

Super Sample Covariance an uninvited guest Future Cosmology, Cargese, 24/04/2023

Davide Sciotti – with V. F. Cardone, R. Maoli, R. Scaramella

Context: forecast analysis for *Euclid* photo

- Aim: to predict the *uncertainties* on the cosmological parameters for a given model, observables, survey specifics and systematic effects
- Probes investigated: photometric Galaxy Clustering, Weak Lensing Cosmic Shear and their combination ('3x2pt')
- Fisher Matrix analysis: *fast*, but limited to Gaussian posterior
- Recipe: construct a Likelihood around a fiducial cosmology and compute the expected value of the curvature around the maximum (θ_{fid})
- If L is Gaussian $F_{\alpha\beta}$ depends only on the expected covariance of the data

$$F_{\alpha\beta} = \frac{\partial C_{ij}^{AB}(\ell)}{\partial \theta_{\alpha}} \operatorname{Cov}^{-1} \left[C_{ij}^{AB}(\ell), C_{mn}^{CD}(\ell) \right] \frac{\partial C_{mn}^{CD}(\ell)}{\partial \theta_{\beta}}$$

Super Sample Covariance (SSC)

- *Euclid* will resolve small angular scales, where nonlinear evolution becomes important
- SSC is believed to be the dominant source of non-Gaussian uncertainty for upcoming WL surveys (up to $\sim 100\%$ uncertainty increase: see, e.g., Barreira+ 2018, Upham+ 2021, Rizzato+ 2020)
- A complete characterization for the *Euclid* photometric survey is still missing

SSC

- A form of sample variance
- The volume of the universe observed is limited both in depth (z) and sky fraction

 \rightarrow matter density fluctuations with wavelength λ larger than the linear survey size L are not sampled

SSC - II

- Large Scale Structures have evolved through non-linear dynamics (gravity)
 - Non-linear structure formation breaks homogeneity and produces non-Gaussian matter density field
 - Density perturbations with different λ are **coupled** by non-linear evolution
- SSC comes from the non-linear coupling of observed ("sub-survey") modes with unobservable ("super-survey") modes
- Modulation of the observables by unobservable density perturbation

Visualizing the SSC

 $L = V_s^{1/3}$ = linear size of the survey λ = density mode's wavelength

SSC – analytical expression

 Expression for two projected observables in different z bins is given by¹

$$\operatorname{Cov}_{\mathrm{SSC}}[O_1, O_2] = \iint \mathrm{d} V_1 \mathrm{d} V_2 \frac{\partial O_1}{\partial \delta_b}(z_1) \frac{\partial O_2}{\partial \delta_b}(z_2) \sigma^2(z_1, z_2)$$

- 2 main ingredients needed:
 - probe response: change in the observable o_i due to a long-wavelength density perturbation δ_b
 - covariance of the background density δ_b due to super-survey modes
- note: it is difficult to compute SSC from simulations (simulation volume must be >> than the survey volume to capture super-survey modes)

Results – Weak Lensing

- $\sigma_8, \Omega_{m,0}$ most affected
- They have a large impact on the amplitude of the matter PS
- → SSC ~ unknown shift in bg. density
- Similar results found in Barreira+ 2018 (for a 5parameter cosmology)

7

Results – photometric Galaxy Clustering

Lower impact for GCph:

- Probe response is lower than WL's
- The effect is diluted by an uncertainty increase in the bias (nuisance) parameters

8

Conclusions

- SSC **must** be included in upcoming analyses: it significantly degrades parameter constraints for the *Euclid* WL survey and for the 3x2pt
- No variation in the survey strategy shows significant potential to mitigate the effect
- The FoM decreases significantly for the full 3x2pt photometric analysis
- SSC relative impact decreases for more realistic forecasts (*i.e.*, including more systematic effects), because of the larger overall error budget

Thank you

Additional slides

Computing the SSC: probe response

- We build upon the work of Lacasa+ 2018 by taking into account the dependence of the response on scale, redshift and probe (as opposed to a constant response)
- Two possible approaches:
 - Semi-analytical prescription, e.g. using the Halo Model
 - Separate universe technique: the region observed by the survey is equivalent to a universe with different background density
 - \rightarrow N-body simulations with external homogeneous overdensity imposed
- We choose the second approach, following Wagner+ 2014 and Barreira+ 2018
- We develop an analytical mapping of the matter into the galaxy PS response and project the responses in 2D

Results – '3x2pt'

- WL + GGL + GCph: three 2-point correlation functions
- 1σ and 2σ contours, representing projections of the likelihood in parameter space
- Figure of Merit shrinks by about 50%: from 958 to 494 (optimistic case)

