Multipoles in the deceleration parameter: A comparison between different approaches

Jessica Santiago

In collaboration with Christos Tsagas and Roy Maartens

Department of Physics Aristotle University of Thessaloniki

April 22, 2023

Why do we care?

Jessica Santiago (AUTh)

してん 聞い ふぼうえ 明々 白う

Astronomy & Astrophysics manuscript no. Migkas_etal_21 2021-03-26

@ESO 2021

Cosmological implications of the anisotropy of ten galaxy cluster scaling relations

K. Migkas¹, F. Pacaud¹, G. Schellenberger², J. Erler^{1,3}, N. T. Nguyen-Dang⁴, T. H. Reiprich¹, M. E. Ramos-Ceja⁵ and L. Lovisari2,6

Astronomy & Astrophysics manuscript no. Migkas_etal_21 2021-03-26 ©ESO 2021

Cosmological implications of the anisotropy of ten galaxy cluster scaling relations

K. Migkas¹, F. Pacaud¹, G. Schellenberger², J. Erler^{1,3}, N. T. Nguyen-Dang⁴, T. H. Reiprich¹, M. E. Ramos-Ceja⁵ and L. Lovisari^{2,6}

Hints of FLRW Breakdown from Supernovae

Chethan Krishnan,^{1, *} Roya Mohayaee,^{2,†} Eoin Ó Colgáin,^{3,4,‡} M. M. Sheikh-Jabbari,^{5,§} and Lu Yin^{3,4,¶}

Astronomy & Astrophysics manuscript no. Migkas_etal_21 2021-03-26 ©ESO 2021

Cosmological implications of the anisotropy of ten galaxy cluster scaling relations

K. Migkas¹, F. Pacaud¹, G. Schellenberger², J. Erler^{1,3}, N. T. Nguyen-Dang⁴, T. H. Reiprich¹, M. E. Ramos-Ceja⁵ and L. Lovisari^{2,6}

Hints of FLRW Breakdown from Supernovae

Chethan Krishnan,^{1,*} Roya Mohayaee,^{2,†} Eoin Ó Colgáin,^{3,4,‡} M. M. Sheikh-Jabbari,^{5,§} and Lu Yin^{3,4,¶}

PHYSICAL REVIEW D 107, 023507 (2023)

Multipole expansion of the local expansion rate

Basheer Kalbouneh[®], ^{*} Christian Marinoni, [†] and Julien Bel[‡] Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France

Astronomy & Astrophysics manuscript no. Migkas_etal_21 2021-03-26 ©ESO 2021

Cosmological implications of the anisotropy of ten galaxy cluster scaling relations

K. Migkas¹, F. Pacaud¹, G. Schellenberger², J. Erler^{1,3}, N. T. Nguyen-Dang⁴, T. H. Reiprich¹, M. E. Ramos-Ceja⁵ and L. Lovisari^{2,6}

Hints of FLRW Breakdown from Supernovae

Chethan Krishnan,^{1,*} Roya Mohayaee,^{2,†} Eoin Ó Colgáin,^{3,4,‡} M. M. Sheikh-Jabbari,^{5,§} and Lu Yin^{3,4,¶}

PHYSICAL REVIEW D 107, 023507 (2023)

Multipole expansion of the local expansion rate

Basheer Kalbouneh[®], ^{*}Christian Marinoni,[†] and Julien Bel[‡] Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France PAPER

A new way to test the Cosmological Principle: measuring our peculiar velocity and the large-scale anisotropy independently

Tobias Nadolny¹, Ruth Durrer¹, Martin Kunz¹ and Hamsa Padmanabhan¹ Published 4 November 2021 • © 2021 IOP Publishing Ltd and Sissa Medialab Journal of Cosmology and Astroparticle Physics, Volume 2021, November 2021

Jessica Santiago (AUTh)

April 22, 2023 7 / 23

Astronomy & Astrophysics manuscript no. Migkas_etal_21 2021-03-26 ©ESO 2021

Cosmological implications of the anisotropy of ten galaxy cluster scaling relations

K. Migkas¹, F. Pacaud¹, G. Schellenberger², J. Erler^{1,3}, N. T. Nguyen-Dang⁴, T. H. Reiprich¹, M. E. Ramos-Ceja⁵ and L. Lovisari^{2,6}

Hints of FLRW Breakdown from Supernovae

Chethan Krishnan,^{1, *} Roya Mohayaee,^{2, †} Eoin Ó Colgáin,^{3, 4, ‡} M. M. Sheikh-Jabbari,^{5, §} and Lu Yin^{3, 4, ¶}

