Constraining cosmological models with the Effective Field Theory of Large-Scale Structures

Théo SIMON

theo.simon@umontpellier.fr

Based on arXiv:2210.14931

TS, Pierre Zhang and Vivian Poulin

[Cosmological inference from the EFTofLSS: the eBOSS QSO full-shape analysis]

Main motivations

The galaxy power spectrum in the framework of the EFTofLSS:

$$P_g(k,\mu) \simeq [b_1 + f\mu^2]^2 P_m(k) = Z_1(\mu)^2 P_m(k)$$

We go from 1 to 10 free parameters

$$\begin{split} & P_g(k,\mu) = Z_1(\mu)^2 P_{11}(k) + 2Z_1(\mu) P_{11}(k) \left(c_{\text{ct}} \frac{k^2}{k_{\text{M}}^2} + c_{r,1} \mu^2 \frac{k^2}{k_{\text{R}}^2} + c_{r,2} \mu^4 \frac{k^2}{k_{\text{R}}^2} \right) \\ & + 2 \int \frac{d^3q}{(2\pi)^3} \, Z_2(\mathbf{q}, \mathbf{k} - \mathbf{q}, \mu)^2 P_{11}(|\mathbf{k} - \mathbf{q}|) P_{11}(q) + 6Z_1(\mu) P_{11}(k) \int \frac{d^3q}{(2\pi)^3} \, Z_3(\mathbf{q}, -\mathbf{q}, \mathbf{k}, \mu) P_{11}(q) \\ & + \frac{1}{\bar{n}_g} \left(c_{\epsilon,0} + c_{\epsilon}^{\text{mono}} \frac{k^2}{k_{\text{M}}^2} + 3c_{\epsilon}^{\text{quad}} \left(\mu^2 - \frac{1}{3} \right) \frac{k^2}{k_{\text{M}}^2} \right), \end{split}$$

Carrasco++ [arXiv:1206.2926]; Baumann++ [arXiv:1004.2488]

Senatore [arXiv:1406.7843]; Perko++ [arXiv:1610.09321]

See also TS++

[arXiv:2208.05929]

See Emiliano Sefusatti's lecture

Main motivations

The galaxy power spectrum in the framework of the EFTofLSS:

$$P_g(k,\mu) \simeq \left[b_1 + f\mu^2\right]^2 P_m(k) = Z_1(\mu)^2 P_m(k)$$
 We go from 1 to 10 free parameters

$$\begin{split} &P_g(k,\mu) = Z_1(\mu) P_{11}(k) + 2Z_1(\mu) P_{11}(k) \left(c_{\text{ct}} \frac{k^2}{k_{\text{M}}^2} + c_{r,1} \mu^2 \frac{k^2}{k_{\text{R}}^2} + c_{r,2} \mu^4 \frac{k^2}{k_{\text{R}}^2} \right) \\ &+ 2 \int \frac{d^3q}{(2\pi)^3} \, Z_2(q,\mathbf{k}-q,\mu) P_{11}(|\mathbf{k}-q|) P_{11}(q) + 6Z_1(\mu) P_{11}(\mathbf{k}) \int \frac{d^3q}{(2\pi)^3} \, Z_3(q,-q,\mathbf{k},\mu) P_{11}(q) \\ &+ \frac{1}{\bar{n}_g} \left(c_{\epsilon,0} + c_{\epsilon}^{\text{mono}} \frac{k^2}{k_{\text{M}}^2} + 3c_{\epsilon}^{\text{quad}} \left(\mu^2 - \frac{1}{3} \right) \frac{k^2}{k_{\text{M}}^2} \right), \end{split}$$

Carrasco++ [arXiv:1206.2926]; Baumann++ [arXiv:1004.2488]

Senatore [arXiv:1406.7843]; Perko++ [arXiv:1610.09321]

See also TS++

[arXiv:2208.05929]

 $P_g(k,\mu)$ can be determined directly from $P_{11}(k)=P_m^{\mathrm{lin}}(k)$

See Emiliano Sefusatti's lecture

Main motivations

The galaxy power spectrum in the framework of the EFTofLSS:

$$P_g(k,\mu) \simeq \left[b_1 + f\mu^2\right]^2 P_m(k) = Z_1(\mu)^2 P_m(k)$$
 We go from 1 to 10 free parameters

$$\begin{split} P_g(k,\mu) = & Z_1(\mu)^2 P_{11}(k) + 2Z_1(\mu) P_{11}(k) \left(c_{\text{ct}} \frac{k^2}{l_{\text{M}}^2} + c_{r,1} \mu^2 \frac{k^2}{k_{\text{R}}^2} + c_{r,2} \mu^4 \frac{k^2}{k_{\text{R}}^2} \right) \\ & + 2 \int \frac{d^3q}{(2\pi)^3} \left(Z_2(q, \mathbf{k} - q, \mu)^2 P_{11}(|\mathbf{k} - q|) P_{11}(q) + 6Z_1(\mu) P_{11}(k) \int \frac{d^3q}{(2\pi)^3} \left(Z_3(q) - q, \mathbf{k}, \mu \right) P_{11}(q) \right) \\ & + \frac{1}{\bar{n}_g} \left(c_{\epsilon,0} + c_{\epsilon}^{\text{mono}} \frac{k^2}{k_{\text{M}}^2} + 3c_{\epsilon}^{\text{quad}} \left(\mu^2 - \frac{1}{3} \right) \frac{k^2}{k_{\text{M}}^2} \right), \end{split}$$

