Bispectrum and finite volume effects window-convolution and wide-angle effects

- Future Cosmology School, Cargèse 2023 -

Including the bispectrum is useful (ex: BOSS DR12)

Constraint on primordial non-Gaussianity:

Constraint on cosmological params:

Philcox\&Ivanov21 (also: D’Amico+19)
also one-loop bispectrum: Philcox+22, D'Amico+22b
also including bispectrum multipoles: D'Amico+22b, Ivanov+23

Cabass $+22 \mathrm{~b}, \mathrm{D}$ 'Amico +22 a
non-local PNG: Cabass+22a, bispectrum is necessary

The estimator

Scoccimarro estimator Scoccimarro15
FFT-based, optimal on small-scale

$$
\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i} \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\delta}\left(\mathbf{x}_{1}\right) \tilde{\delta}\left(\mathbf{x}_{2}\right) \tilde{\delta}\left(\mathbf{x}_{3}\right) \mathcal{L}_{L}\left(\hat{\mathbf{q}}_{1} \cdot \hat{\mathbf{x}}_{3}\right)
$$

Estimator is biased on large scale

Scoccimarro estimator Scoccimarro15

$$
\left.\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i}\right] \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta _ { D } (\mathbf { q } _ { 1 2 3 }) \tilde { \delta } (\mathbf { x } _ { 1 }) \tilde { \delta } (\mathbf { x } _ { 2 }) \tilde { \delta } (\mathbf { x } _ { 3 }) \longdiv { \mathcal { L } _ { L } (\hat { \mathbf { q } } _ { 1 } \cdot \hat { \mathbf { x } } _ { 3 }) }
$$

$$
\left\langle\hat{B}_{L}\right\rangle \neq B_{L} \quad
$$

ex: binning effect

Scoccimarro estimator Scoccimarro15
$\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i} \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\delta}\left(\mathbf{x}_{1}\right) \tilde{\delta}\left(\mathbf{x}_{2}\right) \tilde{\delta}\left(\mathbf{x}_{3}\right) \mathcal{L}_{L}\left(\hat{\mathbf{q}}_{1} \cdot \hat{\mathbf{x}}_{3}\right)$

1. binning effect

$$
\frac{1}{V_{B}} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i}\right] \delta_{D}\left(\mathbf{q}_{123}\right)
$$

on periodic boxes ...

$\Delta k=3 k_{f}$, Average
$\Delta k=3 k_{f}$, Effective
$\Delta k=1 k_{f}$, Average
$\Delta k=1 k_{f}$, Effective

Rizzo, Moretti,Pardede+22

Additionally ...

Scoccimarro estimator Scoccimarro15

$$
\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i} \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\tilde{\delta}}\left(\mathbf{x}_{1}\right) \tilde{\delta}\left(\mathbf{x}_{2}\right) \tilde{\delta}\left(\mathbf{x}_{3}\right) \mathcal{L}_{L}\left(\hat{\mathbf{q}}_{1} \cdot \hat{\mathbf{x}}_{3}\right)
$$

1. binning effect

on real surveys ...
2. window function* $\tilde{\delta}(\mathbf{x})=W(\mathbf{x}) \delta(\mathbf{x})$
3. LOS effect**

$$
\tilde{\delta}_{L}(\mathbf{q}) \equiv \int d^{3} x \tilde{\delta}(\mathbf{x}) \mathcal{L}_{L}(\mathbf{q} \cdot \mathbf{x}) e^{-i \mathbf{q} \cdot \mathbf{x}}
$$

Survey window effects in the bispectrum

$$
\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i} \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\tilde{\delta}}\left(\mathbf{x}_{1}\right] \tilde{\delta}\left(\mathbf{x}_{2}\right) \tilde{\delta}\left(\mathbf{x}_{3}\right) \mathcal{L}_{L}\left(\hat{\mathbf{q}}_{1} \cdot \hat{\mathbf{x}}_{3}\right)
$$

2. window function $\quad \tilde{\delta}(\mathbf{x})=W(\mathbf{x}) \delta(\mathbf{x})$

