

Sayan Saha, Louis Legrand and Julien Carron

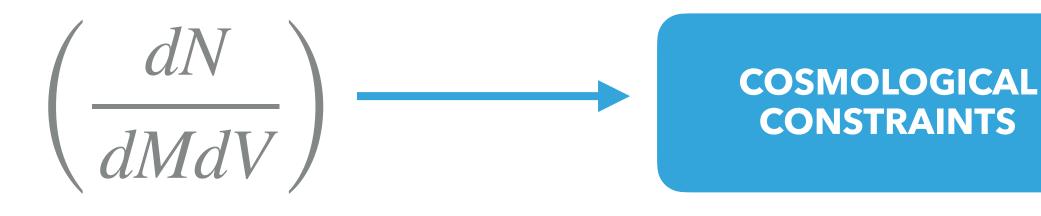
EXTRACTING CLUSTER INFORMATION FROM SMALL-SCALE CMB

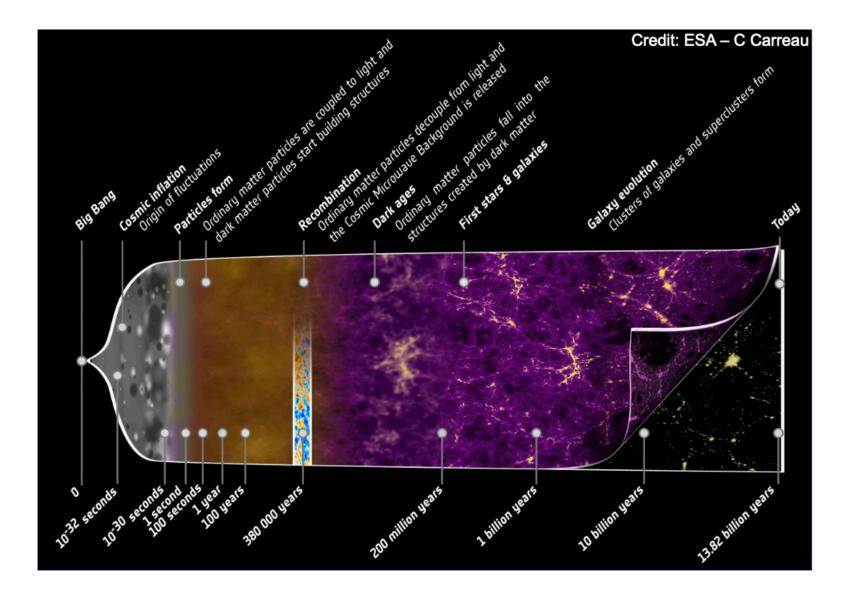
OUTLINE

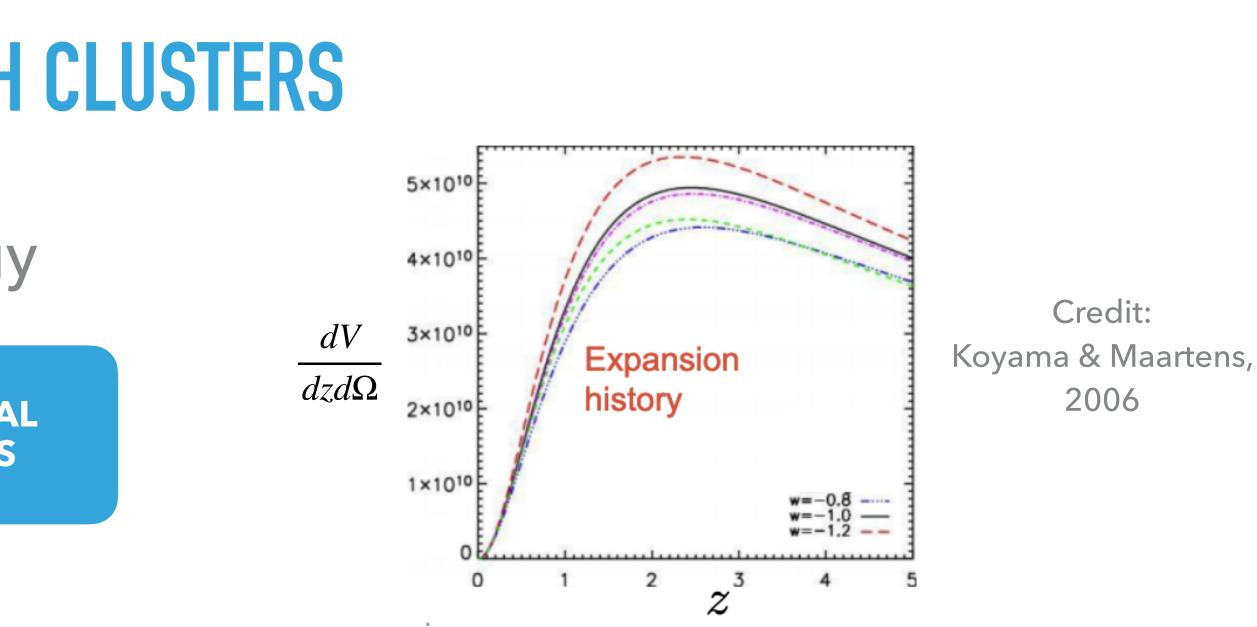
- Motivation
- Theoretical Model
- Analysis
- Conclusion

