v ⌘ d~r

dt
=

da

dt
~x+ a

d~x

dt
= H(⌧)~r(⌧) + ~u(~x, ⌧)

~v(~x, ⌧) = H(⌧) ~x(⌧) + ~u(~x, ⌧) peculiar velocities~u(~x, ⌧)

Matter, peculiar velocities, gravitational potential

~v(~r, t)

⇢(~r, t)

~u(~x, ⌧)

�(~x, ⌧)



We will write the equations of motions for perturbations and as a function of 
comoving coordinates  and conformal time .⃗x dτ = dt/a(t)

~r = a(t) ~x H ⌘
1

a

da

d⌧
= aH

⇢(~x, ⌧) = ⇢̄(⌧)[1 + �(~x, ⌧)]

Velocities have a competent due to the Hubble expansion and one due to peculiar motion 

matter 
perturbations�(~x, ⌧)

Hubble flow

~v ⌘ d~r

dt
=

da

dt
~x+ a

d~x

dt
= H(⌧)~r(⌧) + ~u(~x, ⌧)

~v(~x, ⌧) = H(⌧) ~x(⌧) + ~u(~x, ⌧) peculiar velocities~u(~x, ⌧)

Matter, peculiar velocities, gravitational potential

 in comoving coordinates

Matter perturbations are related to perturbations in the gravitational potential via 
Poisson equation

gravitational 
potential �(~x, ⌧)



Correlations Function



The galaxy two-point correlation function

What is the probability of finding two galaxies in 
the volume elements       and       ?    dV1 dV2

dV1

dV2

= dV1 dV2 n̄
2
g [1 + h �g(~x1) �g(~x2) i]

dP = dV1 dV2 hng(~x1)ng(~x2) i

We now make the assumption of 
statistical homogeneity and isotropy

⇠(|~x1 � ~x2|) ⌘ h �g(~x1) �g(~x2) i

the two-point correlation function 
only depends on the distance 
between the two points

r = |~x1 � ~x2|
⇠(r)

r
excess probability



What is the probability of finding two galaxies in 
the volume elements       and       ?    dV1 dV2

dP = dV1 dV2 hng(~x1)ng(~x2) i

⇠(r) � 1

⇠(r) ' 0

= dV1 dV2 n̄
2
g [1 + ⇠(r) ]

⇠(
r)

r [Mpc/h]

The galaxy two-point correlation function



dP = dV1dV2dV3hng(~x1)ng(~x2)ng(~x3)i

The galaxy three-point correlation function

Similarly I can ask the probability of finding three 
galaxies in the volume elements       ,        and          dV1 dV2

excess probability

dV3

= dV1 dV2 dV3 n̄
3
g [1+

+ ⇠(r12) + ⇠(r13) + ⇠(r23) + ⇣(r12, r13, r23)]

the 3-point correlation function 
represents the (excess) probability to 
find 3 galaxies forming a triangle of a 
given shape and size

⇣(r12, r13, r23) ⌘ h�g(~x1)�g(~x2)�g(~x3)i

dV1

dV2

dV3



Gaussian and non-Gaussian random fields

The statistical properties of a Gaussian 
random field are completely 
characterised by its 2-point correlation 
function.  All higher-order, connected 
correlation functions are vanishing

=
C

l
l(
l
+
1)

P[�T (n̂)] =
1p
2⇡�2

T

e
� 1

2

�2T
�2
T

�T (n̂) ⌘
T (n̂)� T̄

T̄

Perturbations in the CMB are one of the 
best examples of Gaussian random field



Gaussian and non-Gaussian random fields

The statistical properties of a Gaussian 
random field are completely 
characterised by its 2-point correlation 
function.  All higher-order, connected 
correlation functions are vanishing

all other random fields are non-Gaussian!

The Universe evolves from Gaussian initial conditions 
(CMB) to a highly non-Gaussian distribution of 
matter (LSS) due to nonlinear growth of 
perturbations under the effects of gravity  



Ergodic hypothesis

Expectation values, in principle, are to be intended 
as ensemble averages, i.e. averages over many 
“realisations of the Universe” …

… but we only have one Universe!

