Compton-y distortion: CMB constraints and new prospects with CIB

Alina Sabyr

with J. Colin Hill, Giulio Fabbian, Federico Bianchini, Boris Bolliet

Spectral Distortions (Quick Review)

CMB → *almost* a perfect **blackbody**

Spectral distortions \rightarrow probe the Universe's **thermal** history Upper limits: $|\langle y \rangle| < 15 \times 10^{-6}$ and $|\langle \mu \rangle| < 90 \times 10^{-6}$ (Fixsen+1996)

 $|\langle y \rangle| < 15 \times 10^{-9}$ and $|\langle \mu \rangle| < 90 \times 10^{-9}$ (Fixsen+1996) $|\langle \mu \rangle| < 47 \times 10^{-6}$ (Bianchini & Fabbian 2022)

Compton-y distortion

- → Known source: thermal Sunyaev-Zel'dovich effect (Sunyaev & Zel'dovich 1980)
- → Primarily sourced by galaxy groups and clusters.
- → Total thermal energy stored in electrons

$$egin{aligned} &\langle \Delta I^y_{
u}
angle &= \langle y
angle imes I_0 rac{x^4 e^x}{(e^x - 1)^2} \left[x ext{coth} \left(rac{ ext{x}}{2}
ight) - 4
ight] \ &\langle y
angle &= rac{\sigma_{ ext{T}}}{ ext{m}_{ ext{e}} ext{c}^2} \int rac{ ext{d}^2 \hat{ ext{n}}}{4\pi} \int P_e(\hat{ ext{n}}, l) dl \end{aligned}$$

Main motivation: validate current forecasting methods (e.g. PIXIE, Voyage 2050)

(see Bianchini & Fabbian 2022 for pixel-by-pixel µ-distortion analysis)

Main motivation: validate current forecasting methods (e.g. PIXIE, Voyage 2050)

107

(see Bianchini & Fabbian 2022 for pixel-by-pixel µ-distortion analysis)

Key ingredients:

Main motivation: validate current forecasting methods (e.g. PIXIE, Voyage 2050)

(see Bianchini & Fabbian 2022 for pixel-by-pixel µ-distortion analysis)

Main motivation: validate current forecasting methods (e.g. PIXIE, Voyage 2050)

(see Bianchini & Fabbian 2022 for pixel-by-pixel µ-distortion analysis)

Key ingredients:

- 1. Sky model:
- 2. FIRAS Covariance:
- 3. CMB monopole data:

Low: ~61-650 GHz (43 channels)

High: ~605-2918 GHz (170 channels)

Sampled using *emcee:<u>https://github.com/dfm/emcee</u>;* analyzed with *GetDist:* <u>https://github.com/cmbant/getdist</u>

Learning from Mocks

	$\Delta_{ m T}, \langle y angle, { m A_d} > 0, 0 < eta_{ m d} < 3, 0 < T_{ m d} < 100$	fsky=20	fsky=40	fsky=60
e a dust only	$ u_{ m low}$ [37]	1.3	1.1	10.2
e.g. dust only	$ u_{ m THz}$ [63]	1.4	2.0	9.8
	$ u_{1.89\mathrm{THz}} \ [128] $	3.8	1.9	7.1
	$\Delta_{\mathrm{T}},\langle y angle,\mathrm{A_d},eta_{\mathrm{d}},T_{\mathrm{d}},\omega_{22},\omega_{23},\omega_{33}$			
	$ u_{ m low}$ [34]	1.2	0.7	1.9
	$ u_{ m THz}$ [60]	1.3	1.3	3.3
Conclusions:	$ u_{1.89 { m THz}} \ [125] $	1.1	1.7	2.8

- Need moment expansion to fit higher sky fractions
- y-distortion constraints are comparable to fisher forecasts but biased

$$\langle I_{\nu}^{dust} \rangle = \bar{A}_0 \frac{(\nu/\nu_0)^{\bar{\alpha}} \nu^3}{e^x - 1} \Big\{ 1 + \frac{1}{2} \omega_{22}^d ln^2 (\nu/\nu_0) + \omega_{23}^d ln (\nu/\nu_0) \frac{xe^x}{e^x - 1} + \frac{1}{2} \omega_{33}^d \frac{xe^x}{e^x - 1} x \coth(x/2) \Big\}$$

Moment approach from Chluba, Hill & Abitbol 2017

Inverse-Compton scattering of the cosmic infrared background (CIB) (Sabyr, Hill, & Bolliet 2022, arXiv:2202.02275)

CIB:

Log-normal distribution

Integrate over all halos & redshift to get the monopole

implemented in class_sz, <u>https://github.com/borisbolliet/class_sz</u> https://github.com/CLASS-SZ

~**4** Jy/sr (-**5** Jy/sr) at **2260** GHz (**940** GHz)

Null frequencies at **196** and **1490** GHz.