Carrasco++ [arXiv:1206.2926]; Baumann++ [arXiv:1004.2488] Senatore [arXiv:1406.7843]; Perko++ [arXiv:1610.09321] See also TS++ [arXiv:2208.05929]

10 parameters

4 parameters b_i (i=1,2,3,4) to describe the galaxy bias which arises from the one-loop contributions

3 parameters corresponding to counterterms (c_{ct} linear combination of a higher derivative bias and the dark matter sound speed, while $c_{r,1}$ and $c_{r,2}$ are the redshift-space counterterms)

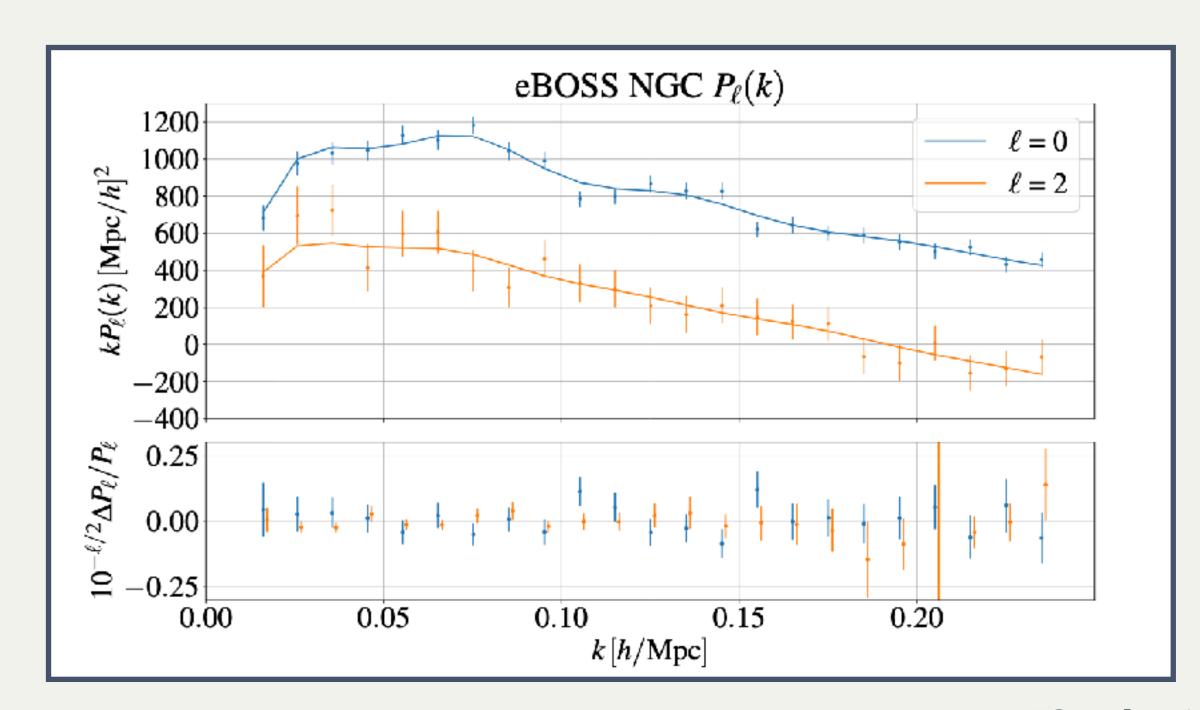
3 parameters which describe stochastic terms

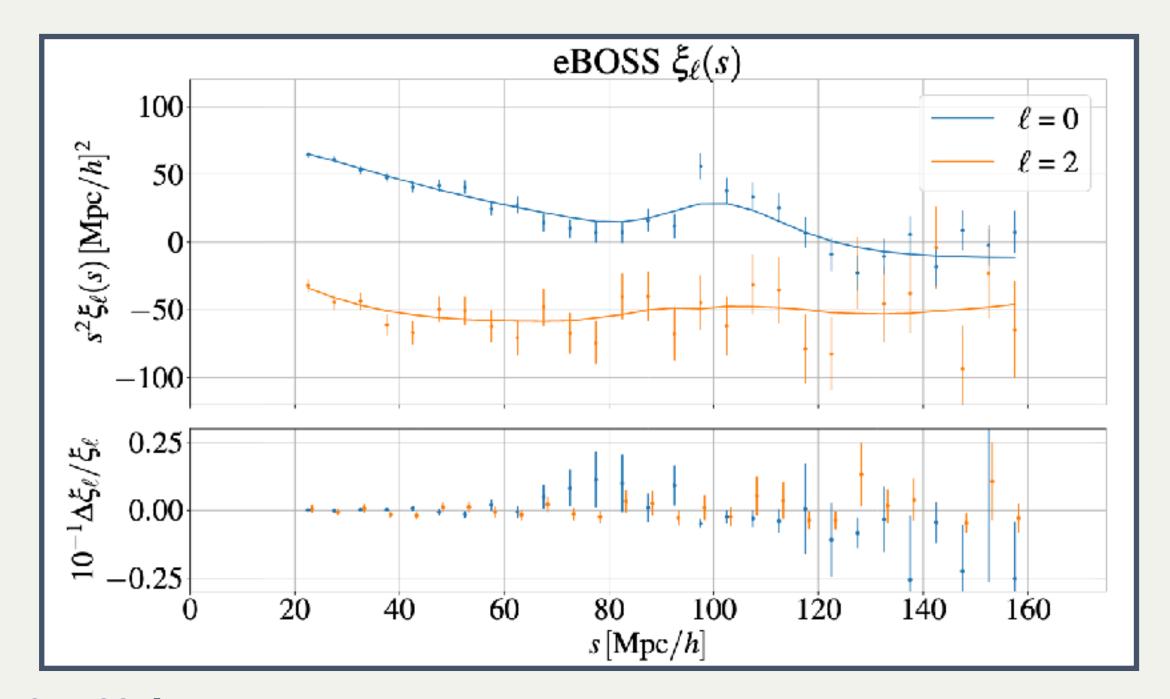
See Emiliano Sefusatti's lecture

EFTofLSS applied to eBOSS QSO data

- 343 708 quasars selected in the redshift range 0.8 < z < 2.2
- $z_{\rm eff} = 1.5$
- 2 skycuts: NGC and SGC

eBOSS Collaboration [arXiv:2007.08991]





