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The goal

Describe and motivate the state-of-the-art modelling in perturbation theory
of the redshift-space galaxy power spectrum,
a main observables in galaxy spectroscopic surveys

PT Challenge: test on simulations over a volume of 600 Gpc’/h*

Power spectrum multipoles best fit @kmax=0.12 h/Mpc, z=0.61
200177 08 r—TTr—— T T
- : : : : : :l | | | e =0 ]
N T N 0.02f -~ 41—
 1500p====77 = SRR : T RERY | | |
2 | - oo i fo e
= 1000F - -f4------ SEEEEE JRREEE SRR RREE o | | | | |
R A e E o.oor--r:-l--%—:—f—— S% 3F It 1 -
U S S Y11 5 1 IR N AR S S N
coopbet bl : .
0.02 0.04 0.06 0.08 010 0.12 002 004 006 008 010 0.1Z

k. h Mpc™ k, h Mpc™
Nishimichi et al (2006)



Lecture |

Lecture 2
« The galaxy distribution as a random  Galaxy bias
field » Baryonic Acoustic Oscillations &

: . Infrared Resummation
 Galaxy clustering observables: power

spectrum & 2PCF  Redshift-Space Distortions

. . . hasti ntributions
- Initial conditions: the matter power Stochastic contribut

spectrum at recombination * Recent analyses of the BOSS survey

* Linear Eulerian Perturbation Theory Neutrinos

* Non-Gaussianity & Higher-Order

* Non-Gaussianity and higher-order Statistics

correlation functions
* Primordial non-Gaussianity

* Nonlinear PT and the power spectrum
at one-loop

» Effective Field Theory of Large-Scale
Structure






Cosmological perturbations

CMB temperature fluctuations

A

number density of galaxies

First CfA Strip
285 £ 4 < 325
mp < 16.6

We can only study the statistical
properties of cosmological perturbations

Copyright

Mathematically, these are random fields




Random fields

If ¢ is a random variable with Probability Distribution Function (PDF) P(¢)
we Can ComPUte:

@)= [ doPo) mean
<¢2> = /deP(@ ¢2 2-nd-order moment
(@") = /deP(@ ¢" n-th-order moment

O?b — <¢2> — <¢>2 variance



Random fields

If #(Z) is a random field we can also compute correlation functions

random field, @(x)
—~
<§
g?
:1\;
-
|
o
o

two-point function <¢($1)§Z5(CC2)> — <¢(5131)><¢(932)> - <¢(CB1)¢($2)>C

three-point function (D(z1)P(2)P(23)) = (D(21))(D(22))(P(T3))+
+(@(z1)d(22))c (P(23)) + perm.+
+(p(1)d(w2)P(23))c

.n.-.point function (p(x1)p(x2) ... p(xy))



The distribution of galaxies

The galaxy number density and its perturbations as random fields

galaxy number density

galaxy overdensity
or density contrast

NE. (6,()) = 0
5y() > 1




Matter, peculiar velocities, gravitational potential

We will write the equations of motions for perturbations and as a function of
comoving coordinates X and conformal time dr = dt/a(%).

matter
perturbations

6(Z, T)




Matter, peculiar velocities, gravitational potential

We will write the equations of motions for perturbations and as a function of
comoving coordinates X and conformal time dr = dt/a(%).

p(Z,7) = p(T)[1 + 6(Z, 7)] 5(z,7) Matter

perturbations

Velocities have a competent due to the Hubble expansion and one due to peculiar motion

L 7 1d
F=at)? o= =L+ aZ = H(r)#(r) + 4, 7) =-"—qH

t dt dt

Hubble flow




Matter, peculiar velocities, gravitational potential

We will write the equations of motions for perturbations and as a function of
comoving coordinates X and conformal time dr = dt/a(%).

p(Z,7) = p(T)[1 + 6(Z, 7)] 5(z,7) Matter

perturbations

Velocities have a competent due to the Hubble expansion and one due to peculiar motion