We assume the ergodic hypothesis:
ensemble averages are equal to spatial 
averages

h�(~x)i ⌘
Z

d��P(�) =
1

V

Z

V
d3x�(~x)

We should make sure, however, that the 
observed volume correspond to a “fair sample” 
of the Universe



Fourier space

Theoretical predictions for the matter correlation functions are performed in Fourier 
space
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δ(
�)

Fourier analysis naturally 
separates perturbations at 
different scales:

�~k =

Z
d3x

(2⇡)3
e�i~k·~x�(~x)

�(~x) =

Z
d3kei

~k·~x�~k

• Since         is a random field
     is also a random field

• Since         is real

�(~x)

�(~x)

�~k

�⇤~k = ��~k



Fourier space: correlation functions

The 2-point function in Fourier space: the power spectrum

h �~k1
�~k2

i = �D(~k1 + ~k2)P (k1) P (k) =

Z
d3x

(2⇡)3
ei

~k·~x⇠(x)

The power spectrum is the Fourier Transform 
of the 2-point correlation function

The power spectrum is a measure of the 
amplitude of perturbations as a function of scale

homogeneity & isotropy

adimensional power spectrum



h�~k1
�~k2

�~k3
i ⌘ �D(~k1 + ~k2 + ~k3)B(k1, k2, k3)

Fourier space: correlation functions

Higher-order correlation functions:

The bispectrum and trispectrum are the lowest-order correlation 
functions to characterise the three-dimensional nature of matter 
perturbations

the bispectrum

h�~k1
�~k2

�~k3
�~k4

i ⌘ �D(~k1 + ~k2 + ~k3 + ~k4)T (~k1,~k2,~k3,~k4) the trispectrum



Our goal

3448 L. Anderson et al.

Figure 7. Histogram of (α − 〈α〉)/σα measured from ξ (r) of the post-
reconstruction mocks, where 〈α〉 is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − 〈α〉)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − 〈w(r)n(r)〉
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r〈w(r)n(r)〉2
}1/2

, (32)

and 〈w(r)n(r)〉 is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

C© 2012 The Authors, MNRAS 427, 3435–3467
Monthly Notices of the Royal Astronomical Society C© 2012 RAS
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predict the correlation 
functions describing the 
statistical properties of the 
Large-Scale Structure

for this we study the evolution of
matter density perturbations 

We need:
1.   Equations of motion
2.   Initial conditions

�~k(t)



Initial Conditions



Density Perturbations from Inflation

amplitude

scale-dependence

P�(k) =
2

9M4
p

H
2
V

2

V 02 k
�4+ns

�����
aH=k

spectral index: ns = 1� 2M2
p

✓
V 0

V

◆2

+ 2M2
p
V 00

V

Inflation predicts the power spectrum of the 
primordial perturbations in the gravitational potential 

Harrison-Zeldovich
power spectrum��(k) ⌘ 4⇡k3P�(k) ' constant ' (10�5)2

Poisson equation matter power spectrum



The “initial” matter power spectrum

The linear matter power spectrum at recombination,  z ∼ 1100

10-4 10-3 10-2 0.1 1 10

10-9

10-7

10-5

10-3

k [h Mpc-1]

P
L(
k)

keq

Suppression due to 
radiation pressure

Primordial 
scale-invariant 

power spectrum

Large scales Small scales

P (k) ⇠ k

P (k) ⇠ k�2.5

P (k) ⇠ k4 P�(k) ⇠ Ck T 2(k)

Baryonic
oscillations



Linear Eulerian Perturbation Theory



Evolution of matter perturbations

We will consider now the following approximations for the 
evolution of matter perturbations:

1.  All matter is cold (ignore the effects of baryons & neutrinos)

2. Newtonian approximation:
                                   scales much smaller than the horizon
                          velocities much smaller than the speed of light