TS++ [arXiv:2210.14931]

Determination of the cut-off scale $k_{\rm max}$ of the one-loop prediction

The next-to-next-to-leading order (NNLO) terms

At one-loop order, the galaxy power spectrum reads:

$$\begin{split} P_g(k,\mu) &= Z_1(\mu)^2 P_{11}(k) + 2 Z_1(\mu) P_{11}(k) \left(c_{\text{ct}} \frac{k^2}{k_{\text{M}}^2} + c_{r,1} \mu^2 \frac{k^2}{k_{\text{M}}^2} + c_{r,2} \mu^4 \frac{k^2}{k_{\text{M}}^2} \right) \\ &+ 2 \int \frac{d^3 q}{(2\pi)^3} \ Z_2(\mathbf{q}, \mathbf{k} - \mathbf{q}, \mu)^2 P_{11}(|\mathbf{k} - \mathbf{q}|) P_{11}(q) + 6 Z_1(\mu) P_{11}(k) \int \frac{d^3 q}{(2\pi)^3} \ Z_3(\mathbf{q}, -\mathbf{q}, \mathbf{k}, \mu) P_{11}(q) \\ &+ \frac{1}{\bar{n}_g} \left(c_{\epsilon,0} + c_{\epsilon,1} \frac{k^2}{k_{\text{M}}^2} + c_{\epsilon,2} f \mu^2 \frac{k^2}{k_{\text{M}}^2} \right), \end{split}$$

One can add the **NNLO terms** (*i.e.*, the dominant two-loop terms):

$$P_{\text{NNLO}}(k,\mu) = \frac{1}{4}b_1 \left(c_{r,4}b_1 + c_{r,6}\mu^2 \right) \mu^4 \frac{k^4}{k_{\text{R}}^4} P_{11}(k)$$

Zhang++ [arXiv:2110.07539]

If the contribution of $P_{\mathrm{NNLO}}(k,\mu)$ becomes **too large,** the one-loop prediction is **not accurate enough** \rightarrow this determines the **cut-off scale** k_{max} of the prediction

Determination of the cut-off scale $k_{\rm max}$ of the one-loop prediction

The next-to-next-to-leading order (NNLO) terms

At one-loop order, the galaxy power spectrum reads:

$$\begin{split} P_g(k,\mu) &= Z_1(\mu)^2 P_{11}(k) + 2 Z_1(\mu) P_{11}(k) \left(c_{\text{ct}} \frac{k^2}{k_{\text{M}}^2} + c_{r,1} \mu^2 \frac{k^2}{k_{\text{M}}^2} + c_{r,2} \mu^4 \frac{k^2}{k_{\text{M}}^2} \right) \\ &+ 2 \int \frac{d^3q}{(2\pi)^3} \; Z_2(q,\mathbf{k}-q,\mu)^2 P_{11}(|\mathbf{k}-q|) P_{11}(q) + 6 Z_1(\mu) P_{11}(k) \int \frac{d^3q}{(2\pi)^3} \; Z_3(q,-q,\mathbf{k},\mu) P_{11}(q) \\ &+ \frac{1}{\bar{n}_g} \left(c_{\epsilon,0} + c_{\epsilon,1} \frac{k^2}{k_{\text{M}}^2} + c_{\epsilon,2} f \mu^2 \frac{k^2}{k_{\text{M}}^2} \right), \end{split}$$

One can add the **NNLO terms** (*i.e.*, the dominant two-loop terms):