MOTIVATION BEHIND COSMOLOGY WITH CLUSTERS

Cluster abundances Cosmology



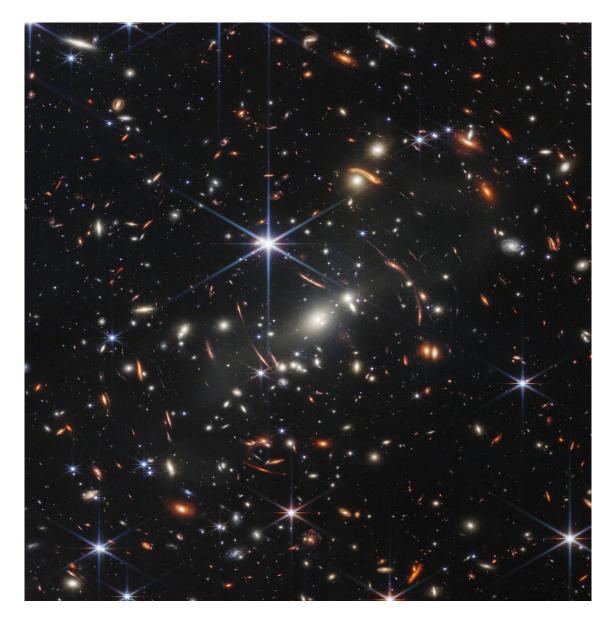




- This history sets bounds on how small and how large a collapsed object can be.
- Uncertainties in cluster mass measurements affects our understanding of the cosmic expansion history

HOW MASS OF CLUSTERS COMES TO THE PICTURE?

The gravitational lensing signature is directly sensitive to the mass of clusters.



galaxy cluster SMACS 0723 Credits: NASA, ESA, CSA, and STScI

- The mass profile of the clusters can be studied through:
- 1. Strong Lensing distortions of Galaxies
- 2. Weak Lensing distortions of Galaxies
- 3. CMB Lensing by the galaxy clusters

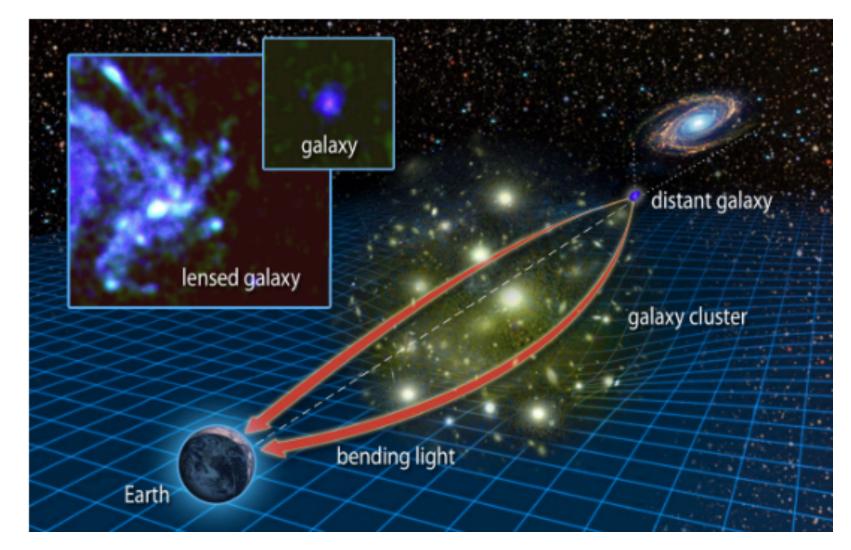
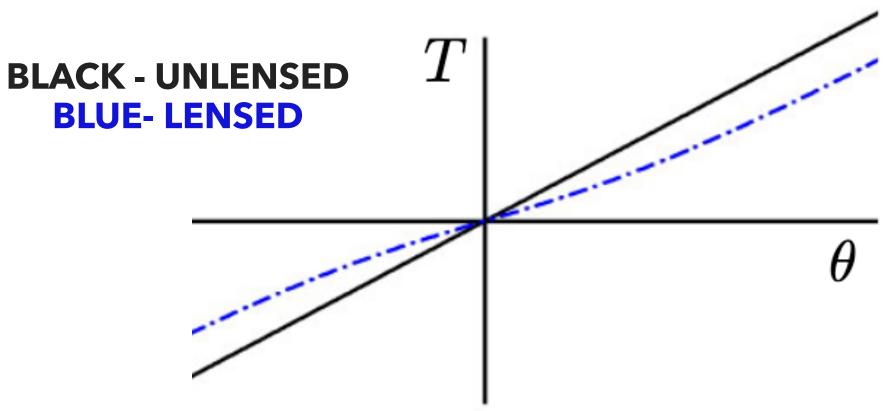
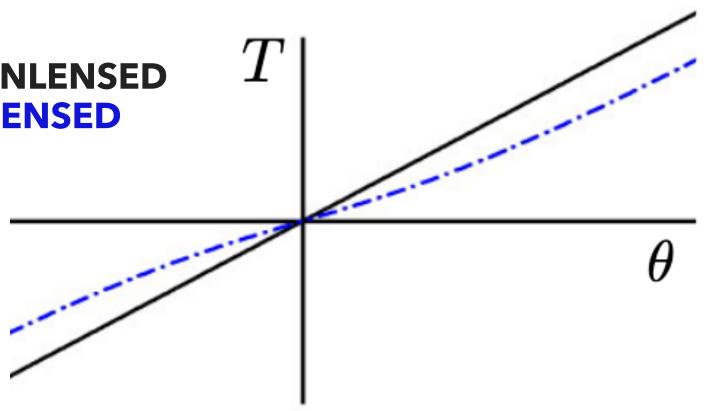