3. Matter domination (ignore effects of dark energy at late times) 

k � aH(a)
v ⌧ c



Vlasov equation

Phase-space conservation for the particle number density f(τ, ⃗x , ⃗p )

Comoving coordinates   and conformal time ⃗x = ⃗r /a τ

density

peculiar velocity field, ⃗u

stress-tensor

pressure viscosity

PT review: Bernardeau et al. (2002)



Vlasov equation

Phase-space conservation for the particle number density f(τ, ⃗x , ⃗p )

Comoving coordinates   and conformal time ⃗x = ⃗r /a τ

density

peculiar velocity field, ⃗u

                 Single-stream approximation Closed set of equations 
for density and velocity 



Single-stream approximation 

for Cold Dark Matter we can ignore the 
thermal motion of individual particles,
and study the evolution of perturbations 

~v(~r, t)

⇢(~r, t)



Fluid equations for the perturbations

Phase-space conservation for the particle number density f(τ, ⃗x , ⃗p )

Comoving coordinates   and conformal time ⃗x = ⃗r /a τ

                 Single-stream approximation

continuity equation
(conservation of mass)

Euler equation
(conservation of 
momentum)

@�

@⌧
+ ~r · [(1 + �) ~u] = 0



Fluid equations

Phase-space conservation for the particle number density f(τ, ⃗x , ⃗p )

Comoving coordinates   and conformal time ⃗x = ⃗r /a τ

Euler equation
(conservation of 
momentum)

Poisson equation
3 equations & 
3 unknowns: 

ρ, ⃗u , Φ
+

continuity equation
(conservation of mass)

@�

@⌧
+ ~r · [(1 + �) ~u] = 0



Linear equations for the perturbations 

continuity equation

Euler equation

Poisson equation

@�

@⌧
+ ~r · [(1 + �) ~u] = 0

@~u

@⌧
+H~u+ (~u · ~r) ~u = �~r�

r
2� =

3

2
H

2�



continuity equation

Euler equation

Poisson equation

@�

@⌧
+ ~r · [(1 + �) ~u] = 0

@~u

@⌧
+H~u+ (~u · ~r) ~u = �~r�

r
2� =

3

2
H

2�

Linear equations for the perturbations 



continuity equation

Euler equation

Poisson equation

@�

@⌧
+ ~r · [(1 + �) ~u] = 0

@~u

@⌧
+H~u+ (~u · ~r) ~u = �~r�

r
2� =

3

2
H

2�

~r· ( )

then introducing the velocity divergence ✓(~x, ⌧) ⌘ ~r · ~u(~x, ⌧)