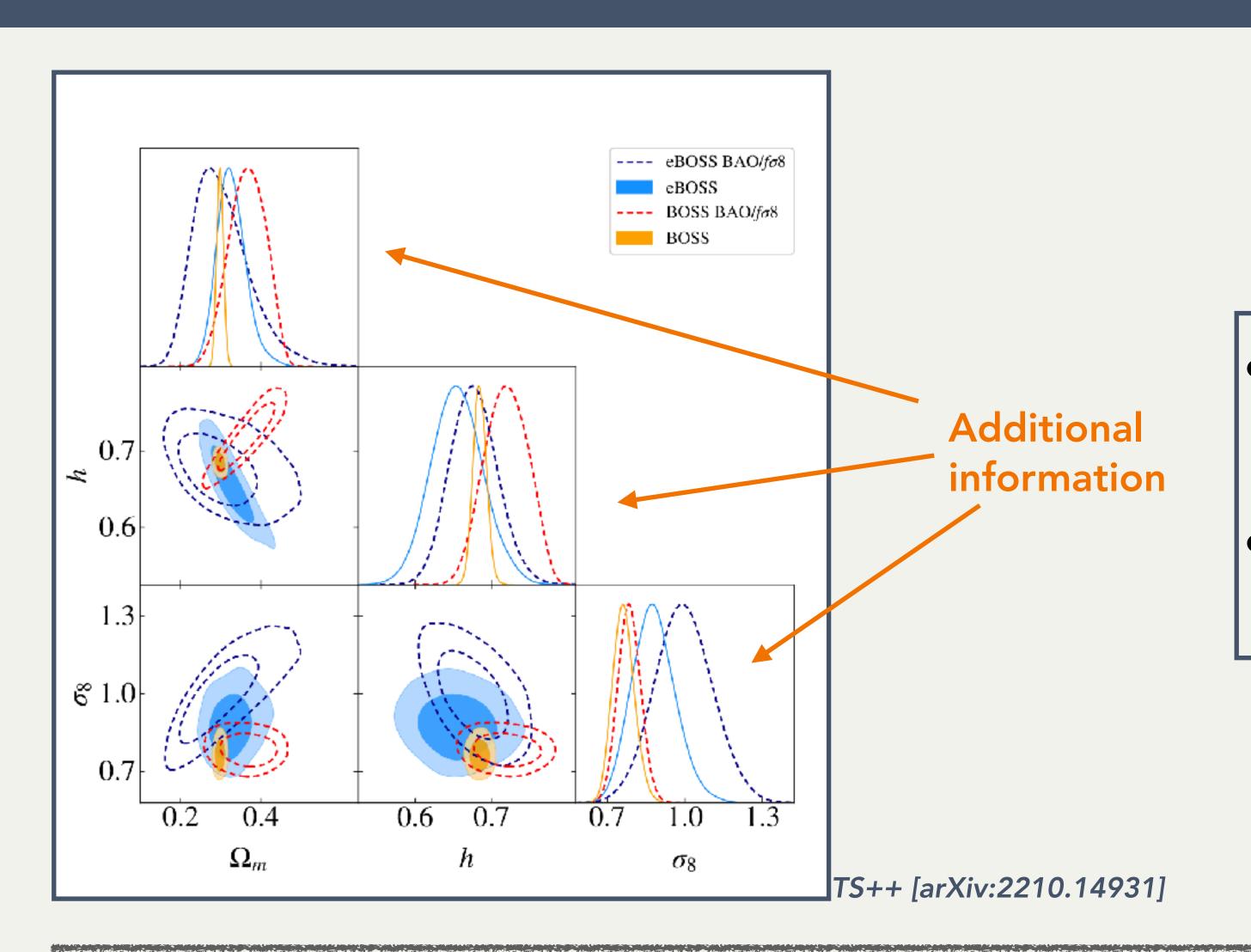
$$P_{\text{NNLO}}(k,\mu) = \frac{1}{4}b_1\left(c_{r,4}b_1 + c_{r,6}\mu^2\right)\mu^4\frac{k^4}{k_{\text{R}}^4}P_{11}(k)$$

Zhang++ [arXiv:2110.07539]

2 new EFT terms

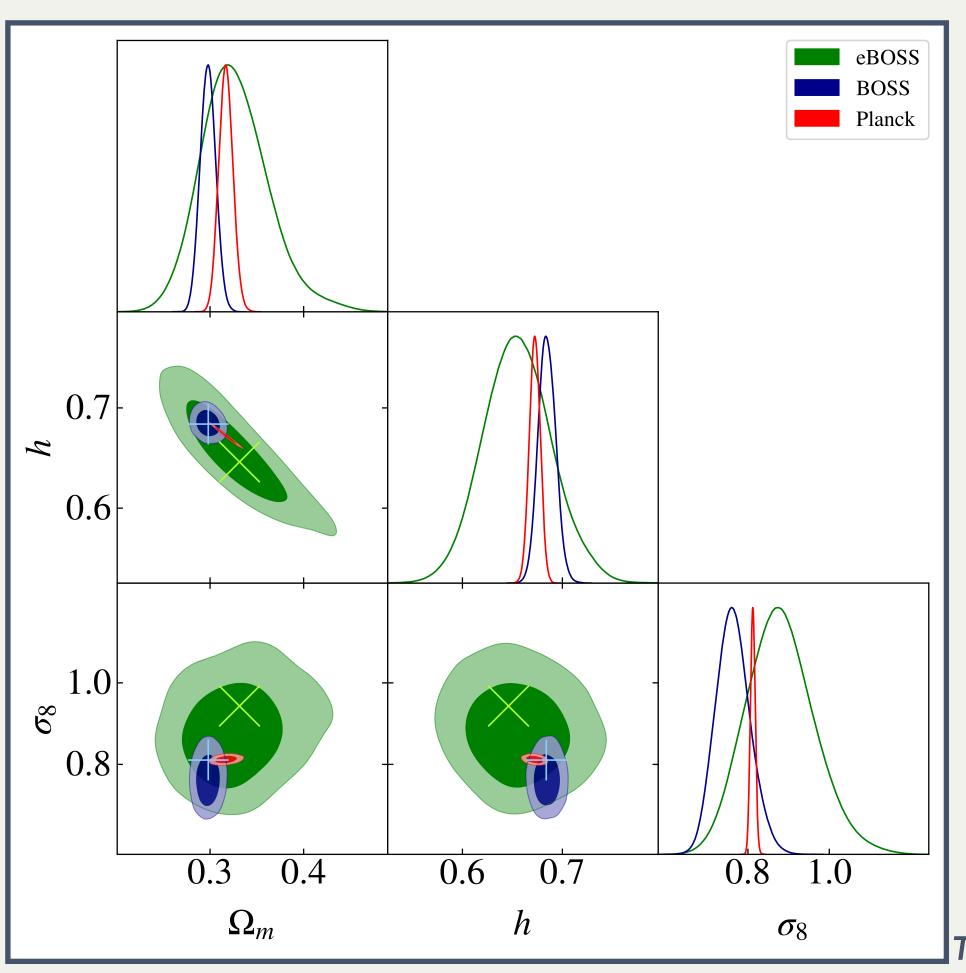
If the contribution of $P_{\mathrm{NNLO}}(k,\mu)$ becomes **too large**, the one-loop prediction is **not accurate enough** \rightarrow this determines the **cut-off scale** k_{max} of the prediction