L 7 1d
F=at)? o= =L+ aZ = H(r)#(r) + 4, 7) =-"—qH

t dt dt

T adr
Hubble flow

i(Z,7) peculiar velocities

Matter perturbations are related to perturbations in the gravitational potential via
Poisson equation

2H (7 1) 2 ~ ¢(= = gravitational
VeO(Z,t) = 4G a” pd(Z,t) ®(Z, 1) botential

in comoving coordinates






The galaxy two-point correlation function

What is the probability of finding two galaxies in

the volume elements dV7 and dV5?

dP = dVy dVs (ng(Z1) ng(F2) )
= dV1 dVa R2 [1 + (34(F1) 64(Z2) )]

excess probability

We now make the assumption of
statistical homogeneity and isotropy

the two-point correlation function &(r)
only depends on the distance r = |1 — 2|

between the two points
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The galaxy two-point correlation function

What is the probability of finding two galaxies in "l\
the volume elements dV7 and dV5? \
A
dP = dVy dVa (ng(Z1) ng (7)) |
|
= dVy dVan, [1+&(r)]
L L A D |
} (a) \1{
_ __ \I'.;‘(r) > 1j
0.04 | . i \
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The galaxy three-point correlation function

Similarly | can ask the probability of finding three
galaxies in the volume elements dV7, dV5 and dV3

dP = dV1dVadV3{ng(Z1)ng(T2)ny(Z3))
= dVy dVadVs ) [1+
_|_

+&(r12) + &(r13) + &(ra3) + (12,713, 723))]
N t

excess probability

((T12,713,723) = (0g(71)04(T2)dg(T3))

the 3-point correlation function
represents the (excess) probability to
find 3 galaxies forming a triangle of a
given shape and size

\

dVi

dVs

dVs

| =~



Gaussian and non-Gaussian random fields

The statistical properties of a Gaussian
random field are completely
characterised by its 2-point correlation
function. All higher-order, connected
correlation functions are vanishing
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Perturbations in the CMB are one of the
best examples of Gaussian random field



Gaussian and non-Gaussian random fields

The statistical properties of a Gaussian

random field are completely
characterised by its 2-point correlation
function. All higher-order, connected

correlation functions are vanishing

all other random fields are non-Gaussian!
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The Universe evolves from Gaussian initial conditions
(CMB) to a highly non-Gaussian distribution of
matter (LSS) due to nonlinear growth of
perturbations under the effects of gravity
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Ergodic hypothesis

Expectation values, in principle, are to be intended
as ensemble averages, i.e. averages over many

“realisations of the Universe” ...

... but we only have one Universe!

We assume the ergodic hypothesis:
ensemble averages are equal to spatial

g

@) = [ a00P0) = [ dro@

averages

We should make sure, however, that the
observed volume correspond to a “fair sample”

of the Universe
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Fourier space

Theoretical predictions for the matter correlation functions are performed in Fourier
space

Fourier analysis naturally
separates perturbations at
different scales:

0(X)

density,

® Since 6(Z) is a random field
07 is also a random field

0(T) = /dgkeik°f5lg ® Since 6(%) is real p=0_p



Fourier space: correlation functions

The 2-point function in Fourier space: the power spectrum

(05, 3, = bR + B) P(k) ) = [ 555 (@)
T The power spectrum is the Fourier Transform
homogeneity & isotropy of the 2-point correlation function

The power spectrum is a measure of the
amplitude of perturbations as a function of scale

A(l{:) =47 k}3 P(l{}) adimensional power spectrum

02 = (82()) = 4r / dk k2 P(k) = % (k)



Fourier space: correlation functions

Higher-order correlation functions:

<5E1 5E25E3> = 5D(E1 -+ EQ -+ Eg) B(kl, kg, kg) the bispectrum

(07, 5;;’25;;35;;’4> = 5D(E1 + ko + k3 + E4) T(Eh ko, ks, E4) the trispectrum

The bispectrum and trispectrum are the lowest-order correlation
functions to characterise the three-dimensional nature of matter
perturbations