Linear equations for the perturbations 



continuity equation

Euler’s equation

@�

@⌧
+ ✓ = 0

@✓

@⌧
+H✓ +

3

2
H

2 � = 0

@2�

@⌧2
+H

@�

@⌧
�

3

2
H

2 � = 0

friction gravity

2nd order equation

where (for a flat, matter-dominated Universe) H =
1

a

da

d⌧
=

2

⌧

Linear equations for the perturbations 



Linear growth of perturbations 

2nd order equation in Fourier space
@2�~k
@⌧2

+H
@�~k
@⌧

�
3

2
H

2 �~k = 0



2nd order equation in Fourier space
@2�~k
@⌧2

+H
@�~k
@⌧

�
3

2
H

2 �~k = 0

Look for a separable solution like �~k(⌧) = D(⌧)A~k D(⌧) growth factor

D+(a) ⇠ a

D�(a) ⇠ a�3/2{ growing mode

decaying mode

�~k(a) = A~k a+B~k a
�3/2

✓~k(a) = �
@�~k
@⌧

= �H

✓
A~k a�
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2
B~k a

�3/2

◆

Linear growth of perturbations 



2nd order equation in Fourier space
@2�~k
@⌧2

+H
@�~k
@⌧

�
3

2
H

2 �~k = 0

Look for a separable solution like �~k(⌧) = D(⌧)A~k D(⌧) growth factor

D+(a) ⇠ a

D�(a) ⇠ a�3/2{ growing mode

decaying mode

�~k(a) = A~k a+B~k a
�3/2

✓~k(a) = �
@�~k
@⌧

= �H

✓
A~k a�

3

2
B~k a

�3/2

◆

A~k 6= 0 A~k = 0B~k = 0 B~k 6= 0

� > 0 � > 0

✓ > 0✓ < 0
decaying modegrowing mode

Linear growth of perturbations 



Linear growth in a ΛCDM cosmology
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(⌦m = 0.3, ⌦⇤ = 0.7)

exact solution for the growth factor



Linear growth in a ΛCDM cosmology
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Nonlinear growth of matter perturbations
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Analytical, Perturbation Theory

tions alone, and construct a physical model based on the
coherent infall of pairs to understand their origin.

This state of affairs is perhaps not too surprising given
that the effects involved are small, and require great accu-
racy from analytic and numerical methods. In this paper we
consider this issue by using renormalized perturbation
theory (RPT [18,19]), a new approach to follow nonlinear
clustering that includes in a systematic way all nonlinear
effects in the fluid approximation around a given scale
[20]. Here we concentrate on fundamental questions such
as (1) can nonlinear effects generate shifts in indicators of
the acoustic scale large enough to bias determinations of
cosmological parameters, and (2) if so, what physics is
responsible for this? Is it related to large-scale nonlineari-
ties that we can hope to model accurately, or more com-
plicated physics related to virialized dark matter halos? We
shall see that the answer to the first question is ‘‘yes,’’ and
the answer to the second question involves large-scale
physics, which we discuss in detail. Our discussion em-
phasizes the shifts generated by mode coupling, which
constitutes a new result (see also [16]). In [19] we have
already discussed in detail the effects of random motions in
terms of large-scale physics; we briefly discuss these here
as well in more accessible terms. That large-scale random
motions are responsible for the damping of the linear
power spectrum has also been recognized in [8,13,21].

In the present paper we concentrate on predictions from
RPT for the power spectrum and the two-point correlation
function. A detailed account of the technicalities involved
in calculating two-point statistics in RPT and their com-
parison with numerical simulations is left for a separate
publication [22]. Here we present the main results regard-
ing BAO for dark matter in real space and discuss how RPT
can shed some light on practical parametrizations of these
nonlinear effects in a more general situation when redshift
distortions and galaxy bias are also present. No familiarity
with RPT is assumed; the main ideas behind RPT and
results on two-point statistics are explained in simple terms
in the following section, while the analytic expressions for
the power spectrum are presented in the Appendix.

II. RPT AND TWO-POINT STATISTICS

A. Basics of RPT

Standard perturbation theory (PT, see [23] for a review)
is an expansion of the equations of motion around their
linear solution, assuming fluctuations are small.
Schematically, for the power spectrum this expansion reads

 P!k; z" # D2
$!z"P0!k" $ P1 loop!k; z" $ P2 loop!k; z" $ . . .

(1)

where D$!z" is the growth factor at redshift z; P0!k" is the
initial power spectrum (at high redshift) so that linear
evolution reads Plin!k; z" # %D$!z"&2P0!k". In Eq. (1),
P1 loop 'O!Plin!lin", P2 loop 'O!Plin!

2
lin", and so on,

where !lin ( 4!k3Plin measures the amplitude of fluctua-
tions at scale k in linear theory. For scales approaching the
nonlinear regime where !lin * 1, truncation at any finite
order in PT is not meaningful, as neglected higher-order
contributions are important.