Image credit: Karen Teramura

CMB LENSING BY GALAXY CLUSTERS

- The lensing of CMB conserves the surface brightness. So if CMB is uniform, the lensing cannot be detected. Lensing can only be detected if there is anisotropies
- In case of a 1D CMB gradient that is lensed by a cluster

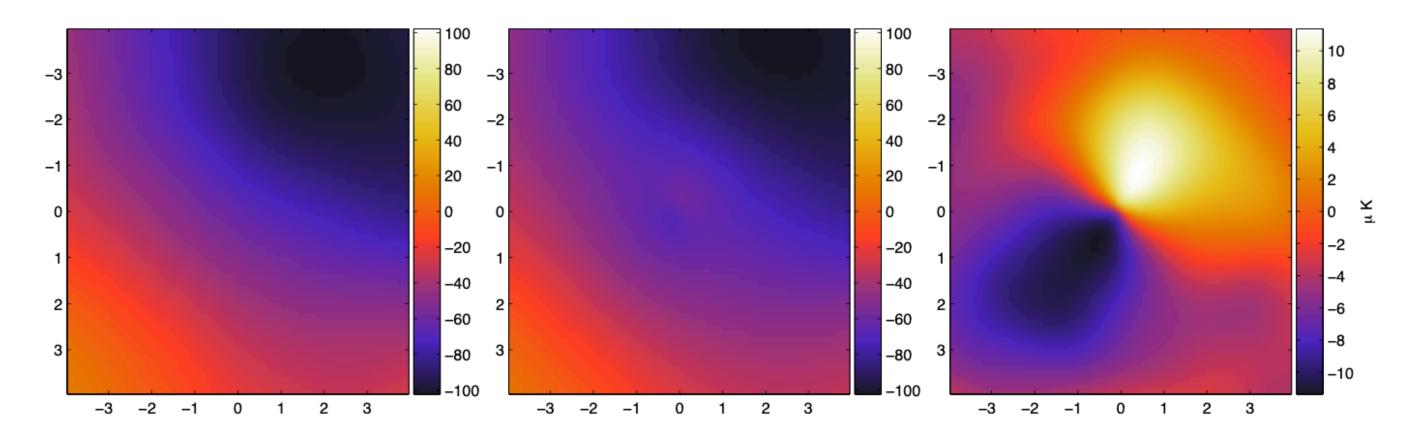




Seljak & Zaldarriaga 2001

CMB LENSING BY GALAXY CLUSTERS

- The lensing of CMB conserves the surface brightness.
 So if CMB is uniform, the lensing cannot be detected.
 Lensing can only be detected if there is anisotropies
- In case of a 2D CMB gradient that is lensed by a cluster



Lewis and Challinor, 2006

WHY IS CLUSTER-LENSING OF CMB EXCITING

Advantages

- 1. We can probe clusters in high redshifts
- 2. We know the exact redshift for our background source, i.e. CMB
- 3. Systematics from CMB lensing measurements are well studied

- Challenges
- 1. Small effects, μ*K* fluctuations in arcmin scales.
- 2. tSZ and kSZ effects, radio galaxies and dusty galaxies.
- 3. systemic biases like differences between true and assumed cluster profiles, miss-centering



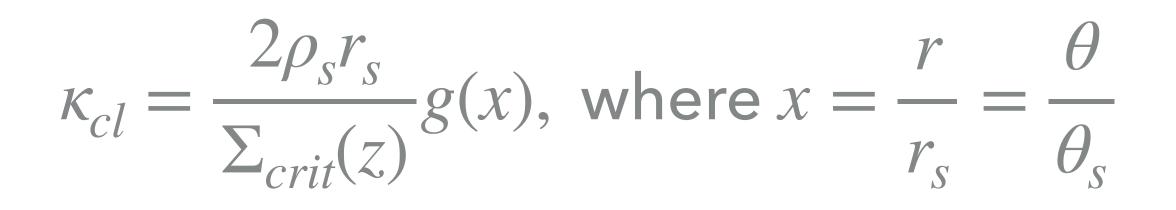
OUTLINE

- Motivation
- Theoretical Model
- Analysis
- Conclusion

CLUSTER MODEL (NFW PROFILE)