Our goal

0 ' ; ' | ' ' ' ' | ' ' ' B
Standard
« CMASS DR9
——Dbest—fit model
\ x°=81.5 / 59
0 L
n

predict the correlation
functions describing the
statistical properties of the
Large-Scale Structure

for this we study the evolution of
matter density perturbations *

05(t)

We need:
|. Equations of motion
2. Initial conditions







Density Perturbations from Inflation

Inflation predicts the power spectrum of the
primordial perturbations in the gravitational potential

Ao (k) = 47k® Py (k) ~ constant ~ (107°)? Ej&tii‘;iﬂi‘:;’im
) H2v2
P(I)(k) — k,—él—l—nS
OM) V'

j \ aH=Fk

scale-dependence

amplitude V! 2 V4l
P spectral index: ng =1 — 2M§ (7) + 2M§7

V2®=4rGa’pé —» P(k)~ k*Ps(k) ~ Ck"

Poisson equation matter power spectrum



The “initial” matter power spectrum

The linear matter power spectrum at recombination, z ~ 1100

P(k) ~ k* Py (k) ~ CET?*(k) Primordial
scale-invariant
'~ power spectrum

Suppression due to
radiation pressure

l

Baryonic

1071 oscillations
| Keq |
P(k’) -~ k—2.5
107 .
Lo | Lo | Lo | Lo | Lo | Lo
107 107° 107 0.1 1 10
1
Large scales k [h Mpc] Small scales






Evolution of matter perturbations

We will consider now the following approximations for the
evolution of matter perturbations:

|. All matter is cold (ignore the effects of baryons & neutrinos)

2. Newtonian approximation:
k> aHa) scales much smaller than the horizon
v K ¢ velocities much smaller than the speed of light

3. Matter domination (ignore effects of dark energy at late times)



Vlasov equatlon PT review: Bernardeau et al. (2002)

Phase-space conservation for the particle number density f(z, X, D)

4 :5]” 2 -ﬁf—amﬁ@-ﬁpfzo

dr ~ Ot am

—

Comoving coordinates x = 7/a and conformal time 7

/d3p .f(Ta fam — p(Ta f) density

—

—

/ d>p %f(T, z,p) = p(7,T) u(T, T) peculiar velocity field,

/dgp i f(T? 5725) — ,0(7', f) ui(Ta j’) uj(Ta f) T Uij(Ta j’)

% o }
stress-tensor O = —P5{§ + 7N (Viuj + Vjuz- — 555V . ’L_L') + C(ng U

pressure viscosity



Vlasov equation

Phase-space conservation for the particle number density f(z, X, D)

i _0of | b Vf—amV®-V,f=0

dr ~ Ot am

—

Comoving coordinates x = 7/a and conformal time 7

/dsp f(Ta fam — p(Ta f) density

/dSp %f(T, z,p) = p(7,T) u(T, T) peculiar velocity field,

/d3p i f(T7 iﬁ) — p(T, f) ui(Tv ZE’) uj(Ta f) T Uij(Tv f)

- Closed set of equations
for density and velocity

0;; = 0 Single-stream approximation




Single-stream approximation

for Cold Dark Matter we can ignore the
thermal motion of individual particles,
and study the evolution of perturbations




Fluid equations for the perturbations

Phase-space conservation for the particle number density f(z, X, D)

4 _ 9 R Vf—amV®-V,f=0

dr Ot am

—

Comoving coordinates x = 7/a and conformal time 7

continuity equation
(conservation of mass)

- d Euler equation
/ d>p bi df 0 =P (conservation of
am aT momentum)

0;; = 0 Single-stream approximation



Fluid equations

Phase-space conservation for the particle number density f(z, X, D)

df _0f P

dr ~ Ot am

-ﬁf—amﬁq)-ﬁpfzo

—

Comoving coordinates x = 7/a and conformal time 7

continuity equation
(conservation of mass)

- d Euler equation
/ d>p bi df 0 =P (conservation of
am aT momentum)