In RPT [18], the main idea is to get around this limita-
tion of PT, by making a resummation of an infinite subset
of contributions to the PT expansion. As a result of this
process of resummation, where terms of different order
have been grouped together into physical objects, what
remains is a new series expansion which is not a perturba-
tive expansion in the amplitude of fluctuations and, most
importantly, exhibits a very different behavior: truncation
at finite order in RPT does take into account all nonline-
arities from the largest scales down to a given scale; the
impact of smaller scales described by the neglected terms
is highly suppressed. One of the main insights that follows
from RPT is that, if we write the growth factor as

 D$!z" #
h"lin!k; z""0!k0"i
h"0!k""0!k0"i ; (2)

where " denotes the density contrast, and "lin!k; z" #
D$!z""0!k" is linear evolution (with D$ ( 1 at the initial
condition), then a whole set of nonlinear contributions to
Eq. (1) (or any correlation function) effectively ‘‘renormal-
ize’’ the growth factor to the following, fully nonlinear
quantity:

 D$!z" ! G!k; z" # h"!k; z""0!k0"i
h"0!k""0!k0"i ; (3)

where "!k; z" is the fully nonlinear density contrast. The
function G!k; z" is known as the propagator, which can be
thought of as a measure of the memory of initial condi-
tions, since it gives the time ‘‘propagation’’ of the cross
correlation between initial and final density contrasts,
h"!k; z""0!k0"i # G!k; z"h"0!k""0!k0"i. Note that this
property means that all the terms in Eq. (1) that are
proportional to P0 (including those in the loop contribu-
tions) are resummed into G2P0, whereas in the remaining
loop terms the time dependence is dictated by the propa-
gator instead of the growth factor, which essentially means
using Eq. (3) to replace the linear propagation in between
nonlinear interactions that make up the loop contributions
[24].

The asymptotics of the propagator are easy to under-
stand: at large scales, linear perturbation theory becomes a
good approximation and thus

 G!0; z" # D$!z": (4)

On the other hand, at small scales where nonlinear effects
are dominant the cross correlation must be driven to zero,
as the final density field resembles very little what it was at
the beginning. Thus, we expect on physical grounds that

 G!k; z" ! 0 as k ! 1: (5)
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tions alone, and construct a physical model based on the
coherent infall of pairs to understand their origin.

This state of affairs is perhaps not too surprising given
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responsible for this? Is it related to large-scale nonlineari-
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in calculating two-point statistics in RPT and their com-
parison with numerical simulations is left for a separate
publication [22]. Here we present the main results regard-
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II. RPT AND TWO-POINT STATISTICS
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remains is a new series expansion which is not a perturba-
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where "!k; z" is the fully nonlinear density contrast. The
function G!k; z" is known as the propagator, which can be
thought of as a measure of the memory of initial condi-
tions, since it gives the time ‘‘propagation’’ of the cross
correlation between initial and final density contrasts,
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property means that all the terms in Eq. (1) that are
proportional to P0 (including those in the loop contribu-
tions) are resummed into G2P0, whereas in the remaining
loop terms the time dependence is dictated by the propa-
gator instead of the growth factor, which essentially means
using Eq. (3) to replace the linear propagation in between
nonlinear interactions that make up the loop contributions
[24].

The asymptotics of the propagator are easy to under-
stand: at large scales, linear perturbation theory becomes a
good approximation and thus

 G!0; z" # D$!z": (4)

On the other hand, at small scales where nonlinear effects
are dominant the cross correlation must be driven to zero,
as the final density field resembles very little what it was at
the beginning. Thus, we expect on physical grounds that
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Nonlinear Perturbation Theory



Back to the Equations of Motion ( ) Ωm = 1

Assuming CDM as ideal fluid we need the following equations:

continuity equation

Euler equation



Nonlinear solutions in SPT ( ) Ωm = 1

We can rewrite things a bit …

continuity equation

Euler equation

In Fourier space …



Now we can look for perturbative solutions of the form

Then we can match order by order …

��k = �(1)�k
+ �(2)�k

+ ...

�(2)�k
=

Z
d3q F2(⇥k � ⇥q, ⇥q) �(1)�k��q

�(1)�q

quadratic correction ( )∼ a2linear solution 
( )∼ a

linear solution

Nonlinear solutions in SPT ( ) Ωm = 1



Now we can look for perturbative solutions of the form

Then we can match order by order …

��k = �(1)�k
+ �(2)�k

+ ...