The window function

$$
\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i} \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\delta}\left(\mathbf{x}_{1}\right) \tilde{\delta}\left(\mathbf{x}_{2}\right) \tilde{\delta}\left(\mathbf{x}_{3}\right) \mathcal{L}_{L}\left(\hat{\mathbf{q}}_{1} \cdot \hat{\mathbf{x}}_{3}\right)
$$

$$
\begin{aligned}
\tilde{\delta}(\mathbf{x}) & =\underbrace{W(\mathbf{x})}_{\text {window function }} \delta(\mathbf{x}) \\
\rightleftarrows \tilde{\delta}(\mathbf{k}) & =\int \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} W\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \delta\left(\mathbf{k}^{\prime}\right)
\end{aligned}
$$

Baumgart, Fry 1991

... in the bispectrum

$$
\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i} \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\tilde{\delta}}\left(\mathbf{x}_{1}\right) \tilde{\delta}\left(\mathbf{x}_{2}\right) \tilde{\delta}\left(\mathbf{x}_{3}\right) \mathcal{L}_{L}\left(\hat{\mathbf{q}}_{1} \cdot \hat{\mathbf{x}}_{3}\right)
$$

Equilateral configurations

(schematically, for the monopole)

$$
\tilde{B}\left(\vec{k}_{1}, \vec{k}_{2}\right)=\int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3}} B_{W}\left(\vec{k}_{1}-\vec{p}_{1}, \vec{k}_{2}-\vec{p}_{2}\right) B\left(\vec{p}_{1}, \vec{p}_{2}\right)
$$

- 6D integral
- Time \sim hours/evaluation
- Not feasible for likelihood analysis

As a matrix multiplication

2DFFTLog

$$
\tilde{B}_{\ell}\left[T_{i}\right]=\sum_{j, \ell^{\prime}} \mathcal{M}_{\ell \ell^{\prime}}\left[T_{i}, T_{j}^{\prime}\right] B_{\ell}\left[T_{j}^{\prime}\right]
$$

Computable via (2D) FFTLog
e.g. 2D-FFTLog (Fang+20)

Each evaluation
~ 2 seconds
\Rightarrow comparable to a typical of the window 3PCF multipoles

$$
\text { Function of three sides }\left(k_{1}, k_{2}, k_{3}\right)
$$

Spherical window convolution in real-space

Fit on Pinocchio mocks

Analysis on Minerva data

volume ≈ 6 times the largest Euclid redshift bin

$$
\text { volume } \approx 3500[\mathrm{Gpc} / h]^{3}
$$

Wide-angle effects in the bispectrum

$$
\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i} \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\delta}\left(\mathbf{x}_{1}\right) \tilde{\delta}\left(\mathbf{x}_{2}\right) \tilde{\delta}\left(\mathbf{x}_{3}\right) \mathcal{L}_{L}\left(\hat{\mathbf{q}}_{1} \cdot \hat{\mathbf{x}}_{3}\right)
$$

3. LOS effect

$$
\tilde{\delta}_{L}(\mathbf{q}) \equiv \int d^{3} x \tilde{\delta}(\mathbf{x}) \mathcal{L}_{L}(\mathbf{q} \cdot \mathbf{x}) e^{-i \mathbf{q} \cdot \mathbf{x}}
$$

Beyond flat-sky formulation for the bispectrum

$\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i} \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\delta}\left(\mathbf{x}_{1}\right) \tilde{\delta}\left(\mathbf{x}_{2}\right) \tilde{\delta}\left(\mathbf{x}_{3}\right) \mathcal{L}_{L}\left(\hat{\mathbf{q}}_{1} \cdot \hat{\mathbf{x}}_{3}\right)$
need to go to the 3PCF first
$\left\langle\delta\left(\mathbf{x}_{1}\right) \delta\left(\mathbf{x}_{2}\right) \delta\left(\mathbf{x}_{3}\right)\right\rangle=\int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \frac{d^{3} p_{2}}{(2 \pi)^{3}} e^{i \mathbf{p}_{1} \cdot \mathbf{x}_{13}} e^{i \mathbf{p}_{2} \cdot \mathbf{x}_{23}} \mathcal{F}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \hat{\mathbf{x}}_{1}, \hat{\mathbf{x}}_{2}, \hat{\mathbf{x}}_{3}\right)$
expand perturbatively
$\mathcal{F}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \hat{\mathbf{x}}_{1}, \hat{\mathbf{x}}_{2}, \hat{\mathbf{x}}_{3}\right)=\sum_{i j} \mathcal{F}^{(i j)}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \hat{\mathbf{x}}_{13}, \hat{\mathbf{x}}_{23}, \hat{\mathbf{x}}_{3}\right)\left(\frac{x_{13}}{x_{3}}\right)^{i}\left(\frac{x_{23}}{x_{3}}\right)^{j}$
to go back to Fourier space