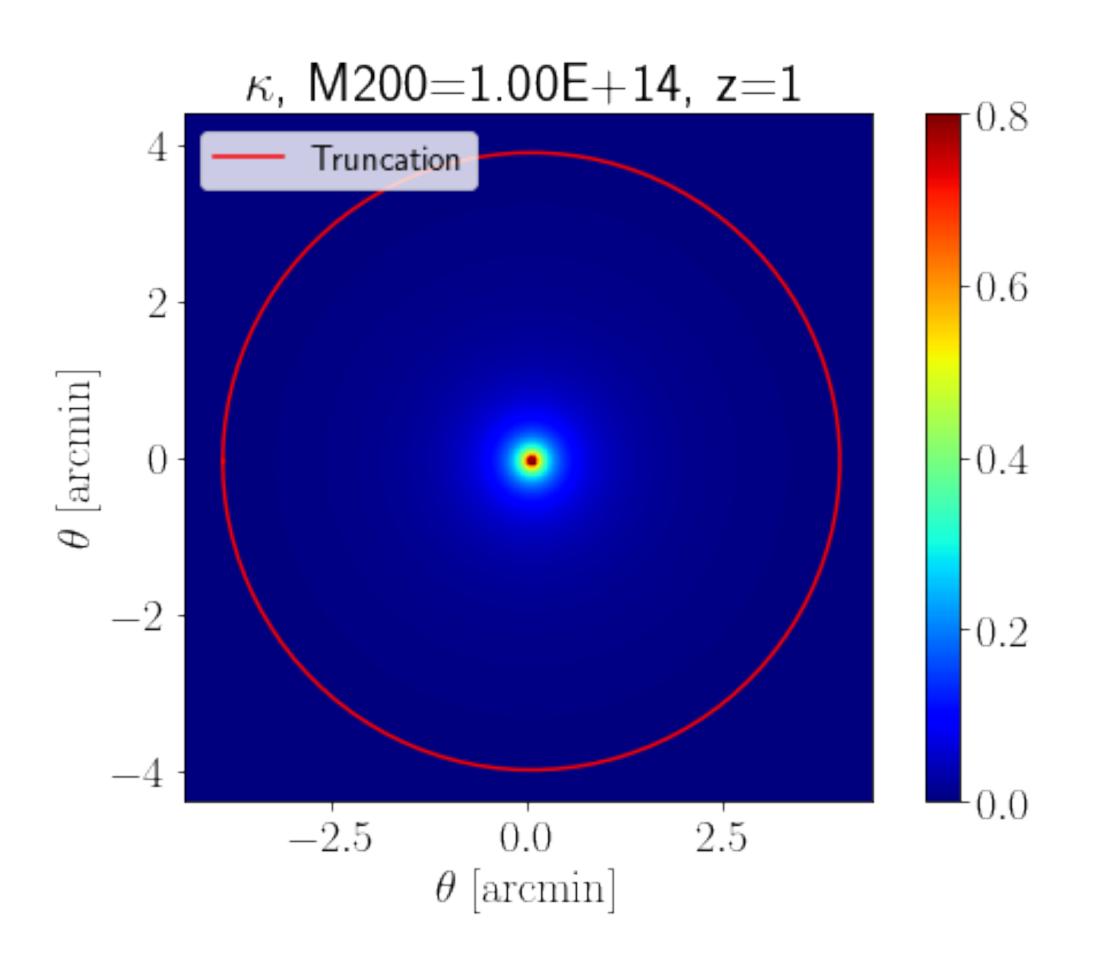
The halo density profile

$$\rho(r) = \begin{cases} \frac{\rho_0}{(\frac{r}{r_s})(1 + \frac{r}{r_s})^2} & \text{if } r < R_{\text{trunc}}, \\ 0 & \text{if } r > R_{\text{trunc}} \end{cases}$$