BAO/ $f\sigma_8$ vs EFTofLSS



- For **eBOSS**, the error bars of Ω_m and σ_8 are reduced by a factor ~ 2.0 and ~ 1.3
- For **BOSS**, the error bars of Ω_m and h are reduced by a factor ~ 5.4 and ~ 3.2

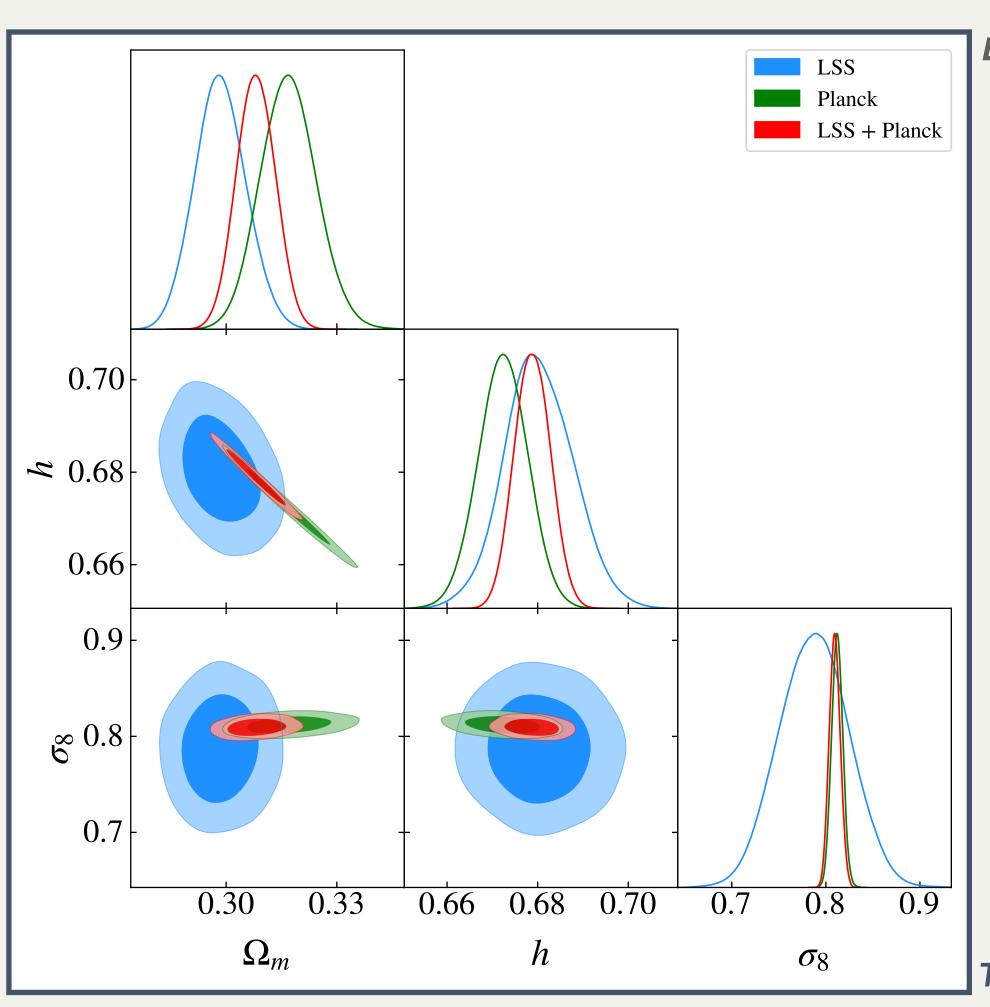
LSS data vs Planck



- eBOSS, BOSS and Planck are consistent at $\lesssim 1.8\sigma$ on all cosmological parameters
- h is $\sim 1\sigma$ lower for eBOSS than for BOSS, while σ_8 is $\sim 1.5\sigma$ higher
- ullet The h and σ_8 Planck values are in-between those of BOSS and eBOSS
- → there is no tension between Planck and BOSS/eBOSS

TS++ [arXiv:2210.14931]

LSS data combined with Planck



LSS: eBOSS + BOSS + ext-BAO + Pantheon

- Compared to Planck alone, the constraints on Ω_m and h are improved by $\sim 30\,\%$
- ullet σ_8 and A_s are not significantly impacted

TS++ [arXiv:2210.14931]

Extensions to \LambdaCDM: total neutrino mass M_{ν}

- ullet The LSS constraint derived in this work is only $\sim 10\,\%$ weaker than the Planck constraint $(\sum m_{\nu} = 0.241eV)$
- ullet The EFT analysis **significantly improves the constraints** on $\sum m_
 u$ (by a factor of ~ 18) over the conventional BAO/ $f\sigma_8$ analysis ($\sum m_{\nu} = 4.84 eV$)

Palanque-Delabrouille++ [arXiv:1911.09073]