$$
\sum_{\ell_{1} \ell_{2} \cdots} \mathcal{F}_{\ell_{1} \ell_{2} \cdots}^{(i j)}\left(p_{1}, p_{2}\right) \mathcal{L}_{\ell_{1}}\left(\hat{\mathbf{p}}_{1} \cdot \hat{\mathbf{p}}_{2}\right) \mathcal{L}_{\ell_{2}}\left(\hat{\mathbf{p}}_{1} \cdot \hat{\mathbf{x}}_{3}\right) \mathcal{L}_{\ell_{3}}\left(\hat{\mathbf{p}}_{2} \cdot \hat{\mathbf{x}}_{3}\right) \cdots .
$$

... another matrix multiplication

$$
\hat{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)=\frac{2 L+1}{V_{B} V} \prod_{i=1}^{3}\left[\int_{k_{i}} d^{3} q_{i} \int_{V} d^{3} x_{i} e^{-i \mathbf{q}_{i} \cdot \mathbf{x}_{i}}\right] \delta_{D}\left(\mathbf{q}_{123}\right) \tilde{\delta}\left(\mathbf{x}_{1}\right) \tilde{\delta}\left(\mathbf{x}_{2}\right) \tilde{\delta}\left(\mathbf{x}_{3}\right) \mathcal{L}_{L}\left(\hat{\mathbf{q}}_{1} \cdot \hat{\mathbf{x}}_{3}\right)
$$

$$
B_{L}\left(k_{1}, k_{2}, k_{3}\right)=\sum_{i+j \leq n, \ell_{1}, \ell_{2}, \ldots} B_{L, \ell_{1}, \ell_{2}, \ldots}^{(\text {schematicaly }}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \mathcal{M}_{L, \ell_{1}, \ell_{2}, \ldots}^{(n)}\left(\frac{1}{k_{1} x_{3}}\right)^{i}\left(\frac{1}{k_{2} x_{3}}\right)^{j}
$$

The wide-angle effects, how big?

- Monopole correction only generated at second order ~ 0.1\%
- Dipole correction $\sim 1 \%$ of the flat-sky monopole
- S / N of dipole $\sim V /\left(8 \mathrm{Gpc}^{3} \mathrm{~h}^{-3}\right)$

Monopole correction \sim small local $f_{N L}$

- Monopole correction scales as k^{2}
- Can mimic a local PNG signal

Summary

1. Including bispectrum multipoles analysis is useful but come with extra modelling complexity, ex: survey window effects and wide-angle effects
2. We gave an efficient formulation for bispectrum window convolution - which is tested in an ideal case of spherical window convolution in real space
3. Wide-angle corrections have a sizable effect to the bispectrum multipoles and can mimic actual physical signal, ex: ~ 0.1 local $f_{N L}$
-Extras-

Bispectrum captures the non-Gaussianity

Power Spectrum (P) + Bispectrum (B) $+\ldots$

Inclusion of the bispectrum multipoles

The binning effect

Rizzo, Moretti, Pardede +22

The bispectrum multipoles

$$
B_{L}\left(k_{1}, k_{2}, k_{3}\right)
$$

$$
=\frac{2 L+1}{4 \pi} \int d \cos \theta \int d \phi B(k_{1}, k_{2}, k_{3}, \underbrace{\theta, \phi)} \mathcal{L}_{L}(\cos \theta) .
$$

PT (perturbation theory) model

- galaxies are not in their rest frame
- $m \neq 0$ contains negligible information Gagrani+16
- tree-level: only even multipoles exist $B_{0}, B_{2}, B_{4}, \ldots$

Tree-level bispectrum

$$
B\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=B^{(\mathrm{det})}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)+B^{(\text {stoch })}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)
$$

$$
\begin{gathered}
B^{(\mathrm{det})}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=2 Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right) Z_{1}\left(\mathbf{k}_{1}, \hat{\mathbf{x}}\right) Z_{1}\left(\mathbf{k}_{2}, \hat{\mathbf{x}}\right) P_{L}\left(k_{1}\right) P_{L}\left(k_{2}\right) \\
+ \text { cyc. }
\end{gathered}
$$

