The Dipole of the Pantheon+SH0ES Data arXiv:2212.10328

Francesco Sorrenti Ruth Durrer Martin Kunz

Département de physique théorique, Université de Genève

Future Cosmology, Cargese, 24^{th} April 2023

Introduction

CMB dipole

ightarrow In SN distances, Doppler term enhances the dipole due to our peculiar velocity at low redshift

 \implies we need a rather *limited* number of sources

At $z \ll 1$, $\mathcal{H}(z)r(z) \simeq z$ and:

$$D_L(z, \mathbf{n}) \simeq \bar{D}_L(z) \left(1 + \frac{1}{\mathcal{H}(z)r(z)} \mathbf{v}_0 \cdot \mathbf{n} \right)$$

In a flat ΛCDM :

$$\bar{D}_L(z) = \frac{1+z}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_m (1+z)^3 + 1 - \Omega_m}} \tag{1}$$

Analysis

Pantheon+SH0ES: analysis

1701 SNe lightcurves \rightarrow 77 Cepheid hosts

$$\mu = 5 \log_{10}(D_L/1 \text{Mpc}) + 25 = 5 \log_{10} D_L + M$$

MCMC routine

$$\log(\mathcal{L}) = -\frac{1}{2}\Delta\mu^T C^{-1}\Delta\mu \tag{2}$$

$\Delta \mu_L^i = \langle$	$\int \mu^i + \delta M - \mu^i_{\rm ceph},$	$i \in Cepheid$ hosts
	$\int \mu^i + \delta M - \mu^i_{\text{model}},$	otherwise

$$\mu_{\text{model}}^{i} = 5 \log \left(\frac{D_L(z_i, \mathbf{n}_i)}{\text{Mpc}} \right) + 25 \qquad (3)$$

Parameter	Prior range
v_0	[0, 1200] km/s
δM	[-100, 100]
H_0	[30, 100] km/s/Mpc
Ω_m	[0, 1]
ra	[0°, 360°]
dec	[-90°, 90°]

Results

$z_{ m cut}$	v_0	H_0	Ω_m	ra	dec
Ref. value	369	73.4	0.338	167.942	-6.944
No cut	328^{+35}_{-42}	$73.11\substack{+1.07 \\ -0.96}$	$0.339\substack{+0.018\\-0.019}$	$139.4\substack{+7.2 \\ -8.0}$	$42.0^{+7.2}_{-6.6}$
0.005	344_{-40}^{+42}	73.5 ± 1.0	$0.335\substack{+0.019\\-0.018}$	$147.6\substack{+8.0 \\ -9.5}$	$48.9^{+6.9}_{-6.7}$
0.01	302^{+38}_{-49}	$73.47\substack{+0.97 \\ -1.09}$	$0.340\substack{+0.020\\-0.017}$	$141.1_{-8.2}^{+8.6}$	$34.4^{+9.1}_{-10.1}$
0.0175	377^{+57}_{-62}	$73.46\substack{+1.10 \\ -0.97}$	$0.342\substack{+0.016\\-0.020}$	$132.4^{+10.3}_{-8.2}$	$45.2^{+8.3}_{-9.4}$
0.025	434^{+91}_{-77}	$73.38\substack{+1.10 \\ -0.95}$	$0.341\substack{+0.020\\-0.017}$	$137.1^{+11.9}_{-9.6}$	$42.1_{-10.6}^{+9.9}$
0.0375	490^{+110}_{-130}	$73.6^{+1.1}_{-1.0}$	$0.338\substack{+0.018\\-0.021}$	141^{+18}_{-15}	33^{+17}_{-18}
0.05	370^{+150}_{-160}	$73.55_{-0.99}^{+1.17}$	$0.333\substack{+0.022\\-0.019}$	167^{+37}_{-30}	21^{+34}_{-28}
0.1	620^{+250}_{-310}	$73.5^{+1.0}_{-1.2}$	$0.338\substack{+0.025\\-0.026}$	211^{+29}_{-31}	-2^{+46}_{-24}

- H_0 and Ω_m agree well with Pantheon+ and insensitive to z_{cut}
- v_0 remains within about 2σ of the Planck value
- Direction is very different!

Results

'Bulk velocity'

Figure: Ref.: $|\mathbf{v}_{\mathrm{bulk}}| = 182$ km/sec (ra, dec) = (191°,-61°)

 $\mathbf{v}_{bulk} = \mathbf{v}_0 - \mathbf{v}_{Planck}$ Larger amplitude, but directions in agreement!

Thanks for your attention!