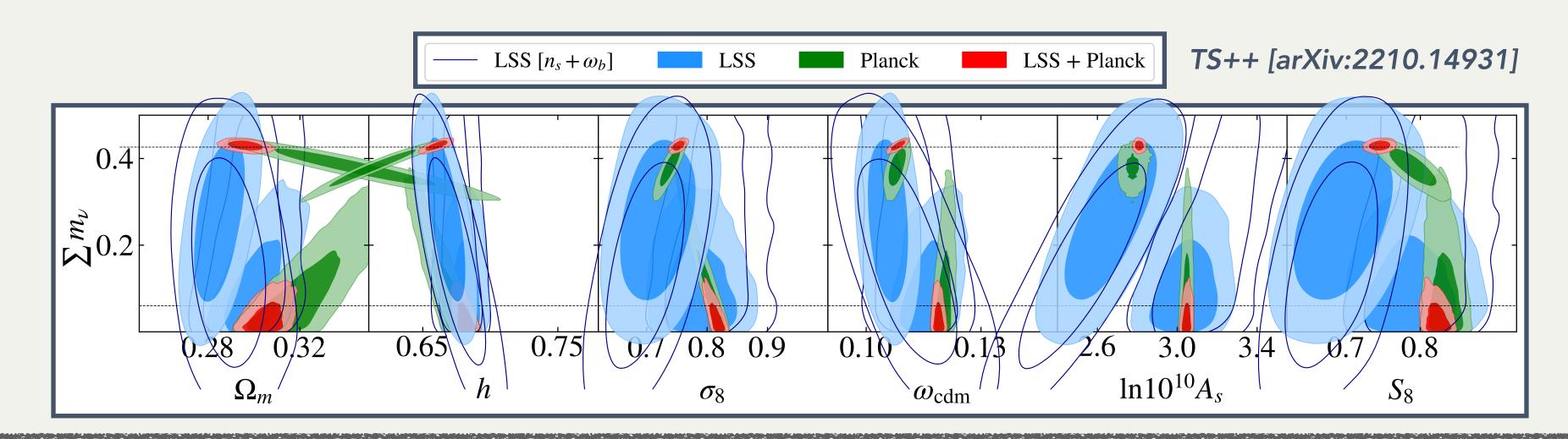
• This analysis disfavors the inverse hierarchy at $\sim 2.2\sigma$ & is competitive to the Lyman- α constraints

LSS:

 $\sum m_{\nu} < 0.274eV$

LSS+Planck:

 $\sum m_{\nu} < 0.093 eV$



Conclusions

- EFTofLSS allows to highlight that **there is no tension** between current BOSS/eBOSS data and Planck data (but not in tension with weak lensing neither)
- Data are consistent with Λ CDM at $\lesssim 1.3\sigma \rightarrow$ Strong constraints on canonical extensions to Λ CDM e.g. LSS+Planck: $\sum m_{\nu} < 0.093e$ V
- ullet EFTofLSS provides **interesting constraints on non-trivial extensions** of the Λ CDM model:
 - → see [TS et al. '22, arXiv:2203.07440] for **Decaying Cold Dark Matter**
 - \rightarrow see [TS et al. '22, arXiv:2208.05930] for Early Dark Energy

Thanks for your attention

Théo SIMON

theo.simon@umontpellier.fr

Based on arXiv:2210.14931

TS, Pierre Zhang and Vivian Poulin

[Cosmological inference from the EFTofLSS: the eBOSS QSO full-shape analysis]

Application to BOSS data

Multipoles of the galaxy power spectrum, obtained through a **Legendre** polynomials (\mathcal{L}_{ℓ}) decomposition:

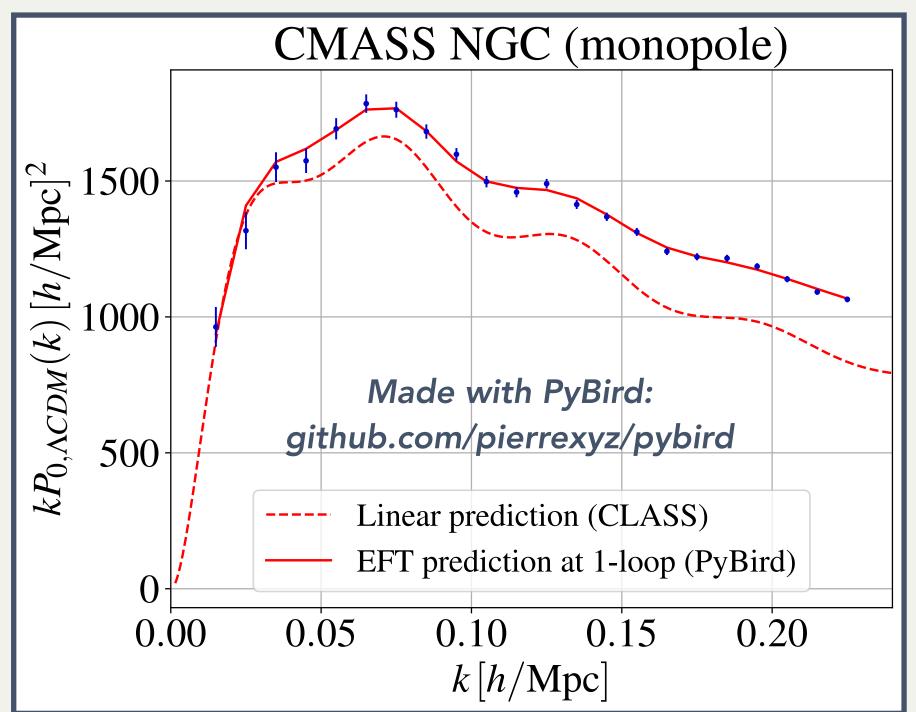
$$P_{g}(z,k,\mu) = \sum_{\ell \text{ even}} \mathscr{L}_{\ell}(\mu) P_{\ell}(z,k)$$