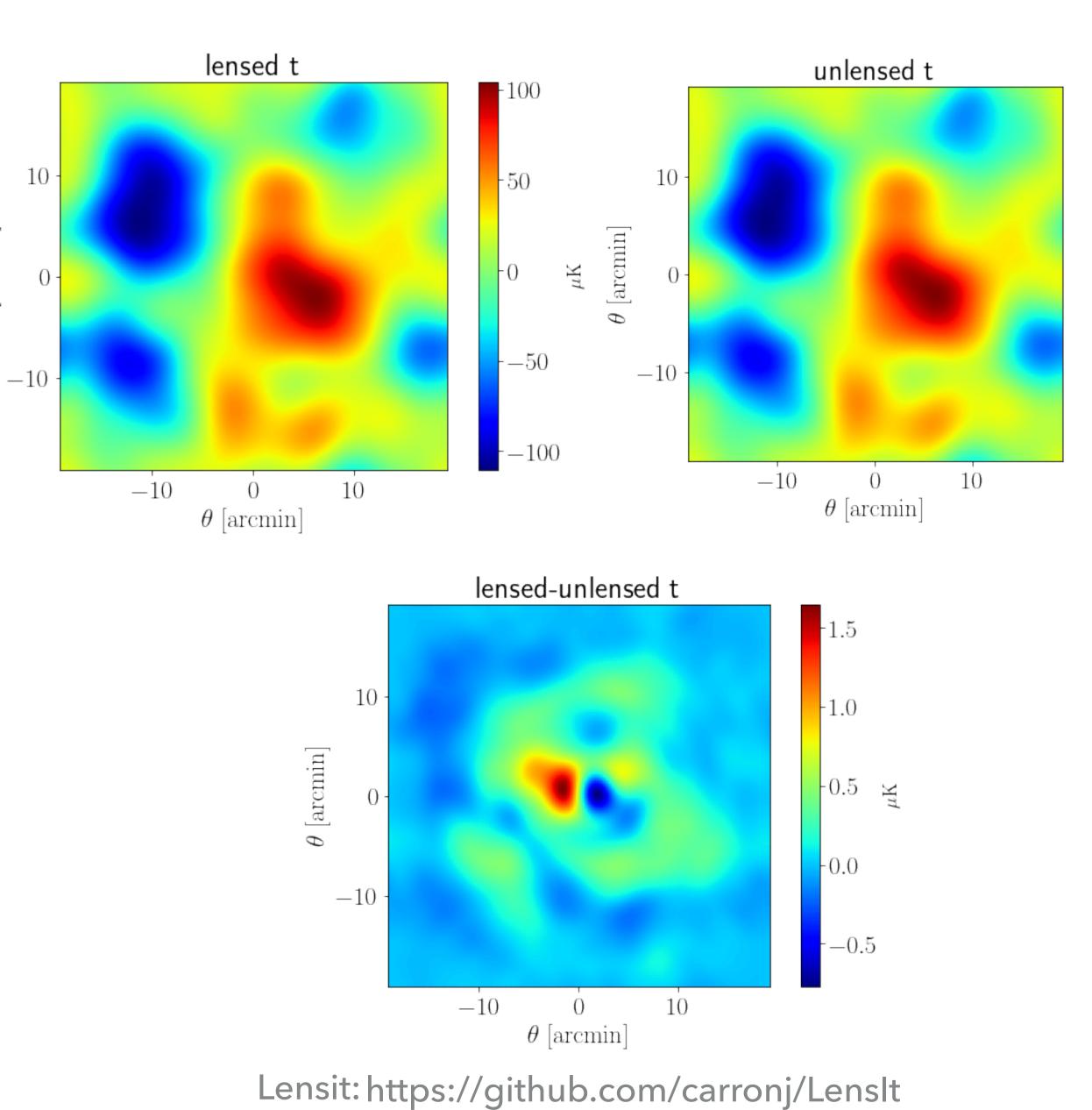


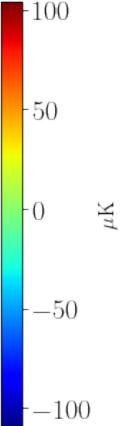
The convergence profile is $\kappa_{cl}(r) = \frac{\sum_{cl}(r)}{\sum_{crit}(z)}$ M200=1.00E+14, z=1for NFW profile without truncation For NFW profile with truncation ____ 10^{0} θ_s =0.44 arcmin ____ ---- Θ_{trunc} =6.58 arcmin $k_t(heta)$ 10^{-2} 10^{-3} 8 10 2 6 arcmin

CMB LENSING BY NFW PROFILE



 $\theta \;[\mathrm{arcmin}]$

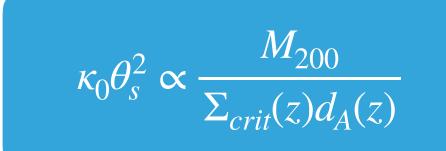




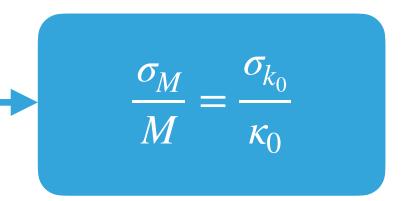
THE TEMPLATE FUNCTION

 $\kappa_{cl}(\theta) = \kappa_0 \kappa_t(\theta, \theta_s)$

$\kappa_t(\theta = \theta_s) = 1 \text{ and } \kappa_{cl}(\theta = \theta_s) = \kappa_0.$

