Low-redshift estimates of the absolute scale of baryon acoustic oscillations

Ruchika

INFN, Roma

April 25, 2023

Reference: arxiv 2303.15066 Thais Lemos, Ruchika, Joel C. Carvalho, Jailson Alcaniz Future Cosmology School Cargese, France

(日) (四) (코) (코) (코) (코)

Outline of the Talk

- Present state of Universe
- Ongoing tensions in recent cosmology
- Is rd tension related to Hubble tension?
- At present, *r_d* estimation is biased by the model and high redshift CMB data.
- How we measure *r_s* from low-redshift measurements in a completely model independent way?
- Does low-redshift estimation of r_s consistent with the one derived from high-redshift CMB observations?
- Conclusion

▲ 国 ▶ | ▲ 国 ▶

A growing Universe \diamond

Ruchika (INFN, Roma)

A growing Universe \diamond

Ruchika (INFN, Roma)

A growing universe ... and tension \diamond

> 5 sigma

Ruchika (INFN, Roma)

Another important derived parameter: r_d

Another standard object like SNI-a \diamond

Ruchika (INFN, Roma)

Current state - Tensions (Hubble Tension) \diamond

Current state : > 5 sigma tension between Planck and SH0ES 2022

Questions that follow: Is ACDM the right theoretical model?

Di Valentino : Mon.Not.Roy.Astron.Soc. 502 (2021)

Ruchika (INFN, Roma)

Current state - "Crisis" in Cosmology \diamond

Ruchika (INFN, Roma)

Low-redshift estimates of the absolute scale o

8

Price of shift in Hubble Constant is the shift in $r_d \diamond$

Ruchika (INFN, Roma)

Low-redshift estimates of the absolute scale o

April 25, 2023

9

Price of shift in Hubble Constant is the shift in $r_d \diamond$

Ruchika (INFN, Roma)

Current state - Tensions (*r*_{*d*} **Tension)** \diamond

Aylor et al. [Astrophys.J. 874 (2019)]

Ruchika (INFN, Roma)

Low-redshift estimates of the absolute scale o

Credit: Rlake & Moorfield April 25, 2023

11

Our Work : Model Independent Way (at low redshifts)

Credit: Blake & Moorfield

Observables Used

- Luminosity Distance measured $M = m - 5 \log_{10} \frac{D_L}{10 \text{ pc}}$
- Angular Diameter Distance
 inferred

 $D_L = (1+z)^2 D_A \mathop{\rm (Assuming \ CDDR}_{{
m is \ valid}}$

 2D BAO measurements from angular separation of pairs of galaxies measured

 $\theta_{BAO}(z)[^{\circ}]$

Data Used

Supernoave Type-la

Pantheon Sample which comprises 1048 SNe data points ranging in the redshift interval $0.01 \le z \le 2.3$

Transversal BAO data

11 θ _BAO (z) measurements obtained from public data of the Sloan Digital Sky Survey (SDSS), namely DR10, DR11, and DR12

Observables Used

 Luminosity Distance measured Supernoave Type-Ia . Pantheon Sample which comprises 1048 $M = m - 5 \log_{10} \frac{D_L}{10 \, \mathrm{pc}}$ SNe data points ranging in the redshift interval 0.01 < z < 2.3 Angular Diameter Distance inferred Transversal BAO data . $D_L = (1+z)^2 D_A \label{eq:DL}$ (Assuming CDDR 11 θ BAO (z) measurements obtained from public data of the Sloan Digital is valid) Sky Survey (SDSS), namely DR10, DR11, and DR12 2D BAO measurements from angular separation of pairs of galaxies $\theta_{\rm BAO}(z) =$ $(1+z)d_A(z)$ $\theta_{BAO}(z)[^{\circ}]$

Data Used

Observables Used

- Luminosity Distance measured $M = m - 5 \log_{10} \frac{D_L}{10 \text{ pc}}$
- Angular Diameter Distance
 inferred

 $D_L = (1+z)^2 D_A$ (Assuming CDDR is valid)

 2D BAO measurements from angular separation of pairs of galaxies measured

 $\theta_{BAO}(z)[^{\circ}]$

Data Used

Supernoave Type-la

Pantheon Sample which comprises 1048 SNe data points ranging in the redshift interval $0.01 \le z \le 2.3$