3 equations &
+ V2 ¢ =41 a,2 17 ) Poisson equation 3 unkncﬁvns:
p, u,d




Linear equations for the perturbations

) -
% +V-[(1+6)ud =0 continuity equation

Euler equation

V2® = = H?S Poisson equation




Linear equations for the perturbations

0
6_ N v (1 + x = ( continuity equation

ou - - .
P + Hu _|_M: Vo Euler equation

V2P = g H2H Poisson equation



Linear equations for the perturbations

0
6_ N v (1 + x =0 continuity equation

6 ( % + Hu —I—Wz Vo ) Euler equation

V2P = g H2H Poisson equation

then introducing the velocity divergence H(f, 7') = 6 : ﬁ(f, 7’)



Linear equations for the perturbations

) N :
. +0=0 continuity equation
@ + HO + §7_[2 d=0 Euler’s equation
ot 2
2
or2 " THr 9 2nd order equation

} }

friction  gravity

where (for a flat, matter-dominated Universe) H = —— =

1 da 2
adr T



Linear growth of perturbations

025,5 d0;:
or2 " ot

27-[2 5]; =0 2nd order equation in Fourier space



Linear growth of perturbations

040+ 007
ko g~k §’H2 d- =0 2nd order equation in Fourier space
07?2 or 2 &
Look for a separable solution like 6z(7) = D(7) Ap D(7) growth factor

D (CL) ~ Q growing mode
D (a) N a—3/2 decaying mode

5*(&) = AE a + BE a_3/2

k
00+ 3
QE(CL) — ——k — —H <AECL — 5 BE a_3/2>

ot




Linear growth of perturbations

%0+ 007
5 Qk - H 5 k 27-[2 5E == 2nd order equation in Fourier space
T T
Look for a separable solution like  d;(7) = D(7) A; D(7) growth factor
D (CL) ~ Q growing mode
D (a) N a—3/2 decaying mode

5*(&) = AE a + BE a_3/2

k
D6 3

QE(CL) = Py = —H <AECL — 5 BE a_3/2>

o >0 o> 0

growing mode decaying mode

Ay #£0 Bp= Ag=0  B; 70



Linear growth in a ACDM cosmology

redshift z
7 6 5 4 3 2 1 0
10l [ [ [ [ [ [ [ l,
| (Qn =1, Qp =0) | 5 o *  dad
| | | Di(a)=-=-H;Q,,0H(a
0'85 ‘|‘( ) 2 0 m,0 ( ) 0 [a/H(a/)]3
Ej’ 0.6 exact solution for the growth factor
E
& (4]
(Qn = 0.3, Qy =0.7)
04 06 08 10

scale factor a



Linear growth in a ACDM cosmology

redshift z
7 6 5 4 3 2 1 0
10l [ [ [ [ [ [ [ |7
| (Qy =1, Qp =0) | p (a) 5 HZQ,, o H(a) *  dad
[ ’ + — = m,0
0.8j | 9 0 5 [CL,H(CL,)]3
< |
3 06 exact solution for the growth factor
5|
< redshift z
% 7 6 5 4 3 2 1 0
E-b [ [ [ [ [ [ [ [
041 -
10
(Q = 0.3, Qa = 0.7) |
| 09f
04 06 08 10 §Eog
scale factor a % '
=
2 07
growth rate &

06k

05F

04 06 08 10
scale factor a



Nonlinear growth of matter perturbations

A(k)

100 |

001

A

= 47k P(k)

001

01 1 10
k [h Mpc™!]



Nonlinear growth of matter perturbations

z=0
Linear & mildly nonlinear regime:
Analytical, Perturbation Theory

z=12

P(k, z) = D% (2)Po(k) + Py 1o0p(k, 2) + Pajoop(k, 2) + ...

A(k) = 4nk3P(k)

—_
- 4
—-

—
—
-
—
—
—-—
-

A(k)

Nonlinear regime:
Phenomenological models, N-body simulations

001

001 01 1 10
k [h Mpc™!]






