

Nonlinear modelling and constraints from dark matter decays and implications on S_8 tension

Jozef Bucko

Institute for Computational Science

University of Zurich

Together with: Aurel Schneider, Sambit K. Giri, Fabian Hervas Peters,...

University of

Institute for Computational Science

One-body (late-time) decays of dark matter

Bucko et al. 2023a

 \longrightarrow suppression of matter P(k)

One-body decays of dark matter

- Cosmic shear (KiDS-1000) and CMB (Planck 2018)
- Nonlinear alignment, baryonic feedback (<u>BCemu</u>)

Takeaway:

- One-body decays strongly constraint by *Planck* data (ISW effect), not that much by weak lensing from KiDS
- Constraints in agreement with ΛCDM
- Strongest constraints up-to-date for decay rate Γ and fraction of decaying dark matter f
- One-body decays cannot explain S_8 tension

Two-body (late-time) decays of dark matter Bucko et al. 2023b (in prep.)

Effects on nonlinear matter P(k) from *N*-body simulations

Model parameters

S₈

Institute for Computational Science

Two-body decays of dark matter

When combined with Planck 2018 TTTEEE

Two-body decays of dark matter

Takeaway:

- Emulator of nonlinear effects built
- Two-body decays can be strongly constrained by weak lensing from *KiDS*
- Constraints in agreement with ΛCDM
- Strongest constraints up-to-date for decay rate Γ and velocity kick magnitude v_k
- Two-body decays cannot naturally explain S_8 tension

University of Zurich

Institute for Computational Science

One & two-body decays of dark matter

- **DMemu** a package for fast emulation of late-time dark matter decays • effects of matter P(k)
- For different dark matter models and S_8 tension, see also Hervas Peters et al. 2023 (in prep.)

Two-body decaying dark matter

Contributing

Changelog

C Edit on GitHub

DMemu

DMemu is a python package implementing nonlinear response of different dark matter extensions of ΛCDM model. Using a fitting function or an emulator, a nonlinear ΛCDM matter power spectrum is modified to accommodate a nonlinear matter power spectrum of a specific ΛCDM extension as resulting from gravity-only N-body simulations. Currently included emulators are one-body decaying dark matter (OBDemu) and two-body decaying dark matter (TBDemu).

Contents

Installation

Tests

www.dmemu.readthedocs.io

Thank you...

Jozef Bucko

...and enjoy the conference dinner!

DALL-E: "cosmology barbecue party"

Jozef Bucko

Two-body decays -

N-body simulations of warm DM decays compared to past N-body implementation and to predictions of Boltzmann code

University of Zurich^{uzH}

Institute for Computational Science

Two-body late-time decays of dark matter: effects on observables