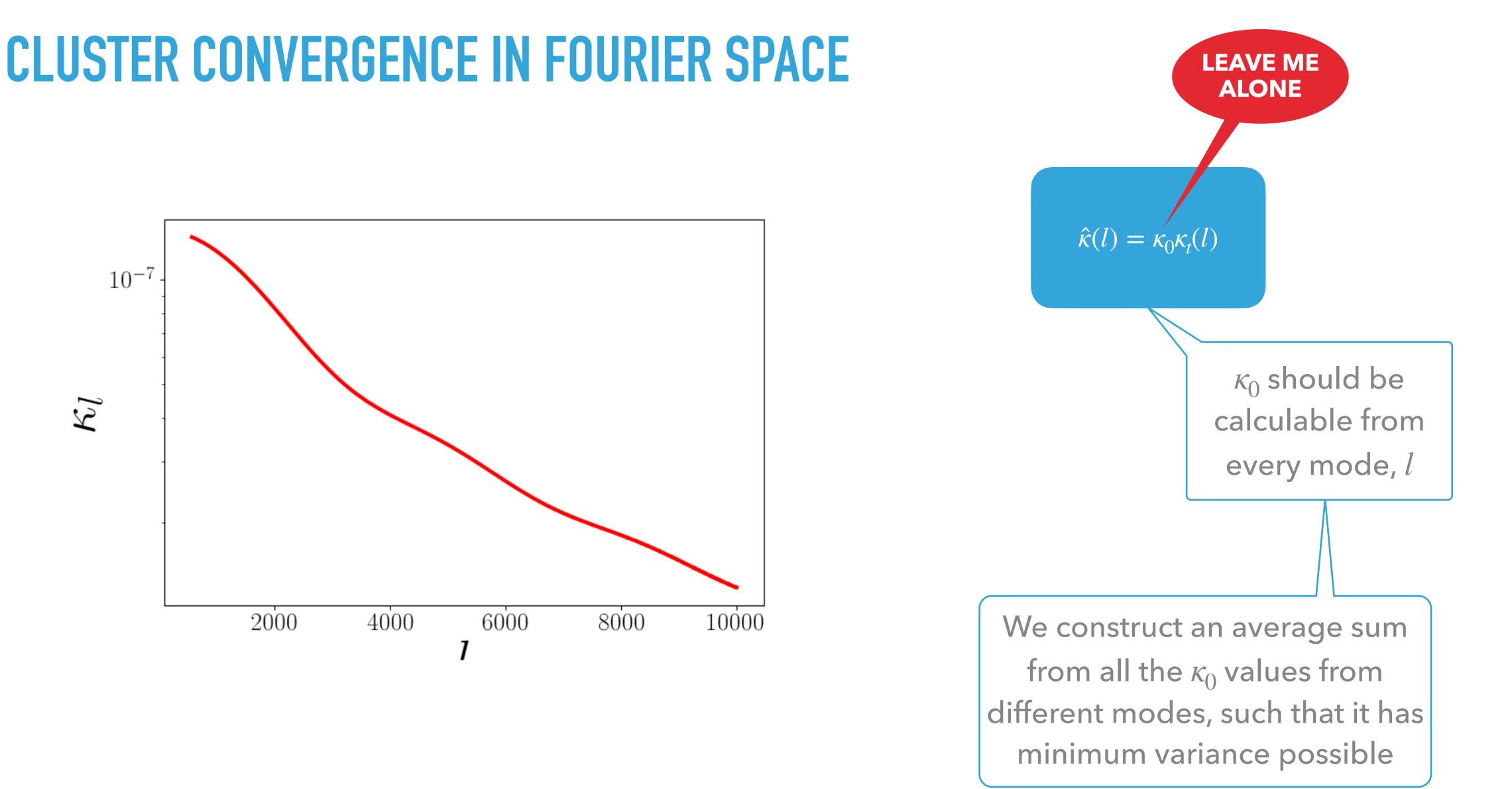


We need an estimator for κ_0



OUTLINE

- Motivation
- Theoretical Model
- Analysis
- Conclusion



MINIMUM VARIANCE ESTIMATOR OF κ_0

$$\hat{\kappa}_{0} = \frac{\int d^{2}\vec{l} \frac{\kappa^{t}(\vec{l})\hat{\kappa}(\vec{l})}{N_{\vec{l}}}}{\int d^{2}\vec{l} \frac{|\kappa^{t}(\vec{l})|^{2}}{N_{\vec{l}}}}$$

With the inverse variance,

$$\frac{1}{\sigma^2} = \int d^2l \, \frac{|\kappa_l^t|^2}{N_l}$$

MINIMUM VARIANCE ESTIMATOR OF κ_0

$$\hat{\kappa}_{0} = \frac{\int d^{2}\vec{l} \frac{\kappa^{t}(\vec{l})\hat{\kappa}(\vec{l})}{N_{\vec{l}}}}{\int d^{2}\vec{l} \frac{|\kappa^{t}(\vec{l})|^{2}}{N_{\vec{l}}}}$$

With the inverse variance,

$$\frac{1}{\sigma^2} = \int d^2l \, \frac{|\kappa_l^t|^2}{N_l}$$

$$\begin{split} \hat{\kappa}_l &= \text{convergence estimated from data} \\ N_l &= \text{Noise of the estimation} \\ &= C_l^{\kappa\kappa} + N_0^{\kappa} + N_1^{\kappa} \end{split}$$