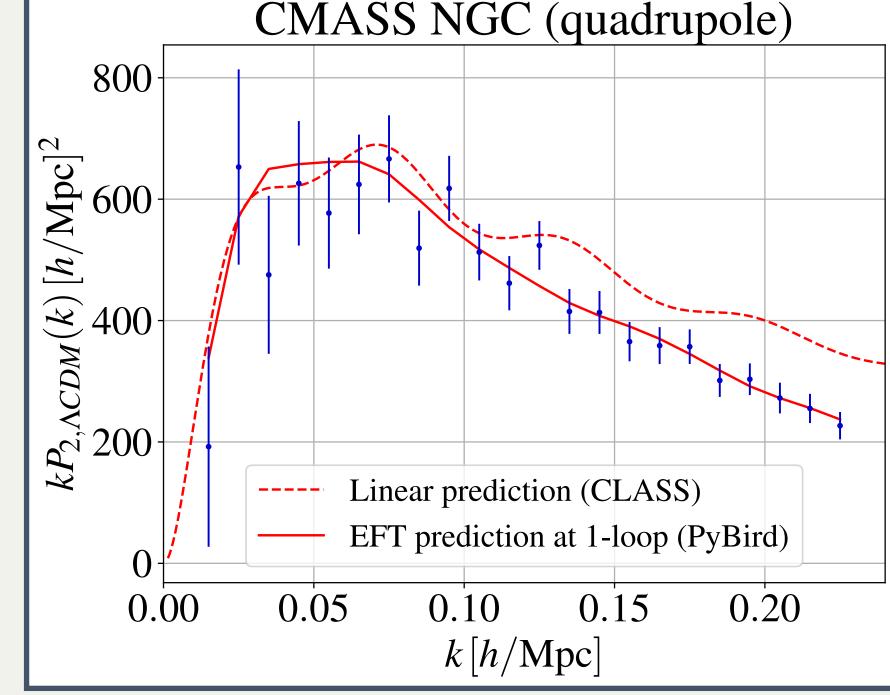
 \rightarrow the two main contributions to $P_g(z,k,\mu)$ are the **monopole** ($\ell=0$) and the **quadrupole** ($\ell=2$)

Galaxies selected in two redshift ranges:

- \rightarrow LOWZ (SGC/NGC): $0.2 < z < 0.43 (z_{\text{eff}} = 0.32)$
- \rightarrow CMASS (SGC/NGC): 0.43 < z < 0.7 ($z_{\text{eff}} = 0.57$)

BOSS Collaboration [arXiv:1607.03155]





Application to BOSS data

Multipoles of the galaxy power spectrum, obtained through a **Legendre** polynomials (\mathcal{L}_{ℓ}) decomposition:

$$P_g(z,k,\mu) = \sum_{\ell \text{ even}} \mathcal{L}_\ell(\mu) P_\ell(z,k)$$

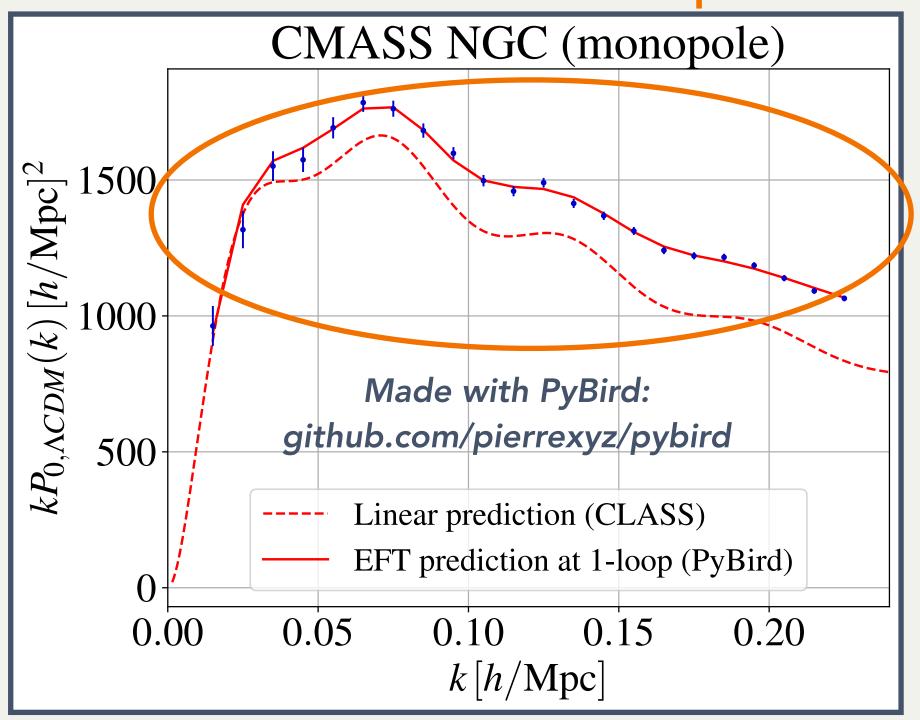
 \rightarrow the two main contributions to $P_g(z,k,\mu)$ are the **monopole** ($\ell=0$) and the **quadrupole** ($\ell=2$)