Relativistic effects: see Acharya & Chluba 2022.

- → Compton y-distortion unique probe of the thermal energy in electrons baryonic feedback.
- → FIRAS re-analysis allows us to asses our models, analysis techniques, and accuracy of forecasts for future missions (+ tighten upper bounds by a factor of ~2-3).
- → Analogue tSZ distortion in the CIB a new signal in the infrared sky and a tool to study the star formation history!
 - Detection with Voyage 2050 is possible but targeted observations of clusters & anisotropy experiments may provide measurements sooner (e.g. Coma cluster with y ~ 6 x 10⁻⁴ (Planck+2013); stacking analysis with CCAT-prime + SO)

Extra Slides

Cosmic Infrared Background (CIB)

→ Halo model prescription from Sheng+2012, McCarthy & Madhavacheril 2021 and parameter fits from Planck+2014.

Galaxy luminosity Galaxy luminosity Galaxy luminosity Galaxy luminosity Galaxy luminosity Galaxy luminosity-mass relation: Log-normal distribution SED: Modified blackbody at low ν , power law at high ν Modified blackbody at low ν , power law at high ν

Integrate over all halos & redshift to get the monopole

Distortion's sensitivity to halo model parameters.

Fisher set-up from Abitbol+2017 (https://github.com/mabitbol/sd_foregrounds)

analyzed with GetDist: https://github.com/cmbant/getdist

Cosmic Infrared Background (CIB)

https://github.com/CLASS-SZ

Inverse-Compton Scattering

- → Use Kompaneets approximation (Kompaneets 1957)
 - Non-relativistic, Te >>Tcib and y << 1</p>

→ Calculate differential distortion at each infinitesimal redshift & add up.

Parameter	Definition	Mean va	alue
α	SED: redshift evolution of the dust temperature	0.36 ±	0.05
T_0 [K]	SED: dust temperature at $z = 0$	24.4 ±	1.9
β	SED: emissivity index at low frequency	$1.75 \pm$	0.06
γ	SED: frequency power law index at high frequency	1.7 ±	0.2
δ	Redshift evolution of the normalization of the $L-M$ relation	3.6 ±	0.2
$\log(M_{\rm eff}/M_{\odot})$	Halo model most efficient mass	12.6 ± 0).1
$M_{\min}[M_{\odot}]$	Minimum halo mass	unconstra	ained
$S^{3000 \times 3000}$	Shot noise for 3000 GHz \times 3000 GHz	9585 ± 1	090
$S^{3000 \times 857}$	Shot noise for $3000 \text{ GHz} \times 857 \text{ GHz}$	4158 ± 4158	443
$S^{3000 \times 545}$	Shot noise for $3000 \text{ GHz} \times 545 \text{ GHz}$	1449 ±	176
$S^{3000 \times 353}$	Shot noise for $3000 \text{ GHz} \times 353 \text{ GHz}$	411 ± 4	48
$S^{3000 \times 217}$	Shot noise for $3000 \text{ GHz} \times 217 \text{ GHz}$	95 ± 1	1
$S^{857 imes 857}$	Shot noise for $857 \text{GHz} \times 857 \text{GHz}$	$5364 \pm$	343
$S^{857 \times 545}$	Shot noise for $857 \text{ GHz} \times 545 \text{ GHz}$	$2702 \pm$	124
$S^{857 \times 353}$	Shot noise for $857 \text{ GHz} \times 353 \text{ GHz}$	$953 \pm$	54
$S^{857 \times 217}$	Shot noise for $857 \text{ GHz} \times 217 \text{ GHz}$	181 ±	6
$S^{545 \times 545}$	Shot noise for 545 GHz \times 545 GHz	$1690 \pm$	45
$S^{545 \times 353}$	Shot noise for $545 \text{GHz} \times 353 \text{GHz}$	$626 \pm$	19
$S^{545 \times 217}$	Shot noise for 545 GHz \times 217 GHz	$121 \pm$	6
$S^{353 \times 353}$	Shot noise for $353 \text{ GHz} \times 353 \text{ GHz}$	$262 \pm$	8
$S^{353 \times 217}$	Shot noise for $353 \text{ GHz} \times 217 \text{ GHz}$	54 ±	3
$S^{217 \times 217}$	Shot noise for $217 \text{GHz} \times 217 \text{GHz}$	$21 \pm$	2

· 、 · ·

Table 9. Mean values and marginalized 68% CL for halo model parameters and shot-noise levels (in Jy² sr⁻¹).

Planck+2014

References