$$
\begin{gathered}
B^{(\text {stoch })}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=\frac{1}{\bar{n}}\left[\left(1+\alpha_{1}\right) b_{1}+\left(1+\alpha_{3}\right) f\left(\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{x}}\right)^{2}\right] Z_{1}\left(\mathbf{k}_{1}, \hat{\mathbf{x}}\right) P_{L}\left(k_{1}\right) \\
+ \text { cyc. }+\frac{1+\alpha_{2}}{\bar{n}^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& Z_{1}(\mathbf{k}, \hat{\mathbf{x}})=b_{1}+f\left(\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{x}}\right)^{2} \\
& Z_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \hat{\mathbf{x}}\right)=\frac{b_{2}}{2}+b_{1} F_{2}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+b_{g_{2}} S\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \\
& \quad f\left(\hat{\mathbf{k}}_{12} \cdot \hat{\mathbf{x}}\right)^{2} G\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right)+\frac{f\left(\mathbf{k}_{12} \cdot \hat{\mathbf{x}}\right)}{2}\left[\frac{\hat{\mathbf{k}}_{1} \cdot \hat{\mathbf{x}}}{k_{1}} Z_{1}\left(\mathbf{k}_{2}, \hat{\mathbf{x}}\right)+\frac{\hat{\mathbf{k}}_{2} \cdot \hat{\mathbf{x}}}{k_{2}} Z_{1}\left(\mathbf{k}_{1}, \hat{\mathbf{x}}\right)\right] \quad \mathbf{k}_{12} \equiv \mathbf{k}_{1}+\mathbf{k}_{2}
\end{aligned}
$$

The bispectrum multipoles: test on simulations

1. 298 Minerva (N-body) Grieb+16

2. 10000 Pinocchio (3LPT) Monaco+02

credit: A.Veropalumbo

Rizzo, Moretti, Pardede+ (arXiv: 2204.13628)
$@_{Z=1}$
Λ CDM cosmology
$L_{b o x}=1500 \mathrm{Mpc} / \mathrm{h}$
$V_{\text {eff }} \simeq 1000(\mathrm{Gpc} / \mathrm{h})^{3}$
$\simeq 2 \mathrm{x}$ volume in PT-challenge Nishimichi+20

... the numerical covariance

1. 298 Minerva (N-body) Grieb+16
2. 10000 Pinocchio (3LPT) Monaco+02

- approx. based on Lagrangian pert. theory
- relatively fast and accurate

provide a robust estimate of the covariance

credit: A.Veropalumbo

Spherical window convolution in real-space

Sphere catalogue:

Minerva/Pinocchio carved on a sphere of $R \sim 434 \mathrm{Mpc} / \mathrm{h}$

Total vol $\left.=700^{3}(\mathrm{Mpc} / \mathrm{h})\right]^{3}$

An approximation

$$
\tilde{B}\left[P_{L}\right] \simeq B\left[\tilde{P}_{L}\right]
$$

1DFFTLog-approx

$$
\tilde{B}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \simeq Z\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \tilde{P}_{L}\left(k_{1}\right) \tilde{P}_{L}\left(k_{2}\right)+\text { cyc }
$$

- Reduced to power spectrum-window convolution see e.g. Wilson+15, Castorina+17, d'Amico+19
- BOSS DR 11/12 Gil-Marin+14a, b and $+16 \mathrm{a}, \mathrm{b}$ (1D) FFTLog
- Recently used in d'Amico +19,+22
- Doesn't work for squeezed triangles

First few triangles

Fit on Pinocchio mocks
volume $\approx 3500[\mathrm{Gpc} / h]^{3}$

Minerva volume:
consistent within 1-sigma

Triangle Index

Recovering bias parameters

Analysis on Minerva data

$\approx 1 / 6$ times volume in Nishimichi+20
≈ 6 times $z \in[1.5,1.8]$
Euclid volume

Window convolution computation time

Takes ~ 2 seconds

\Rightarrow comparable to a typical Boltzmann solver call

Exact bispectrum window convolution

Taking $\left\langle\hat{B}_{L}\right\rangle=\tilde{B}_{L}$

$$
\begin{aligned}
\tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right) & =\frac{2 L+1}{V_{B}} \int_{k_{1}} d^{3} q_{1} \int_{k_{2}} d^{3} q_{2} \int_{k_{3}} d^{3} q_{3} \delta_{D}\left(\vec{q}_{123}\right) \\
& \times \int d^{3} x_{3} \int d^{3} x_{13} \int d^{3} x_{23} e^{-i \vec{q}_{1} \cdot \vec{x}_{13}} e^{-i \vec{q}_{2} \cdot \vec{x}_{23}} \zeta\left(\vec{x}_{13}, \vec{x}_{23}, \hat{x}_{3}\right) \\
& \times W\left(\vec{x}_{1}\right) W\left(\vec{x}_{2}\right) W\left(\vec{x}_{3}\right) \mathcal{L}_{L}\left(\hat{q}_{1} \cdot \hat{x}_{3}\right)
\end{aligned}
$$