PHYSICAL REVIEW D 107, 023507 (2023)

Multipole expansion of the local expansion rate

Basheer Kalbouneh[®], ^{*}Christian Marinoni,[†] and Julien Bel[‡] Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France PAPER

A new way to test the Cosmological Principle: measuring our peculiar velocity and the large-scale anisotropy independently

Tobias Nadolny¹, Ruth Durrer¹, Martin Kunz¹ and Hamsa Padmanabhan¹ Published 4 November 2021 • © 2021 IOP Publishing Ltd and Sissa Medialab Journal of Cosmology and Astroparticle Physics, Volume 2021, November 2021

arXiv > astro-ph > arXiv:2212.13569

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 27 Dec 2022]

Potential signature of a quadrupolar Hubble expansion in Pantheon+ supernovae

Jessica A. Cowell, Suhall Dhawan, Hayley J. Macpherson

And many others...

Evidence for a dipole in the deceleration parameter

Hints of FLRW Breakdown from Supernovae

Chethan Krishnan,^{1,*} Roya Mohayaee,^{2,†} Eoin Ó Colgáin,^{3,4,‡} M. M. Sheikh-Jabbari,^{5,§} and Lu Yin^{3,4,¶}

Physics of the Dark Universe Volume 40, May 2023, 101224

Testing Λ CDM cosmology in a binned universe: Anomalies in the deceleration parameter

Erick Pastén 🝳 🖾 , Víctor H. Cárdenas 🖾

Evidence for anisotropy of cosmic acceleration*

Jacques Colin¹, Roya Mohayaee¹, 🔞 Mohamed Rameez² and 🔞 Subir Sarkar³

More analysis required...

Do supernovae indicate an accelerating universe?

Roya Mohayaee, Mohamed Rameez & Subir Sarkar

The European Physical Journal Special Topics 230, 2067–2076 (2021) Cite this article

Jessica Santiago (AUTh)

A&A 631, L13 (2019)

Letter to the Editor

April 22, 2023 9 / 23

Three different theoretical approaches

FLRW formalism

we all know about it ...

Generalized time-like formalism

new + parts inspired on the expansion tensor definition (see Ellis, Maartens & MacCallum, *Relativistic Cosmology*).

Null formalism

Kristian & Sachs Astrophys. J. 143 379 (1966); MacCallum & Ellis Commun. Math. Phys. 19 31-64 (1970); Clarkson PhD Thesis (2000); Heinesen JCAP 05 008 (2021)

The FLRW formalism

In order to obtain a $d_L(z)$ relation we must first expand the redshift either in terms of t, τ or λ . In the FLRW case, we have:

$$1+z=\frac{a(t)}{a(t_0)}=z(t).$$

By making use of the photon travelled distance $(D = c \int dt = D(t))$ and its relation to the luminosity distance, we get:

$$d_L(z) = rac{z}{H_0} + rac{1}{2} rac{(1-q_0)}{H_0} \ z^2 + \cdots ,$$

where the Hubble and deceleration parameters are defined as¹:

$$H(t)=rac{\dot{a}(t)}{a(t)}, \qquad q(t)=-rac{\ddot{a}(t)}{\dot{a}^2(t)}=-\left(1+rac{\dot{H}}{H^2}
ight)$$

Advantages:

- Directly connected to observations;
- Few parameters.

Drawbacks:

- Cannot account for possible spatial anisotropies;
- Doesn't allow directional dependence;
- Cannot handle the influence of local effects into data.

We need to define a congruence of observers with four-velocity u^a .

This allows us to realize a 3+1 split, where the metric on each Σ_t surgace is given by:

$$h_{ab} = g_{ab} + u_a u_b \; ,$$

also known as the projection operator.

Vectors living on Σ_t are represented as e^a , with $e^a e_a = 1$ and $e^a u_a = 0$.

The Generalized time-like formalism

How this congruence varies along all 4 space-time directions can be used to infer the dynamical properties of the universe.

$$\nabla_b u_a = \frac{1}{3} \Theta h_{ab} + \omega_{ab} + \sigma_{ab} - A_a u_b ,$$

where Θ , ω_{ab} and σ_{ab} are the expansion, vorticity and shear, respectively. $A^a = 0$ for geodesic congruences (matter frame).