�(2)�k
=

Z
d3q F2(⇥k � ⇥q, ⇥q) �(1)�k��q

�(1)�q

quadratic correction ( )∼ a2linear 
solution 
( )∼ a

∼ a2 ∼ a2 ∼ a2 ∼ a ∼ a

Nonlinear solutions in SPT ( ) Ωm = 1



Nonlinear solutions in SPT ( CDM) Λ

and, using the linear growth factor as time variable and defining now , 
 being the growth rate

Θ ≡ − θ/( f ℋ)
f = d ln D/d ln a

Poisson equation now reads

the Euler equation becomes

… not separable anymore! However, it happens that , and sof ≃ Ω0.55
m (a)

NB: time-dependent Ωm(a)

��k = �(1)�k
+ �(2)�k

+ ...

∼ D(a) ∼ D2(a)

and the kernels derived for EdS ( ) are still a very good approximationΩm = 1



Non-Gaussianity from nonlinear evolution

From the perturbative solution for the matter density we obtain a perturbative 
solution for the matter 3-point function, or, in Fourier-space, the bispectrum

h���i = h�(1)�(1)�(1)i+ h�(1)�(1)�(2)i+ ...

= 0 for Gaussian 
initial conditions

non-zero bispectrum 
induced by gravity

loop corrections

The leading order (tree-level) expression is 

A (very specific)  
non-Gaussianity 

is induced 
by the nonlinear evolution
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Q(k1, k2, k3) =
B(k1, k2, k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)

The matter bispectrum We can predict (quantitatively) the 
non-Gaussianity we recognise (qualitatively) 

in the LSS



The nonlinear Power Spectrum in SPT

Again, from the perturbative solution for the matter density we obtain a perturbative 
solution for nonlinear matter power spectrum

 
for Gaussian 

initial conditions

∼ ⟨δ(1)δ(1)δ(1)⟩ = 0Linear power 
spectrum

PL(k)

 and 
one-loop corrections

P22(k) P13(k)



The matter power spectrum at one-loop

Jeong & Komatsu (2006)

Fig. 3.—Nonlinearity in baryonic acoustic oscillations. All of the power spectra have been divided by a smooth power spectrum without baryonic oscillations from
eq. (29) of Eisenstein & Hu (1998). The error bars show N-body simulations, while the solid lines show PT calculations. The dot-dashed lines show the linear theory
predictions. PT describes nonlinear distortion on baryonic oscillations very accurately at z > 1. Note that different redshift bins are not independent, as they have grown
from the same initial conditions. The N-body data at k < 0:24 and >0.24 h Mpc!1 are from 512 and 256 h!1 Mpc box simulations, respectively. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 4.—Nonlinearity and the amplitude of matter fluctuations, !8. In each panel the lines show the linear spectrum and nonlinear spectrum with !8 ¼ 0:7, 0.8, 0.9,
and 1.0 from bottom to top. [See the electronic edition of the Journal for a color version of this figure.]
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Some problems with Standard PT

• No small parameters (unlike QED)

• The expansion is ill-defined

• The convergence of the loop integrals is accidental … 



Effective Field Theory of Large-Scale Structure

We still have the problem of how to deal with the small scale dynamics, or, more precisely, the 
effect of small scales on large-scale  perturbations

Baumann, Nicolas, Senatore & Zaldarriaga (2010)
Carrasco, Hertzberg & Senatore (2012)

Even assuming a vanishing 
stress-tensor,   
(as we did in the single-
stream approximation),  
small-scale dynamics 
induces an  
effective stress tensor, 
affecting the large-scale 
perturbations 

σij = 0

JCAP07(2012)051

effective theory
short modeslong modes

⇤�1

H�1

k
�1

k
�1
NL

k
kNL⇤

[⌧µ⌫ ]⇤

Figure 2. The locally conserved e↵ective stress-energy tensor of small-scale non-linearities, [⌧µ⌫ ]⇤,
sources the quasi-linear structures of the long-wavelength universe.