Fisher Forecast pipeline

• DE EOS:
$$p = w_{DE}\rho$$
; $w_{DE}(z) = w_0 + w_a \frac{z}{1+z}$; $w_{DE}(z=0) = w_0$

• Gauss Only covariance:

 $\operatorname{Cov}\left[C_{ij}^{AB}(\ell), C_{kl}^{A'B'}(\ell')\right] = \frac{\left[C_{ik}^{AA'}(\ell) + N_{ik}^{AA'}(\ell)\right] \left[C_{jl}^{BB'}(\ell') + N_{jl}^{BB'}(\ell')\right] + \left[C_{il}^{AB'}(\ell) + N_{il}^{AB'}(\ell)\right] \left[C_{jk}^{BA'}(\ell') + N_{jk}^{BA'}(\ell')\right]}{(2\ell+1)f_{\text{sky}}\Delta\ell} \delta_{\ell\ell'}^{\text{K}}.$

• SSC: dominates SNR above $\ell \gtrsim 300$ at z = 1

$$\operatorname{Cov}_{\mathrm{SSC}}\left(C_{\ell}^{AB}(i_{z}, j_{z}), C_{\ell'}^{CD}(k_{z}, l_{z})\right) \approx R_{\ell}^{AB} C_{\ell}^{AB}(i_{z}, j_{z}) R_{\ell'}^{CD} C_{\ell'}^{CD}(k_{z}, l_{z}) \qquad \operatorname{Cov}_{\mathrm{SSC}}\left(O_{1}, O_{2}\right) = \iint \mathrm{d}V_{1} \mathrm{d}V_{2} \frac{\partial \mathfrak{o}_{1}}{\partial \delta_{b}}(z_{1}) \frac{\partial \mathfrak{o}_{2}}{\partial \delta_{b}}(z_{2}) \sigma^{2}(z_{1}, z_{2}) \times S_{i_{z}, j_{z}; k_{z}, l_{z}}^{A, B; C, D}, \qquad (4)$$

$$S_{i_{z},j_{z};k_{z},l_{z}}^{A,B;C,D} = \int dV_{1} dV_{2} \frac{W_{i_{z}}^{A}(z_{1}) W_{j_{z}}^{B}(z_{1})}{I^{AB}(i_{z},j_{z})} \frac{W_{k_{z}}^{C}(z_{2}) W_{l_{z}}^{D}(z_{2})}{I^{CD}(k_{z},l_{z})} \sigma^{2}(z_{1},z_{2}), \qquad \sigma^{2}(z_{1},z_{2}) = \frac{1}{2\pi^{2}} \int k^{2} dk P_{m}(k|z_{12}) j_{0}(kr_{1}) j_{0}(kr_{2})$$

 $\sigma^2(z_1, z_2)$ = variation of background density on a given survey volume due to super survey modes modulations

Approximation used: the response of the probe, which amounts how a given probe varies with changes of the background density δ_b , vary slowly with redshift

 $I^{AB}(i_z, j_z) = \int dV_1 \ W^A_{i_z}(z_1) \ W^B_{j_z}(z_1).$

Davide Sciotti - davide.sciotti@unir σ ornipapede tos σ ($\mathbb{Z}_1, \mathbb{Z}_2$)

Probe response II

- Example of probe response evaluated using the Halo Model
- beat coupling ("BC"): growth of a short wavelength perturbation is enhanced in a large scale overdensity
- halo sample variance ("HSV"): halo number densities are also enhanced in such a region
- Linear dilation ("LD"): long wavelength mode changes the local expansion factor and hence the physical size of a mode that would have comoving wavelength k in its absence

- σ_8 : amplitude of the (linear) matter power spectrum smoothed on the scale of 8 Mpc/h with a top-hat filter; it describes the amplitude of matter density fluctuations in spheres of 8 Mpc/h.
- n_s = scalar spectral index, measures the deviation (tilt) from scale invariance $(n_s = 1)$ of dimensionless primordial power spectrum of the curvature perturbation ζ generated by inflation. and k_0 is a pivot scale, A_s the amplitude

$$\mathcal{P}_{\zeta}(k) = A_{\rm s} \left(\frac{k}{k_0}\right)^{n_{\rm s}}$$

• **Cosmic variance**: variance arising from the fact that only one realization of the universe is available to us \rightarrow when computing the $C(\ell)$, the average over the $a_{\ell m}$ is done over m: $\hat{C}(\ell) = \frac{1}{2\ell+1} \sum_{m} a_{\ell m}^* a_{\ell m}$, but at low ℓ few m modes are available \rightarrow relative uncertainty of $\frac{\Delta C(\ell)}{C(\ell)} = \frac{\sqrt{2}}{\sqrt{2\ell+1}} \times [\frac{4\pi}{A}]$ (term in square brackets is sample variance)