Transversal BAO data

 $(1+z)d_A$

11 θ _BAO (z) measurements obtained from public data of the Sloan Digital

Calculates absolute scale for BAO in model independent way

 $\theta_{\rm BAO}(z) =$

April 25, 2023 17

Ruchika (INFN, Roma)

Methodology \diamond

Gaussian Processes Constructed a Gaussian Function Have 11 data points

Methodology \diamond

Methodology	redshift interval $0.44 \le z \le 0.66$							
	Snel-a Data	BAO Data						
• Binning	Binned data into 1	.1 bins		Have 11 da	ata points			
	2D BAG			Type Ia SNe	Binning			
Example:	n-th bir	z_{bao}	$\theta_{\rm BAO}$	$[z_l^{\mathrm{a}}, z_r^{\mathrm{a}}]$	z_{SN} n_a			
	1	0.45	4.77 ± 0.17	[0.44007, 0.45173]	0.44730 10			
	2	0.47	5.02 ± 0.25	[0.4664, 0.47175]	0.46925 7			
 Gaussian Processes 	Constructed a Ga	ussian	Function	Have 11 da	ata points			
		30.0						
		27.	5 -		A			
Example:		25.0 E 22.1	5 -	and the second s				
		Ê 20.0						
		17.5	1					
		15.0	•		G.P. + Pantheon			
			0.00 0.25 0.	50 0.75 1.00 1.25 z	150 175			
Ruchika (INEN Roma)	l ow-redshift estimates of	the abso	olute scale o		April 25 202			

April 25, 2023

19

2D BAO			Type Ia SNe	Binning					GP			
n-th bin	$z_{\rm bao}$	θ_{BAO}	$[z_I^{\mathrm{B}}, z_r^{\mathrm{B}}]$	$z_{\rm SN}$	n_a	d_L (Mpc)	d_A (Mpc)	r_s (Mpc)	$z_{\rm GP} = z_{\rm bao}$	d_L (Mpc)	d_A (Mpc)	$r_s(Mpc)$
1	0.45	4.77 ± 0.17	[0.44007,0.45173]	0.44730	10	2304.34 ± 226.62	1096.00 ± 107.79	132.39 ± 13.85	0.45	2361.35 ± 45.00	1123.06 ± 21.40	135.57 ± 5.48
2	0.47	5.02 ± 0.25	[0.4664, 0.47175]	0.46925	7	2606.23 ± 300.43	1206.08 ± 139.03	155.20 ± 19.49	0.47	2486.40 ± 47.71	1150.42 ± 22.07	148.18 ± 7.91
3	0.49	4.99 ± 0.21	$\left[0.4804, 0.49737\right]$	0.48635	7	2581.83 ± 206.25	1162.93 ± 92.90	150.69 ± 13.61	0.49	2609.44 ± 50.48	1175.31 ± 22.74	152.52 ± 7.06
4	0.51	4.81 ± 0.17	[0.50718,0.51476]	0.51092	9	2753.04 ± 246.42	1207.42 ± 108.07	153.13 ± 14.74	0.51	2734.46 ± 53.36	1199.05 ± 23.40	152.01 ± 6.14
5	0.53	4.29 ± 0.30	[0.52851, 0.53433]	0.53235	4	2697.60 ± 203.15	1152.38 ± 86.78	132.04 ± 13.57	0.53	2861.86 ± 56.19	1222.48 ± 24.00	140.05 ± 10.17
6	0.55	4.25 ± 0.25	[0.54539, 0.55381]	0.55009	6	$2958.21 {\pm}\ 286.74$	1231.30 ± 119.35	141.56 ± 16.05	0.55	2996.40 ± 58.93	1246.98 ± 24.52	143.38 ± 8.89
7	0.57	4.59 ± 0.36	[0.565, 0.575]	-	0		-	-	0.57	3134.79 ± 61.61	1271.70 ± 24.99	159.95 ± 12.93
8	0.59	4.39 ± 0.33	[0.58575,0.59185]	0.58878	5	3304.57 ± 286.21	1307.13 ± 113.21	159.31 ± 18.27	0.59	3275.58 ± 64.78	1295.44 ± 25.62	157.83 ± 12.27
9	0.61	3.85 ± 0.31	[0.60825,0.61124]	0.61	4	3551.85 ± 328.27	1370.26 ± 126.64	148.43 ± 18.05	0.61	3409.94 ± 68.98	1315.44 ± 26.61	142.31 ± 11.81
10	0.63	3.90 ± 0.43	[0.62522,0.63222]	0.62964	6	3346.38 ± 340.44	1259.50 ± 128.13	140.10 ± 20.99	0.63	3536.01 ± 74.38	1330.64 ± 27.99	147.65 ± 16.57
11	0.65	3.55 ± 0.16	[0.64191,0.64864]	0.64509	5	3654.40 ± 307.19	1342.29 ± 112.83	137.20 ± 13.09	0.65	3651.93 ± 79.92	1341.31 ± 29.35	137.13 ± 6.87