the e↵ects are hence dominated by small scales with characteristic momentum q?. Since we
are interested in the theory at scales k much larger than the scale of non-linearities q?, we
define an e↵ective long-wavelength theory by ‘integrating out’ short-wavelength modes below
a scale ⇤ ⌧ q?. Here, integrating out short-wavelength fluctuations amounts to smoothing
the equations of motion and taking expectation values of the short-wavelength modes in the
presence of long-wavelength perturbations, so that one is left with equations in terms of only
the long-wavelength modes.16 In real space, the smoothing of perturbations corresponds to
a convolution of all fields X ⌘ {⇢,�, , ⇢v} with a window function W⇤,17

X` ⌘ [X]⇤(x) =

Z
d
3x0

W⇤(|x � x0|)X(x0) . (4.1)

This allows us to split all fields into long and short modes,

X = X` + Xs . (4.2)

16Taking the expectation value of the short modes isn’t strictly necessary. The backreaction of the short-
wavelength modes on the long-wavelength modes could also be dealt with on a realization by realization basis.

17We could equally have defined the smoothing with respect to the physical background volume by
including a factor of

p
g = a

3
e
�3� in the integral in (4.1), while at the same time adjusting our split into

linear and non-linear terms of the smoothed Einstein equation — i.e. defining the split into linear and
non-linear terms after the smoothing. The choice of smoothing in (4.1) has the advantage that the split
into linear and non-linear terms can be performed before the smoothing and that it leads to a simple
interpretation of the total energy associated with the small-scale structures (see below). Although there is
some freedom in the smoothing procedure, the final physical interpretation of the result is unique: what
sources the long-wavelength universe is the locally conserved stress-energy tensor.

Finally, we remark that at the order of expansion we are working in (i.e. linear in metric perturbations and
quadratic in velocities), smoothing of ⌧µ⌫ with respect to the background volume is the same as smoothing
with respect to the physical volume — except for the smoothing of the velocity-independent part of the 00-
component, [⇢]⇤, which receives a correction of order [�⇢]⇤. However, even for this single term the di↵erence
can be absorbed into an appropriate definition of the physical mass density ⇢m (see eq. (4.8) below), such
that

R
d
3x ⇢m =

R
d
3x

p
g ⇢̃m. Hence, the final physical answer is unambiguous.
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Effective Field Theory of Large-Scale Structure

with the effective stress-tensor depending on large-scale fluctuations

We can expect an additional term in Euler equation

FT

our nonlinear solution for the matter density becomes

with  a free parameter … c0



The one-loop power spectrum in the EFTofLSS

The 2-point correlator gains a new contribution

A counterterm regularising the one-loop integrals

The value of  ensures the convergence of the integrals. In practice this is a nuisance 
parameters to be fixed in the comparison with data or simulations 

c0



The reach of PT models

The  matter  bispectrum  4973  

MNRAS  512,  4961–4981  (2022)  

Figure  10.  We  define  the  reach  of  a  model  for  the  power  spectrum  as  the  minimum  k  max  at  which  the  χ2  goodness-of-fit  test  rejects  the  null  hypothesis  that  the  

N  -body  data  are  consistent  with  the  model  predictions  at  the  significance  level  of  0.05.  The  top-left  panel  shows  the  median  reach  of  200  subsets  of  MINERVA  

simulations  each  co  v  ering  a  volume  V  .  Different  colours  refer  to  different  models  as  indicated  in  the  label.  Solid  lines  are  used  for  the  models  with  no  free  

parameters  and  for  our  default  EFT  models  (i.e.  with  k  fit  =  0  .  14  h  Mpc  −1  ,  highlighted  by  a  horizontal  grey  line)  while  the  two  dashed  lines  represent  the  EFT  