14 / 23

Rezzolla & Zanotti (2013)

The Generalized time-like formalism

We can define the generalized time-like expansion (or Hubble) parameter as:

$$H = \frac{\delta I}{\delta I} = e^{a} e^{b} \nabla_{a} u_{b}$$
$$= \frac{\Theta}{3} + \sigma_{ab} e^{a} e^{b} .$$

Extending the previous definition for the deceleration parameter

$$\mathbf{Q} = -1 - \frac{\dot{\mathbf{H}}}{\mathbf{H}^2} \; ,$$

in terms of δI we have:

$$\mathbf{Q}\mathbf{H}^2 = -\frac{\ddot{\delta}I}{\delta I} \; .$$

Arranjing in a multipole expanded way, we have:

$$\begin{split} \mathrm{QH}^2 &= -\frac{\dot{\Theta}}{3} - \frac{\Theta^2}{9} - \frac{8}{15} \sigma^{ab} \sigma_{ab} - e^a e^b \left[\dot{\sigma}_{\langle ab \rangle} + \frac{2\Theta}{3} \sigma_{\langle ab \rangle} - 2 \; \sigma^c_{\langle a} \omega_{b \rangle c} + \frac{10}{7} \; \sigma^c_{\langle a} \sigma_{b \rangle c} \right] \\ &+ e^a e^b e^c e^d \left[\sigma_{\langle ab} \sigma_{cd \rangle} \right] \; . \end{split}$$

Keeping only linear order terms, we have:

$${\rm QH}^2 = -\frac{\dot{\Theta}}{3} - \frac{\Theta^2}{9} - e^a e^b \left[\dot{\sigma}_{\langle ab \rangle} + \frac{2\Theta}{3} \sigma_{\langle ab \rangle} \right] \; . \label{eq:QH2}$$

Several new terms compared to the FLRW result — yet, no dipole.

April 22, 2023 16 / 23

Advantages:

- No need to pre-define a metric;
- Allows for the presence of spatial anisotropies;
- Allows directional dependence;
- Can account for the influence of local effects into data.

Drawbacks:

• Not directly connect to observations.

Wald, R., General Relativity (1984)

Like in the FLRW case, the Hubble and deceleration parameters for the null case are obtained via an expansion of d_L in z:

$$d_L(z,e)=rac{z}{\mathcal{H}_0}+rac{1}{2}rac{(1-\mathcal{Q}_0)}{\mathcal{H}_0}\ z^2+\cdots \ ,$$

where the null Hubble parameter is given by

$$\mathcal{H} = \mathcal{K}^{a}\mathcal{K}^{b}\nabla_{a}u_{b} = \frac{\Theta}{3} - \mathcal{A}_{a}e^{a} + \sigma_{ab}e^{a}e^{b} ,$$

while the deceleration parameter is defined as:

$$\mathcal{Q} = \frac{K^a K^b K^c \nabla_a \nabla_b u_c}{(K^a K^b \nabla_b u_a)^2} - 3 = -1 - \frac{\mathcal{H}'}{\mathcal{H}^2} \,.$$

Here prime represents a derivative w.r.t $K_f^a = u^a - e^a$.

Jessica Santiago (AUTh)

Expanding all the variables and taking the traces, we have:

$$\mathcal{QH}^2 = \mathfrak{q}^0 + e^a \mathfrak{q}^1_a - e^a e^b \mathfrak{q}^2_{ab} + e^a e^b e^c \mathfrak{q}^3_{abc} - e^a e^b e^c e^d \mathfrak{q}^4_{abcd} \; .$$

At linear order for geodesic fluids, we have:

$$\mathcal{QH}^{2} = -\left(\frac{\Theta^{2}}{9} + \frac{\dot{\Theta}}{3}\right) + e^{a}\left(\frac{1}{3}D_{a}\Theta + \frac{2}{5}D_{b}\sigma_{a}^{b}\right)$$
$$-e^{a}e^{b}\left(\frac{2}{3}\Theta\sigma_{ab} + \dot{\sigma}_{\langle ab\rangle}\right) + e^{a}e^{b}e^{c}(D_{\langle a}\sigma_{bc\rangle})$$

Now we have dipole and octopole terms!

But are they less significant? Where do they actually come from? Why should we care?

Advantages:

- No need to pre-define a metric;
- Allows for the presence of spatial anisotropies;
- Allows directional dependence;
- Can account for the influence of local effects into data;
- Directly connected to observations.

Drawbacks:

• Requires more data and computational power.

Thank you!

ъ

E