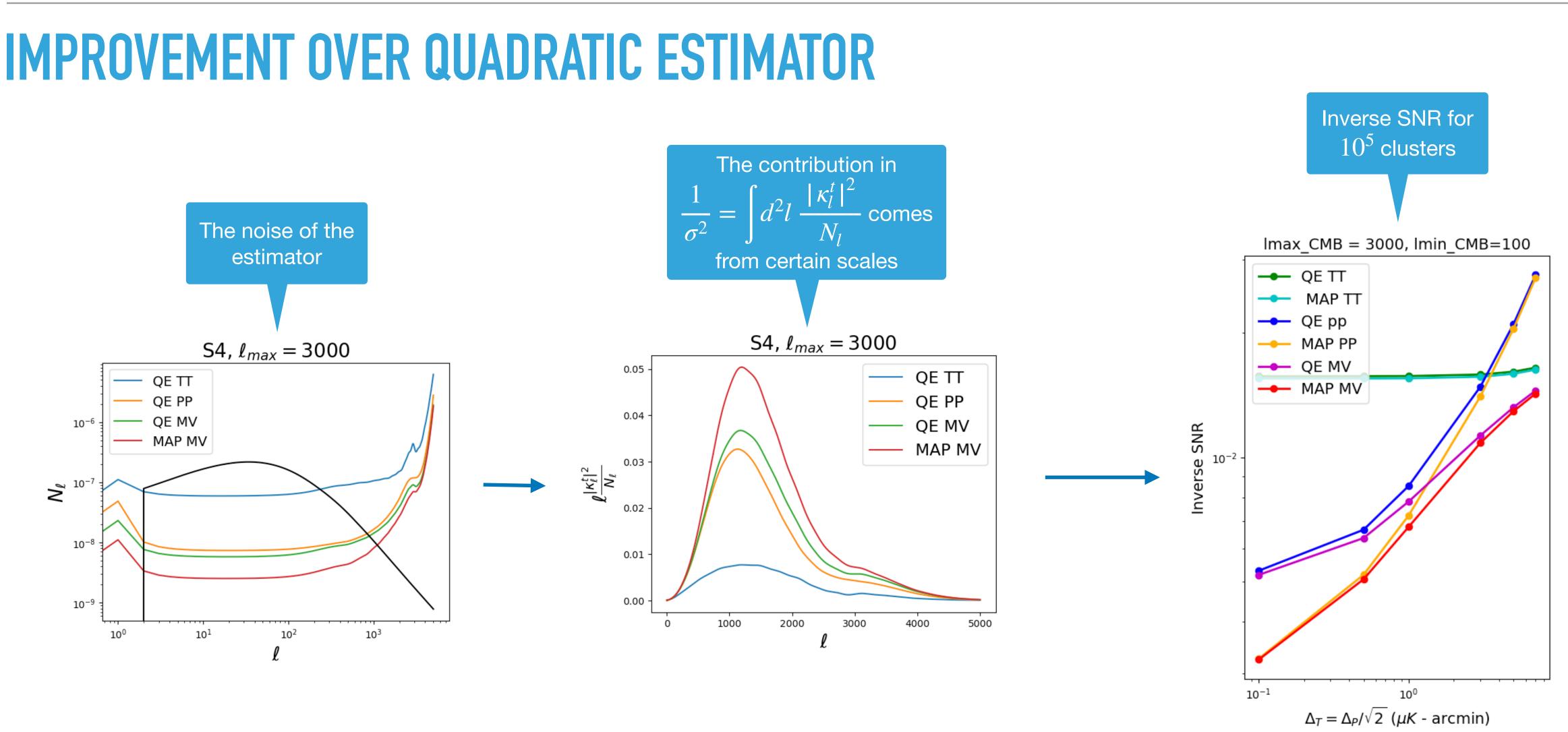
MINIMUM VARIANCE ESTIMATOR OF κ_0

$$\hat{\kappa}_{0} = \frac{\int d^{2}\vec{l} \frac{\kappa^{t}(\vec{l})\hat{\kappa}(\vec{l})}{N_{\vec{l}}}}{\int d^{2}\vec{l} \frac{|\kappa^{t}(\vec{l})|^{2}}{N_{\vec{l}}}}$$

With the inverse variance,

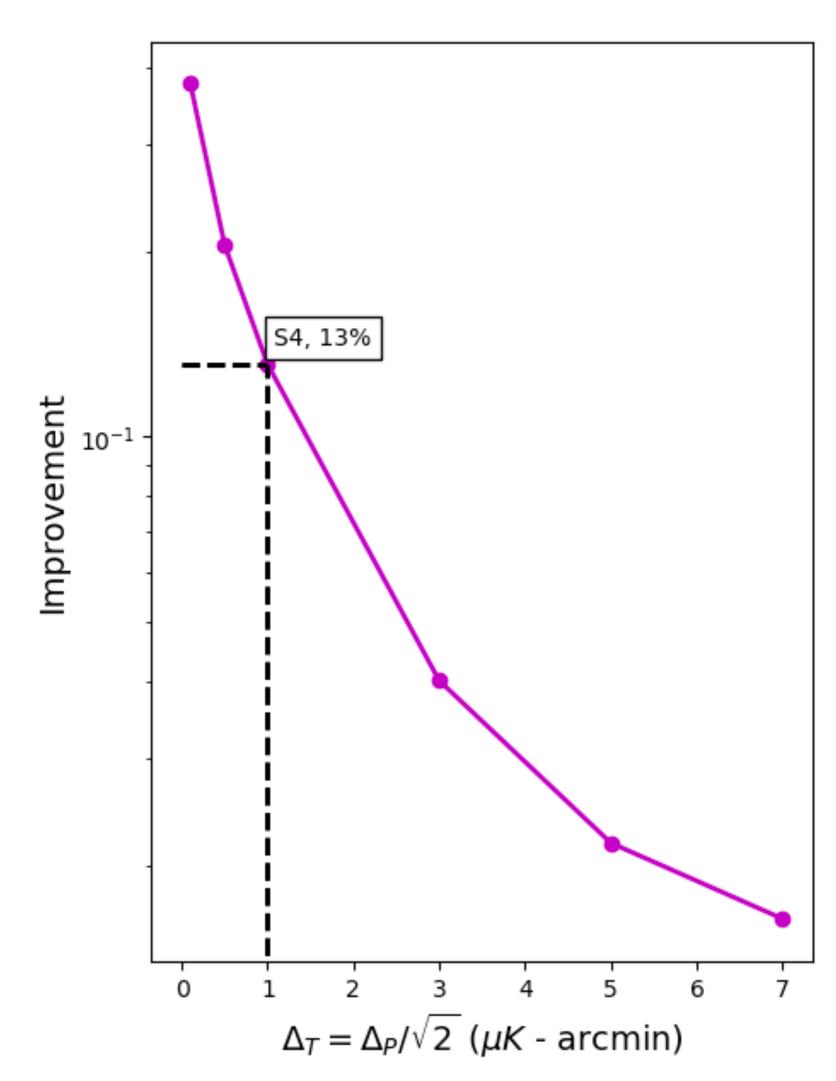
$$\frac{1}{\sigma^2} = \int d^2l \, \frac{|\kappa_l^t|^2}{N_l}$$

 $\hat{\kappa}_l$ = convergence estimated from data N_l = Noise of the estimation $= C_l^{\kappa\kappa} + N_0^{\kappa} + N_1^{\kappa}$ We employ The Maximum a Posterior (MAP) Estimator by Carron et al 2017 We maximize the log posterior: $\ln p(\phi \,|\, X^{dat}) = \ln p(X^{dat} \,|\, \phi) - \frac{1}{2} \sum_{a} \frac{\phi_L^2}{C_{a}^{\phi \phi}}$ Using Gradients: $g_{\phi} = \frac{\delta \ln p(X^{dat} | \phi)}{s_{\phi}} = g^{QD} - g^{MF} + g^{PR}$ We use these g_{ϕ} 's iteratively to reach the maximum