Back to the Equations of Motion (€2, = 1)

Assuming CDM as ideal fluid we need the following equations:

? 4+ 0 + 6 . (5{[) = ( continuity equation
-

Euler equation




Nonlinear solutions in SPT (€2 = 1)

We can rewrite things a bit ...

U
= -4 e=_2 —
n N a 2y oy,
00 - S
— 4+ 0 =-V-. (5U) continuity equation
on
50 3 Yo o
| -0d=—-V . . -
on O + 5 V- [(U-V)U] Euler equation
In Fourier space ...
85 N
k19, = —/d3k1d3k2(5p(k — k1g) g2 0 O
877 k2 1 2

00 3 L o (k- k)R
£+ 05+ 5 0% = —/d3k1d3k2 0p(k — k12) ( 12k22)2 = O, 6y,
12




Nonlinear solutions in SPT (€2 = 1)

Now we can look for perturbative solutions of the form
1) (2)
5_’ — 5£ 6—’ oo e
X g T 0nT T

linear solution  quadratic correction ( ~ a?)

(~a)
5 = /d3qF( F-qa)sl o

Then we can match order by order ...

(1)
ol PG
on k
— linear solution
50 3
E el 4 250 =0
o 9k



Nonlinear solutions in SPT (€2 = 1)

Now we can look for perturbative solutions of the form

(1) (2)

0p =0 +0.7 + ...
linear
solution

(~a) 5(2) /d3qF( _qﬁ)é(l) 5(1)

quadratic correction ( ~ a?)

Then we can match order by order ...

56> ko .k
2 e s 12 * 2 (1 1

8”:} | @%) — —/d3k1d3k25D(k— klg) k2 51(61)@( )

00} (2) |, 35(2) (k1 - ko)k? ()()
ko 2 2) = 1 R2)R79 1 1
oy O + 50 = —/d3k1d3k2 op(k — k12) T SPaCH

~ A Naz Na2 ~ d ~ d

Lo 20 1(krko) (R ka5 (k- k)2
— mER= 0 (B E) Y B



Nonlinear solutions in SPT (ACDM)

Poisson equation now reads

qu) _ gHQ Q.. 6 NB: time-dependent €2 (a)

and, using the linear growth factor as time variable and defining now ® = — 0/(f 7),
f=dInD/dIna being the growth rate

the Euler equation becomes

8@,-5 | 3., k2)k12
on | (5 72 1) O + 5?5 /51) k2k2 ©06

.. not separable anymore! However, it happens that f ~ Q%>°(a), and so

-

~ D(a) ~ D*a)

and the kernels derived for EdS (€2,, = 1) are still a very good approximation



Non-Gaussianity from nonlinear evolution

From the perturbative solution for the matter density we obtain a perturbative
solution for the matter 3-point function, or, in Fourier-space, the bispectrum

(666) = (MW sy 4 (sWsM§Py 4+ loop corrections

= 0 for Gaussian non-zero bispectrum
initial conditions induced by gravity

The leading order (tree-level) expression is

B(kla k27 k3) — FZ(Ela EZ) PL(kl) PL(kQ) + 2 perm.

A (very specific)
non-Gaussianity
is induced
by the nonlinear evolution




The matter bispectrum

B(kla k27 k?))
' : ki, ko, ks) =
A reduced bispectrum: Q(k1, k2, k3) PP (ky) + Pk )P (ks) + Pla) P ks
o5~ Plot of the reduced bispectrum with
R 1 fixed kjand kz as a function of the

angle between the two wavenumbers

20

N-body
----- tree—level

1-loop
k1=0.094 h~'Mpc
ky=2k,

Q(ky,k,0)
n

10 ]
matter bispectrum N st
- fNLZO, = 05
os-“"4+»—r -
0.0 0.2 0.4 0.6 0.8 1.0



The matter bispectrum

25+

20

1-loop

Q(ky,k,0)
n

ky=2k,

N-body
tree—level

k1=0.094 h~'Mpc

Q(kh k27 k3) —

10
matter bispectrum ~___~
- fNL:Oa = 05
OS5t — - |
00 0.2 04 0.6 0.8 1.0

We can predict (quantitatively) the

non-Gaussianity we recognise (qualitatively)
in the LSS

B(k1, ko, ks3)
P(k1)P(k2) + P(k1)P(ks) + P(k2)P(ks)