Need to: systematically reduce the angular integration

... the final expression

Some form of integral between
the unconvolved bisp. and the mixing matrix

$$
\begin{aligned}
& \tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)= \int \frac{d p_{1}}{2 \pi^{2}} p_{1}^{2} \int \frac{d p_{2}}{2 \pi^{2}} p_{2}^{2} \int \frac{d p_{3}}{2 \pi^{2}} p_{3}^{2} \sum_{L^{\prime} M^{\prime}} B_{L^{\prime} M^{\prime}}\left(p_{1}, p_{2}, p_{3}\right) \\
& \times \sum_{\ell} I_{\ell \ell 0}\left(p_{1}, p_{2}, p_{3}\right) \mathcal{Q}_{L^{\prime},-M^{\prime}, \ell}^{L}\left(k_{1}, k_{2}, k_{3} ; p_{1}, p_{2}\right) \\
& \text { the mixing matrix }
\end{aligned}
$$

Window convolution \sim matrix mult.

One part of the mixing matrix is a known function

$$
\begin{aligned}
\tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)= & \int \frac{d p_{1}}{2 \pi^{2}} p_{1}^{2} \int \frac{d p_{2}}{2 \pi^{2}} p_{2}^{2} \int \frac{d p_{3}}{2 \pi^{2}} p_{3}^{2} \sum_{L^{\prime} M^{\prime}} B_{L^{\prime} M^{\prime}}\left(p_{1}, p_{2}, p_{3}\right) \\
& \times \sum_{\ell} I_{\ell \ell 0}\left(p_{1}, p_{2}, p_{3}\right) \mathcal{Q}_{L^{\prime},-M^{\prime}, \ell}^{L}\left(k_{1}, k_{2}, k_{3} ; p_{1}, p_{2}\right) \\
& \text { enforce the triangle condition }
\end{aligned}
$$

$$
\longleftrightarrow \tilde{B}_{\ell}\left[T_{i}\right]=\sum_{j, \ell^{\prime}} \mathcal{M}_{\ell \ell^{\prime}}\left[T_{i}, T_{j}^{\prime}\right] B_{\ell^{\prime}}\left[T_{j}^{\prime}\right]
$$

$$
I_{\ell \ell 0}(x, y, z)=(-1)^{\ell} \frac{\pi^{2}}{x y z} \theta(1-\hat{x} \cdot \hat{y}) \theta(1+\hat{x} \cdot \hat{y}) \mathcal{L}_{\ell}(\hat{x} \cdot \hat{y})
$$

Contribution from the the window 3PCF

The other contribution is coming from the random catalogue

$$
\begin{aligned}
\tilde{B}_{L}\left(k_{1}, k_{2}, k_{3}\right)= & \int \frac{d p_{1}}{2 \pi^{2}} p_{1}^{2} \int \frac{d p_{2}}{2 \pi^{2}} p_{2}^{2} \int \frac{d p_{3}}{2 \pi^{2}} p_{3}^{2} \sum_{L^{\prime} M^{\prime}} B_{L^{\prime} M^{\prime}}\left(p_{1}, p_{2}, p_{3}\right) \\
& \times \sum_{\ell} I_{\ell \ell 0}\left(p_{1}, p_{2}, p_{3}\right) \sqrt[\mathcal{Q}_{L^{\prime},-M^{\prime}, \ell}^{L}\left(k_{1}, k_{2}, k_{3} ; p_{1}, p_{2}\right)]{\text { require several steps of computations }}
\end{aligned}
$$

How to compute the 3PCF contribution?