models  with  k  fit  =  0  .  22  h  Mpc  −1  .  The  top-right  panel  shows  the  median  (solid)  and  the  central  68  per  cent  range  (shaded)  of  the  estimated  reach  for  SPT  and  

the  default  IR-resummed  EFT.  The  bottom-left  panel  is  analogous  to  the  top-left  one  but  accounts  for  systematic  errors  in  the  simulations  by  considering  an  

additional  0.5  per  cent  error  added  in  quadrature  to  the  random  contributions.  The  dot–dashed  line  refers  to  the  IR-resummed  EFT  model  obtained  by  averaging  

c  0  o  v  er  the  200  subsets.  Finally,  the  bottom-right  panel  shows  the  reach  of  the  models  after  approximately  correcting  the  simulation  data  for  the  bias  introduced  

by  the  finite  mass  resolution  (see  the  main  text  for  details).  The  shaded  regions  encompass  the  range  of  variability  of  the  corrections  while  the  solid  lines  are  

taken  from  the  top-left  panel  and  are  given  as  a  reference.  All  panels  show  three  vertical  lines  indicating:  (i)  the  volume  of  a  redshift  bin  of  width  "z  =  0.2  

centred  at  z  =  1  for  a  Euclid  -like  surv  e  y  (dashed);  (ii)  the  total  volume  of  the  EOS  simulations  (dot–dashed);  and  (iii)  the  volume  of  the  PT-challenge  simulations  

in  Nishimichi  et  al.  (  2020  ,  dotted).  Measurements  and  models  are  compared  using  a  bin  width  of  "  k  =  k  F  .  

model  based  on  the  (one-sided)  95  per  cent  confidence  limits  for  

the  chi-squared  distribution.  (v)  We  repeat  the  procedure  from  step  

(ii)  onward  200  times.  (vi)  We  plot  the  median  value  of  the  reach  

(top-left  panels)  and  its  scatter  (top-right  panels)  as  a  function  of  V  .  

In  order  to  ease  the  interpretation  of  our  results  and  facilitate  

comparison  with  the  literature,  we  draw  vertical  lines  marking  

three  characteristic  volumes.  From  left  to  right,  they  are:  (i)  V  =  

7  .  94  h  −3  Gpc  3  which  corresponds  to  a  redshift  bin  centred  at  z  =  1  

and  of  width  "z  =  0.2  of  a  Euclid-like  surv  e  y  (Euclid  Collaboration  

2020  );  (ii)  V  =  80  h  −3  Gpc  3  which  coincides  with  the  total  volume  

of  the  EOS  simulations  (and  is  approximately  a  factor  1.5  larger  than  

the  volume  of  the  simulations  used  in  Baldauf  et  al.  2015b  ,  c  ;  Steele  

&  Baldauf  2021  );  (iii)  V  =  566  h  −3  Gpc  3  which  is  the  volume  of  the  

simulation  used  in  the  blinded  challenge  paper  of  Nishimichi  et  al.  

(  2020  ).  

We  are  now  ready  to  discuss  the  results  presented  in  the  top-left  

panels  of  Figs  10  and  11  .  As  expected,  the  domain  of  accuracy  

of  the  models  decreases  with  increasing  V  .  The  only  exception  
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2020  );  (ii)  V  =  80  h  −3  Gpc  3  which  coincides  with  the  total  volume  

of  the  EOS  simulations  (and  is  approximately  a  factor  1.5  larger  than  

the  volume  of  the  simulations  used  in  Baldauf  et  al.  2015b  ,  c  ;  Steele  

&  Baldauf  2021  );  (iii)  V  =  566  h  −3  Gpc  3  which  is  the  volume  of  the  

simulation  used  in  the  blinded  challenge  paper  of  Nishimichi  et  al.  

(  2020  ).  

We  are  now  ready  to  discuss  the  results  presented  in  the  top-left  

panels  of  Figs  10  and  11  .  As  expected,  the  domain  of  accuracy  

of  the  models  decreases  with  increasing  V  .  The  only  exception  
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