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MOTIVATION BEHIND COSMOLOGY WITH CLUSTERS

▸ Cluster abundances Cosmology 

( dN
dMdV ) COSMOLOGICAL  

CONSTRAINTS

▸ This history sets bounds on how small 
and how large a collapsed object can be. 

▸ Uncertainties in cluster mass 
measurements affects our understanding 
of the cosmic expansion history

dV
dzdΩ

Credit:  
Koyama & Maartens, 

2006 
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HOW MASS OF CLUSTERS COMES TO THE PICTURE?

▸ The gravitational lensing signature 
is directly sensitive to the mass of 
clusters.  

Image credit: Karen Teramura

galaxy cluster SMACS 0723 
Credits: NASA, ESA, CSA, and STScI

▸ The mass profile of the clusters can be 
studied through: 

1. Strong Lensing distortions of Galaxies 

2. Weak Lensing distortions of Galaxies 

3. CMB Lensing by the galaxy clusters
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CMB LENSING BY GALAXY CLUSTERS

▸ The lensing of CMB conserves the surface brightness. 

       So if CMB is uniform, the lensing cannot be detected. 
        Lensing can only be detected if there is anisotropies 

▸ In case of a 1D CMB gradient that is lensed by a cluster

BLACK - UNLENSED 
BLUE- LENSED

Seljak & Zaldarriaga 2001
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CMB LENSING BY GALAXY CLUSTERS

▸ The lensing of CMB conserves the surface brightness. 

       So if CMB is uniform, the lensing cannot be detected. 
        Lensing can only be detected if there is anisotropies 

▸ In case of a 2D CMB gradient that is lensed by a cluster 

▸

Lewis and Challinor, 2006
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WHY IS CLUSTER-LENSING OF CMB EXCITING

▸ Advantages 

1. We can probe clusters in high 
redshifts 

2. We know the exact redshift for our 
background source, i.e. CMB 

3. Systematics from CMB lensing 
measurements are well studied 

▸ Challenges 

1. Small effects,  fluctuations in arc-
min scales. 

2. tSZ and kSZ effects, radio galaxies 
and dusty galaxies. 

3. systemic biases like differences 
between true and assumed cluster 
profiles, miss-centering

μK
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CLUSTER MODEL (NFW PROFILE)

▸ The halo density profile  

 

 

▸ The convergence profile is 

 
ρ(r) =

ρ0

( r
rs )(1 + r

rs )2 if r < Rtrunc

0 if r > Rtrunc
,

κcl =
2ρsrs

Σcrit(z)
g(x),  where x =

r
rs

=
θ
θs

κcl(r) =
Σcl(r)
Σcrit(z)
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M200=1.00E+14, z=1

for NFW profile without truncation

For NFW profile with truncation

µs=0.44 arcmin

£trunc=6.58 arcmin
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CMB LENSING BY NFW PROFILE

Lensit: https://github.com/carronj/LensIt
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THE TEMPLATE FUNCTION

▸   

▸   and .

κcl(θ) = κ0κt(θ, θs)

κt(θ = θs) = 1 κcl(θ = θs) = κ0

κ0θ2
s ∝

M200

Σcrit(z)dA(z)

σM

M
=

σk0

κ0

We need an 
estimator for κ0
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CLUSTER CONVERGENCE IN FOURIER SPACE

̂κ(l) = κ0κt(l)

 should be 
calculable from 
every mode, 

κ0

l

LEAVE ME 
ALONE

We construct an average sum 
from all the  values from 

different modes, such that it has 
minimum variance possible

κ0
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MINIMUM VARIANCE ESTIMATOR OF κ0

 

With the inverse variance, 

̂κ0 =
∫ d2 ⃗l κt( ⃗l) ̂κ( ⃗l)

N ⃗l

∫ d2 ⃗l |κt( ⃗l) |2

N ⃗l

1
σ2

= ∫ d2l
|κt

l |2

Nl
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MINIMUM VARIANCE ESTIMATOR OF κ0  = convergence estimated from data

 = Noise of the estimation 


= 

̂κl
Nl

Cκκ
l + Nκ

0 + Nκ
1

 

With the inverse variance, 

̂κ0 =
∫ d2 ⃗l κt( ⃗l) ̂κ( ⃗l)
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MINIMUM VARIANCE ESTIMATOR OF κ0  = convergence estimated from data

 = Noise of the estimation 


= 

̂κl
Nl

Cκκ
l + Nκ

0 + Nκ
1

We employ The Maximum a 
Posterior (MAP) Estimator by Carron 

et al 2017 

‣ We maximize the log posterior: 

 

‣ Using Gradients: 

 

‣ We use these ’s iteratively to reach the 
maximum 

ln p(ϕ |Xdat) = ln p(Xdat |ϕ) −
1
2 ∑

L

ϕ2
L

Cϕϕ
L

gϕ =
δ ln p(Xdat |ϕ)

δϕ
= gQD − gMF + gPR

gϕ

 

With the inverse variance, 

̂κ0 =
∫ d2 ⃗l κt( ⃗l) ̂κ( ⃗l)

N ⃗l

∫ d2 ⃗l |κt( ⃗l) |2

N ⃗l

1
σ2

= ∫ d2l
|κt

l |2

Nl
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IMPROVEMENT OVER QUADRATIC ESTIMATOR

-arcmin

Beam = 1 arcmin

ΔT = ΔP / 2 = 1μK

The contribution in 

 comes  

from certain scales

1
σ2

= ∫ d2l
|κt

l |2

NlThe noise of the 
estimator


Inverse SNR for

 clusters
105
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IMPROVEMENT OVER QUADRATIC ESTIMATOR
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APPLICATION ON SIMULATIONS
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THANK YOU
▸ We study the lensing signature of galaxy-clusters in small scale CMB. 

▸ We worked on an estimator, if you show a patch of CMB which is 
lensed by a galaxy cluster, it will estimate its mass ( ). 

▸ In the estimator , we use iterative estimate (MAP estimator) of , 
instead of a quadratic estimator.  

▸ We forecast improvement using our estimator, for CMB-S4 like 
experiment.  

▸ We test our estimator on Mock data, which is lensed by galaxy-clusters. 

▸ Furthermore, we shall test our estimator on simulations with 
foregrounds

κ0

κ0 ̂κ

[Travel to this workshop is supported under IISER Pune - Infosys Foundation Endowment Fund]
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