Fable 2 Estimates of the absolute BAO scale from 2D BAO and SNe data for binning and GP methods. In this analysis, we assume the value of absolute magnitude as M_B =-19.214 ± 0.037 (SH0ES 2021_a) [42].

2D BAO			Type Ia SNe	Binning					GP			
n-th bin	$z_{\rm bao}$	θ_{BAO}	$\left[z_{I}^{a},z_{r}^{a}\right]$	$z_{\rm SN}$	n_{a}	d_L (Mpc)	d_A (Mpc)	r_s (Mpc)	$z_{\rm GP} = z_{\rm bao}$	d_L (Mpc)	d_A (Mpc)	$r_s(Mpc)$
1	0.45	4.77 ± 0.17	[0.44007, 0.45173]	0.44730	10	2304.34 ± 226.62	1096.00 ± 107.79	132.39 ± 13.85	0.45	2361.35 ± 45	.00 1123.06 ± 21.40	135.57 ± 5.48
2	0.47	5.02 ± 0.25	[0.4664, 0.47175]	0.46925	7	2606.23 ± 300.43	1206.08 ± 139.03	155.20 ± 19.49	0.47	2486.40 ± 47	.71 1150.42 ± 22.07	148.18 ± 7.91
3	0.49	4.99 ± 0.21	[0.4804 0.40797]	0.48625	7	05.01 02 L 006 05	1162.02 ± 02.00	180.00 ± 19.01	0.0	2000 44 ± 50	.48 1175.31 ± 22.74	152.52 ± 7.06
4	0.51	4.81 ± 0.17	[0.5071]						CMP	± 53	.36 1199.05 ± 23.40	152.01 ± 6.14
5	0.53	4.29 ± 0.30	[0.5285	200 - SI	HOES	5 2021 _a		•	Binning	± 56	.19 1222.48 ± 24.00	140.05 ± 10.17
6	0.55	4.25 ± 0.25	[0.5453					Ē	G.P.	± 58	.93 1246.98 ± 24.52	143.38 ± 8.89
7	0.57	4.59 ± 0.36	[0.56	180 -		-		т		± 61	.61 1271.70 ± 24.99	159.95 ± 12.93
8	0.59	4.39 ± 0.33	[0.5857 2			- T	Ī	† _{т -}		± 64	.78 1295.44 ± 25.62	157.83 ± 12.27
9	0.61	3.85 ± 0.31	[0.6082	160 -		• <u>†</u> †	т	• <u> </u> † .		± 68	.98 1315.44 ± 26.61	142.31 ± 11.81
10	0.63	3.90 ± 0.43	[0.6252]	_		┯╇┇┇	Ŧ	<u>↓ ↓ ↓</u>	-	± 74	.38 1330.64 ± 27.99	147.65 ± 16.57
11	0.65	3.55 ± 0.16	[0.6419	L40 -			1 I -	* † † i	•	± 79	.92 1341.31 ± 29.35	137.13 ± 6.87
				120 -		Ī	Ĭ		t			
				0.4		0.5	z	0.6	0.	7		

Fable 2 Estimates of the absolute BAO scale from 2D BAO and SNe data for binning and GP methods. In this analysis, we usume the value of absolute magnitude as M_B =-19.214 \pm 0.037 (SH0ES 2021_a) [42].