◆□▶ ◆□▶ ◆目▶ ◆目▼ ●○○

Backup

(a) Pantheon

(b) Pantheon+

(日)

Pantheon+ z dependence

Luminosity distance

For a spatially flat universe:

$$D_L(z, \mathbf{n}) = \bar{D}_L(z) \left\{ 1 + \frac{1}{\mathcal{H}(z)r(z)} (\mathbf{v}_0 \cdot \mathbf{n}) + \left(\frac{1}{\mathcal{H}(z)r(z)} - 1\right) \left((\mathbf{v} \cdot \mathbf{n}) + \Psi + \int_0^{r(z)} dr(\dot{\Psi} + \dot{\Phi}) \right) - \Phi + \int_0^{r(z)} \frac{dr}{r} \left[1 - \frac{r(z) - r}{2r(z)} \Delta_{\mathbf{n}} \right] (\Phi + \Psi) \right\}$$
(4)

In a flat ΛCDM :

$$\bar{D}_L(z) = \frac{1+z}{H_0} \int_0^z \frac{dz}{\sqrt{\Omega_m (1+z)^3 + 1 - \Omega_m}}$$
(5)

At $z \ll 1$, $\mathcal{H}(z)r(z) \simeq z$ and:

$$D_L(z, \mathbf{n}) \simeq \bar{D}_L(z) \left(1 + \frac{1}{\mathcal{H}(z)r(z)} \mathbf{v}_0 \cdot \mathbf{n} \right)$$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲圖■ のQ@

Pantheon+SH0ES

 $\mu = 5 \log_{10}(D_L/1 \text{Mpc}) + 25 = 5 \log_{10} D_L + M$

- 1701 SNe lightcurves \rightarrow 77 Cepheid hosts
- Covariances (statistical + systematics)
- *z_{hel}*: Heliocentric Redshift
- *z_{CMB}*: CMB Corrected Redshift
- *z_{HD}*: Hubble Diagram Redshift (with CMB and *v_{pec}* corrections)

$z_{ m cut}$	Pantheon+ without Cepheids	Cepheid hosts	Pantheon
No cut	1624	77	1048
0.005	1615	50	1048
0.01	1576	7	1046
0.0175	1468	2	1010
0.025	1312	0	976
0.0375	1126	0	915
0.05	1054	0	890
0.1	960	0	837

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■□ のQ@

- Theoretical mode

χ^2 analysis

$z_{ m cut}$	$\chi^2_{ m No-dip}$ - $\chi^2_{ m best-fit}$	$\chi^2_{\rm Planck}$ - $\chi^2_{\rm best-fit}$	$\chi^2_{z_{HD}}$ - $\chi^2_{\rm best-fit}$
No cut	88.2	66.4	9.1
0.005	88.5	68.5	19.1
0.01	62.1	41.4	15.0
0.0175	53.6	42.6	14.4
0.025	41.7	19.2	-2.1
0.0375	22.3	5.3	1.3
0.05	8.7	0.9	-1.0
0.1	7.4	3.4	2.9

For $z_{\rm cut} \leq 0.02$:

- Best fit dipole very strongly favored over no dipole or the Planck dipole
- Also wrt Pantheon+ p-value ≥ 97.5 %

For $z_{\rm cut} \ge 0.05$:

• Dipole no longer clearly detected \Longrightarrow dipole correction is of the same order of noise

Comparison with Pantheon

Figure: Thanks to N. Horstmann arXiv:2111.03055

- Validity check
- For Pantheon v_0 is 2.4σ smaller
- Pantheon roughly agrees with Planck dipole and 'our' dipole

$z_{ m cut}$	Pantheon+	Pantheon
0.01	1576	1046

<ロト < @ ト < 三 ト < 三 ト 三 三 の < @ </p>

Peculiar velocities in Pantheon+

- Vorticity is neglected
- 'Ad hoc" $\mathbf{v}_{\mathrm{bulk}}$ within $R=200h^{-1}\mathrm{Mpc}$

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

- Theoretical model

Position fixed

(b) Low redshift

8/14

Comparison with Pantheon

- Theoretical model

(a) z=0.025

(b) z=0.0375

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

- Theoretical model

(a) z=0.05

(b) z=0.1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

Conclusions

We have determined the dipole of the Pantheon+ data

• It is significantly different from the CMB dipole (more than 3σ at $z_{\rm cut} \leq 0.02$)

• Pantheon still marginal consistent with CMB

Next steps

- Test the hypothesis of significant bulk flow
- Studying higher multipoles

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Quadrupole (in preparation)

Figure: Fixing \mathbf{v}_0

Quadrupole eigevalues (in preparation)

Figure: Fixing \mathbf{v}_0