The window 3PCF - measurement

$$
\begin{aligned}
& Q_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell_{1} \ell_{2}}^{L}\left(x_{13}, x_{23}\right) \equiv(-1)^{M^{\prime}} \sum_{\tilde{\ell_{1}}, \tilde{\ell}_{2}} \sum_{M, m_{1}, m_{2}} 4 \pi i^{\ell^{\prime}-\ell+\ell_{2}-\ell_{1}} \mathcal{G}_{L \ell_{1} \ell_{2}}^{M m m_{1} m_{2}} \mathcal{G}_{L^{\prime} \ell^{\prime}}^{\prime^{\prime} m m^{\prime}} \mathcal{G}_{\ell_{1} \ell^{\prime} \tilde{l}_{1}}^{m_{1} \tilde{l}_{1}^{\prime} \tilde{m}_{1}} \mathcal{G}_{\ell_{2} \ell\left(\overline{\ell_{2}}\right.}^{m_{2} m \tilde{m}_{2}} \\
& m, m^{\prime}, \tilde{m}_{1}, \tilde{m}_{2} \\
& \times \int d^{3} x_{3} \int \frac{d^{2} \hat{x}_{13}}{4 \pi} \int \frac{d^{2} \hat{x}_{23}}{4 \pi} Y_{L M}^{*}\left(\hat{x}_{3}\right) Y_{\tilde{\ell}_{1} \tilde{m}_{1}}\left(\hat{x}_{13}\right) Y_{\tilde{\mathscr{L}}_{2} \tilde{m}_{2}}\left(\hat{x}_{23}\right) \\
& \times W\left(\vec{x}_{3}+\vec{x}_{13}\right) W\left(\vec{x}_{3}+\vec{x}_{23}\right) W\left(\vec{x}_{3}\right) \text {. }
\end{aligned}
$$

Computed via e.g. direct counting, FFT-based, etc.

The window 3PCF - Hankel transf.

Combination of two dimensional Hankel transforms

$$
\begin{gathered}
\mathcal{W}_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell_{1} \ell_{2}}^{L}\left(q_{1}, q_{2} ; p_{1}, p_{2}\right) \equiv(4 \pi)^{2} \int d x_{13} x_{13}^{2} \int d x_{23} x_{23}^{2} j_{\ell^{\prime}}\left(p_{1} x_{13}\right) j_{\ell}\left(p_{2} x_{23}\right) \\
\\
\quad \times\left[j_{\ell_{1}}\left(q_{1} x_{13}\right) j_{\ell_{2}}\left(q_{2} x_{23}\right) Q_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell_{1} \ell_{2}}^{L}\left(x_{13}, x_{23}\right)\right]
\end{gathered}
$$

The window 3PCF - binning

How to handle the binning operator?
$\mathcal{Q}_{L^{\prime} M^{\prime} \ell}^{L}\left(k_{1}, k_{2}, k_{3} ; p_{1}, p_{2}\right) \simeq \sum_{\ell_{1}, \ell_{2}, \ell^{\prime}} 16 \pi^{2} \frac{I_{\ell_{2} \ell_{2} 0}\left(k_{1}, k_{2}, k_{3}\right)}{I_{000}\left(k_{1}, k_{2}, k_{3}\right)} \mathcal{W}_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell_{1} \ell_{2}}^{L}\left(k_{1}, k_{2} ; p_{1}, p_{2}\right)$.

$\begin{array}{ll}\bullet & \text { Evaluated at the center of the bin } \\ \bullet & \text { Bin numerically later }\end{array}$

The window 3PCF - FFT-based

$$
\begin{aligned}
& Q_{L^{\prime} M^{\prime} \ell \ell^{\prime} \ell_{1} \ell_{2}}^{L}\left(x_{13}, x_{23}\right)=(-1)^{M^{\prime}} \sum_{M, m_{1}, m_{2}} \sum_{\substack{\tilde{\ell}_{1}, \tilde{\ell}_{2} \\
m, m^{\prime}}} 4 \pi i^{\ell^{\prime}-\ell+\ell_{2}-\ell_{1}} \mathcal{G}_{L \ell_{1} \ell_{2}}^{M m_{1} m_{2}} \mathcal{G}_{L^{\prime} \ell \ell^{\prime}}^{M^{\prime} m m^{\prime}} \mathcal{G}_{\tilde{\ell}_{1} \ell \ell_{1} \ell^{\prime}}^{\tilde{m}_{1} m_{1} m^{\prime}} \mathcal{G}_{\tilde{\ell}_{2} \ell_{2} \ell}^{\tilde{m}_{2} m_{2} m} \\
& \times \int d^{3} x_{3} W_{\tilde{\ell}_{1} \tilde{m}_{1}}\left(\vec{x}_{3} ; x_{13}\right) W_{\tilde{\ell}_{2} \tilde{m}_{2}}\left(\vec{x}_{3} ; x_{23}\right) W_{L M}\left(\vec{x}_{3}\right) \\
& W_{\ell m}\left(\vec{x}_{3} ; x_{i j}\right) \equiv i^{\ell} \int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{x}_{3}} j_{\ell}\left(q x_{i j}\right) Y_{\ell m}(\hat{q}) W(\vec{q}) \\
& W_{L M}\left(\vec{x}_{3}\right) \equiv W\left(\overrightarrow{x_{3}}\right) Y_{L M}^{*}\left(\vec{x}_{3}\right)
\end{aligned}
$$