The nonlinear Power Spectrum in SPT

Again, from the perturbative solution for the matter density we obtain a perturbative
solution for nonlinear matter power spectrum

5p(ki2)P(k) = (0z 07 ) =

((5%?5%?) + (Wperm. + ((5%21)512)) + (5]%)5]%2)) + perm. + O(63)

Linear power ~ (6WsMsy =0 P,,(k) and P5(k)
spectrum for Gaussian one-loop corrections
P; (k) initial conditions

v

Po(k) = 2 / g Fo(3, % — §) Pu(q) Po (% — )

Pis(k) = 6 Py (k) /d3qF3<E, 3F— ) Pug)



The matter power spectrum at one-loop

__1.20¢ ' ' ' : 120
< 115 : > 1.15F
5 1.10F 5 1.10F
~ 1.05; ~ 1.05;
> 1.00F > 1.00F
~ F ~ F
o 0.95¢ o 0.95¢
0.90E . . . : 0.90E . , , :
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Wavenumber h Mpc™ Wavenumber h Mpc™
< <
o o
N N
S S
0 . ; 0 . E
0’9 E . , , 3 0’9 E . , , 3
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

Wavenumber h Mpc™ Wavenumber h Mpc™

Jeong & Komatsu (2006)



Some problems with Standard PT

* No small parameters (unlike QED)
* The expansion is ill-defined

* The convergence of the loop integrals is accidental ...

Pyo (k) = 2/d3qF2(q;/Z— 7 PL

Pys(k) = 6 Py (k) /qu Fy(k.q F

q) Pr(q)



Effective Field Theory of Large-Scale Structure

We still have the problem of how to deal with the small scale dynamics, or; more precisely, the
effect of small scales on large-scale perturbations

5= 5,15, 61@) = [y Wil - 1)5(0)
H! . -
Even assuming a vanishing
1 stress-tensor, 6;; =
(as we did in the single-
OO [(7- ] stream approximation),
tg 1A small-scale dynamics

Q@ induces an
QQ effective stress tensor,

affecting the large-scale
perturbations

long modes short modes

effective theory jl\ ]ﬂl\IL A1

Baumann, Nicolas, Senatore & Zaldarriaga (2010)
Carrasco, Hertzberg & Senatore (2012)



Effective Field Theory of Large-Scale Structure

We can expect an additional term in Euler equation

o0 St — _3q2s ]
5, T HO+V (@ V)a] = ~5H?S — ~ViV;((oi]a)

with the effective stress-tensor depending on large-scale fluctuations

(oula) = lmlalo+ G2 5+ 06

FT 1 o O 1)
> —kiki([0ii]a) D k2 | 36, — k2 o 6
ks (ola) K (20 + L) = aos,

our nonlinear solution for the matter density becomes

5 =061 +6% +6® f k26 4.

with ¢, a free parameter ...



The one-loop power spectrum in the EFTofLSS

The 2-point correlator gains a new contribution

(6:8) D (6 co k2 61) ~ o k2 Pr(k)

A counterterm regularising the one-loop integrals

P(k) = Pr(k) + Pay(k) + Py3(k) + co k* Pr(k) + O(8})

> ¥ > uv uv vy _ 16 2 q
/ =/ -I—/ —» Py + P35 ~ P Q%PL(k)k/ Q—PL(Q)
0 0 k

k T2

The value of ¢, ensures the conversence of the integrals. In practice this is a nuisance
0 8 8 P
parameters to be fixed in the comparison with data or simulations



The reach of PT models

BOSS Euclid PT challenge
volume volume Volume
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