Ruchika (INFN, Roma)

Low-redshift estimates of the absolute scale o

April 25, 2023 21

		Bin	ning	G.P.			
Measurement	$H_0(\mathrm{Km/s/Mpc})$	$r_s(Mpc)$	$\eta = \frac{r_s}{r_d} \qquad \sigma$	$r_s(Mpc)$	η	σ	
Planck CMB + Lensing	67.36 ± 0.54	159.44 ± 17.88	1.08 0.7	161.59 ± 10.96	1.1	1.32	
ACT + WMAP CMB	67.6 ± 1.1	158.70 ± 17.93	1.08 0.65	160.84 ± 11.13	1.09	1.23	
BOSS DR12 + BBN	68.5 ± 2.2	156.53 ± 18.21	1.06 0.52	158.64 ± 11.83	1.08	0.98	
SH0ES 2021	73.2 ± 1.3	146.82 ± 16.76	0.99 0.02	148.80 ± 10.35	1.01	0.16	
Masers	73.9 ± 3.0	145.41 ± 17.29	0.99 0.10	147.37 ± 11.57	1.00	0.02	
SH0ES 2019	74.0 ± 1.4	145.14 ± 16.44	0.99 0.12	147.10 ± 10.25	1.00	0.00	
SH0ES 2021_a	74.1 ± 1.3	145.01 ± 16.39	0.98 0.13	146.96 ± 10.19	0.99	0.013	
Tully Fisher	76.0 ± 2.6	141.45 ± 16.45	0.96 0.34	143.35 ± 10.80	0.97	0.35	

		Bin	ning		G.P.	j	
Measurement	$H_0(\mathrm{Km/s/Mpc})$	$r_s(Mpc)$	$\eta = \frac{r_s}{r_d}$	σ	$r_s(Mpc)$ η σ	j	
Planck CMB + Lensing	67.36 ± 0.54	159.44 ± 17.88	1.08	0.7	161.59 ± 10.96 1.1 1.32	j	
ACT + WMAP CMB	67.6 ± 1.1	158.70 ± 17.93	1.08	0.65	160.84 ± 11.13 1.09 1.23		
BOSS DR12 + BBN	68.5 ± 2.2	156.53 ± 18.21	240 -		NH NH NH		
SH0ES 2021	73.2 ± 1.3	146.82 ± 16.76			- CMB rd	Ŧ	H₀ MASERS
Masers	73.9 ± 3.0	145.41 ± 17.29	220 -		H_0 Planck CMB + Lensing H_0 ACT + WMAP CMB	2 Ē	Ho SHOES 2019 Ho SHOES 2021,
SH0ES 2019	74.0 ± 1.4	145.14 ± 16.44	200 -		H₀ BOSS DR12 + BBN	Ŧ	H₀ Tully Fisher
SH0ES 2021_a	74.1 ± 1.3	145.01 ± 16.39	ି ଜୁ 180 -		↓ H ₀ SH0ES 2021		
Tully Fisher	76.0 ± 2.6	141.45 ± 16.45	2		T T		
			160 -		₩ +	Ī	T
			140 -			╈	₩
						1	
			120 -	6	68 70 72		74 76
					H_0 [km s ⁻¹ Mpc	-1]	

Results : Consistency with \land **CDM** \diamond

Conclusion \diamond

- Results from both the methods agree with each other and with the CMB estimate within 1σ .
- To note : Compatible because of high error estimates on r_s.
- **Motivation:** Can test the robustness of the ACDM model and standard assumptions taken at high-redshift universe in future.

Conclusion \diamond

- Results from both the methods agree with each other and with the CMB estimate within 1σ .
- To note : Compatible because of high error estimates on r_s.
- **Motivation:** Can test the robustness of the ACDM model and standard assumptions taken at high-redshift universe in future.

And, the Future is DESI, Euclid, J-PAS...

Grazie Mille!

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Theoretical Model explaining CMB Observations \diamond

Concordance ACDM model (P.Ade et al. A& A 2018):

- Mainly 6 parameters
- $\Omega_b h^2$ fractional density of baryons
- $\Omega_c h^2$ fractional density of CDM
- H₀-Hubble Parameter
- *n_s*-scalar spectrum power law index
- au- the optical depth due to reionisation
- ln(10¹⁰A_s)-amplitude of primodial power spectra