Default parameters

N_{p}	$\ell_{\max }$	$\ell_{\max }^{\prime}$	$P_{\min }\left[h \mathrm{Mpc}^{-1}\right]$	$p_{\max }\left[h \mathrm{Mpc}^{-1}\right]$
512	30	2	10^{-5}	0.5

Wide-angle formulation for the bispectrum

$$
\begin{aligned}
& \left\langle B_{L}\left(k_{1}, k_{2}, k_{3}\right)\right\rangle= \\
& \sum_{i j} \sum_{\ell_{6}+\ell_{7}+\ell_{8} \leq i} \sum_{\ell_{9}+\ell_{10}+\ell_{11} \leq j} \sum_{\substack{\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4} \\
\ell_{5}, \ell_{12}, \ell_{13}, \ell_{14}}} i^{\ell_{1}+\ell_{2}-\ell_{12}-\ell_{13}} \\
& \times\left[\frac{1}{(2 \pi)^{6}} \int \frac{d x_{3} x_{3}^{2}}{V} \int d x_{13} x_{13}^{2} \int d x_{23} x_{23}^{2} \int d p_{1} p_{1}^{2} \int d p_{2} p_{2}^{2}\right. \\
& \left.j_{\ell_{1}}\left(p_{1} x_{13}\right) j_{\ell_{2}}\left(p_{2} x_{23}\right) j_{\ell_{12}}\left(k_{1} x_{13}\right) j_{\ell_{13}}\left(k_{2} x_{23}\right) \mathcal{F}_{\ell_{3} \ell_{4} \ell_{5} \ell_{6} \ell_{7} \ell_{8} \ell_{9} \ell_{10} \ell_{11}}^{(i j)}\left(p_{1}, p_{2}\right)\left(\frac{x_{13}}{x_{3}}\right)^{i}\left(\frac{x_{23}}{x_{3}}\right)^{j}\right] \\
& \times\left[\frac{(4 \pi)^{14}}{N_{\ell_{3} \ell_{4} \ell_{5}} N_{\ell_{6} \ell_{7} \ell_{8}} N_{\ell_{9} \ell_{10} \ell_{11}}} \sum_{m, m_{i}} \sum_{L M}(-1)^{m_{3}+m_{8}+m_{11}+M} \mathcal{G}_{\ell_{4} \ell L}^{m_{4} m M}\right. \\
& \mathcal{G}_{\ell_{1} \ell_{3} \ell_{4} \ell_{6} \ell_{9}}^{m_{1} m_{3} m_{4} m_{6} m_{9}} \mathcal{G}_{\ell_{2} \ell_{3} \ell_{5} \ell_{7} \ell_{10}}^{m_{2},-m_{3} m_{5} m_{7} m_{10}} \mathcal{G}_{\ell_{1} \ell_{12} \ell_{6} \ell_{7} \ell_{8}}^{m_{1} m_{12} m_{6} m_{7},-m_{8}}{ }_{\mathcal{G}_{\ell_{2} \ell_{13} \ell_{9} \ell_{10} \ell_{11}}^{m_{2} m_{13} m_{9} m_{10},-m_{11}} \mathcal{G}_{L \ell_{5} \ell_{8} \ell_{11}}^{-M m_{5} m_{8} m_{11}}}^{M_{1}} \\
& \left.\mathcal{G}_{\ell \ell_{12} \ell_{14}}^{m m_{12} m_{14}} Y_{\ell_{14} m_{14}}\left(\hat{\mathbf{k}}_{1}\right) Y_{\ell_{13} m_{13}}^{*}\left(\hat{\mathbf{k}}_{2}\right)\right]
\end{aligned}
$$

Gaunt vs Cartesian formulation

Convergence test