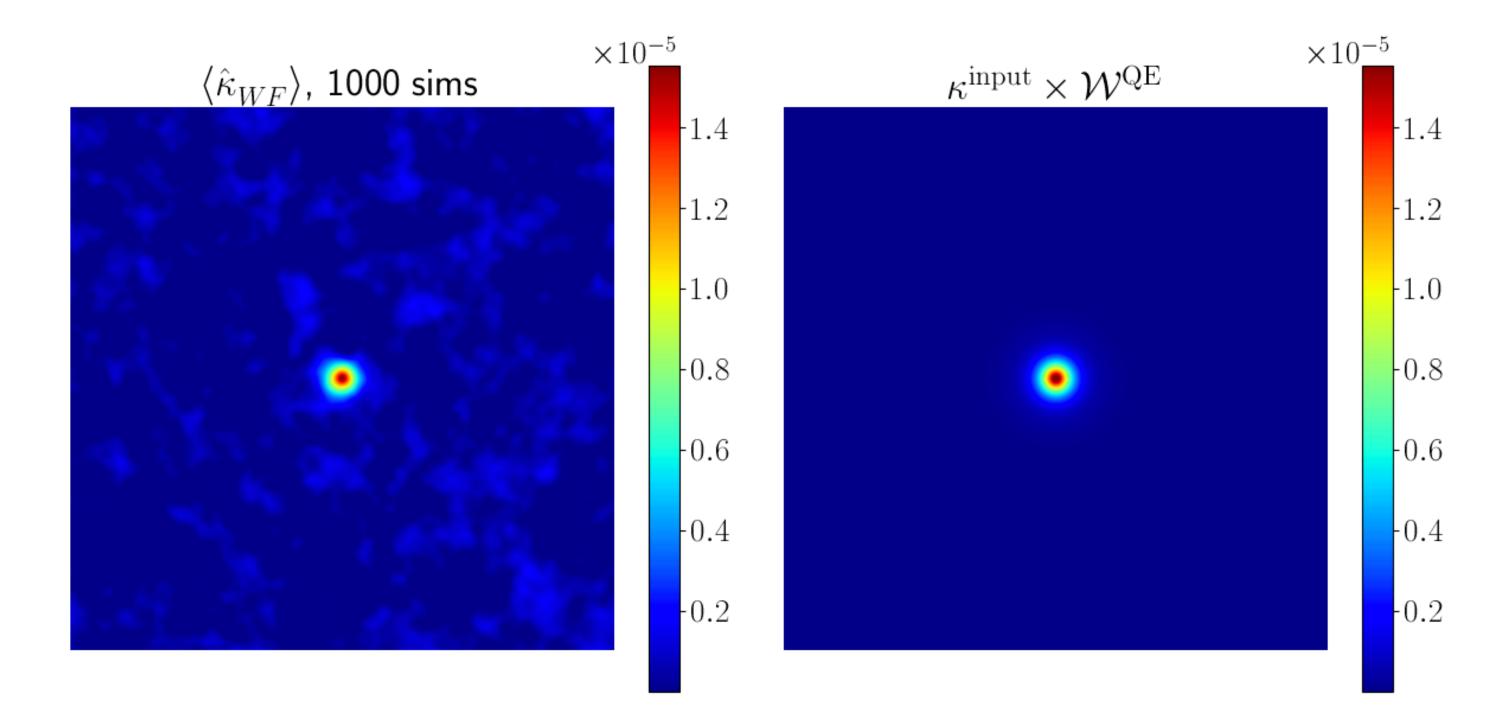


 $\Delta_T = \Delta_P / \sqrt{2} = 1 \mu K$ -arcmin Beam = 1 arcmin

IMPROVEMENT OVER QUADRATIC ESTIMATOR



APPLICATION ON SIMULATIONS



OUTLINE

- Motivation
- Theoretical Model
- Analysis
- Conclusion

THANK YOU

- We study the lensing signature of galaxy-clusters in small scale CMB.
- We worked on an estimator, if you show a patch of CMB which is lensed by a galaxy cluster, it will estimate its mass (κ_0).
- In the estimator κ_0 , we use iterative estimate (MAP estimator) of $\hat{\kappa}$, instead of a quadratic estimator.
- We forecast improvement using our estimator, for CMB-S4 like experiment.
- We test our estimator on Mock data, which is lensed by galaxy-clusters.
- Furthermore, we shall test our estimator on simulations with foregrounds

[Travel to this workshop is supported under IISER Pune - Infosys Foundation Endowment Fund]

THANK YOU

- We study the lensing signature of galaxy-clusters in small scale CMB.
- We worked on an estimator, if you show a patch of CMB which is lensed by a galaxy cluster, it will estimate its mass (κ_0).
- In the estimator κ_0 , we use iterative estimate (MAP estimator) of $\hat{\kappa}$, instead of a quadratic estimator.
- We forecast improvement using our estimator, for CMB-S4 like experiment.
- We test our estimator on Mock data, which is lensed by galaxy-clusters.
- Furthermore, we shall test our estimator on simulations with foregrounds

[Travel to this workshop is supported under IISER Pune - Infosys Foundation Endowment Fund]