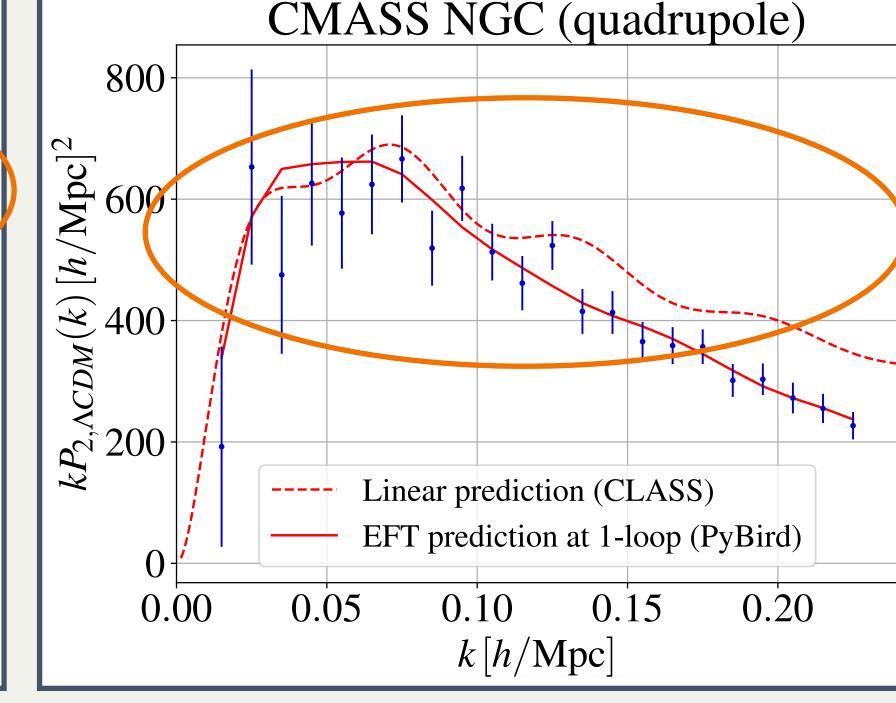
Galaxies selected in two redshift ranges:

- \rightarrow LOWZ (SGC/NGC): $0.2 < z < 0.43 (z_{\text{eff}} = 0.32)$
- \rightarrow CMASS (SGC/NGC): 0.43 < z < 0.7 ($z_{\text{eff}} = 0.57$)

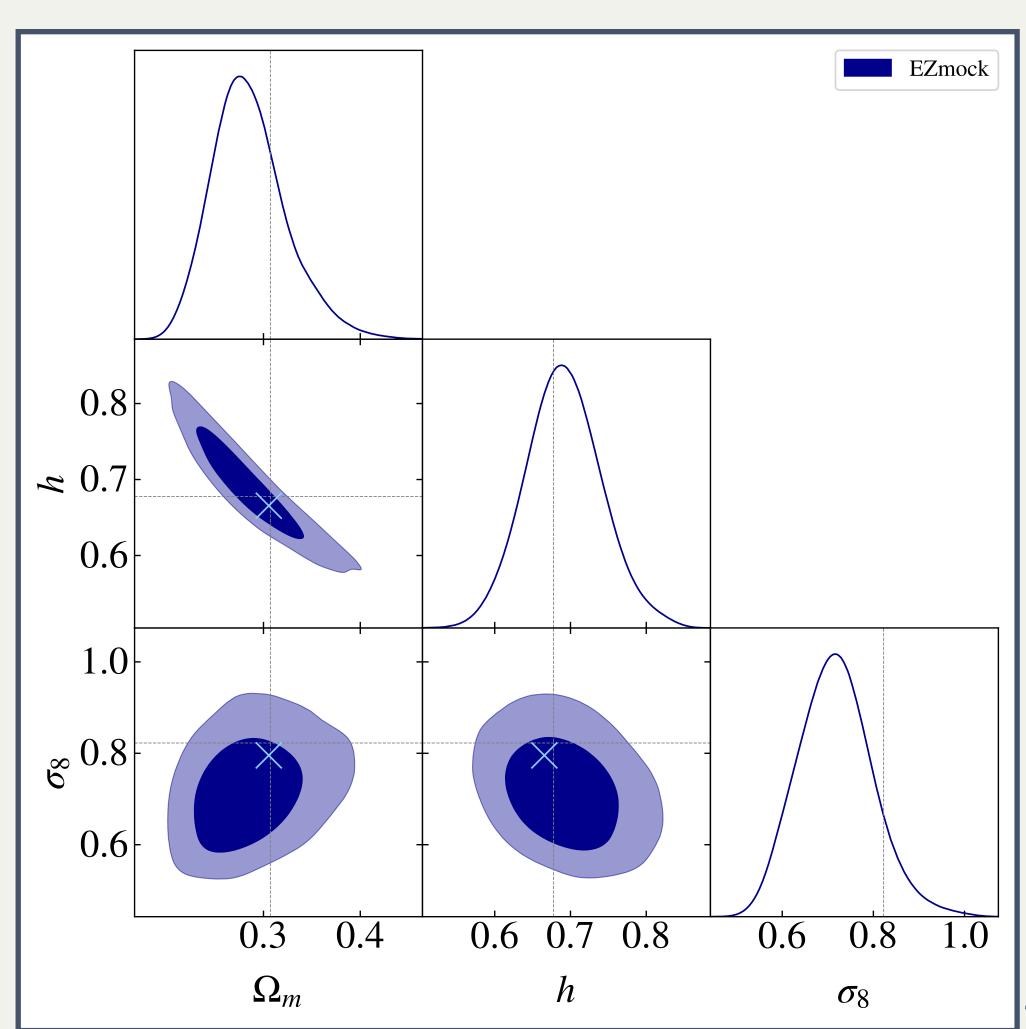
BOSS Collaboration [arXiv:1607.03155]

Improvement in precision!





Determination of the cut-off scale k_{\max} of the one-loop prediction



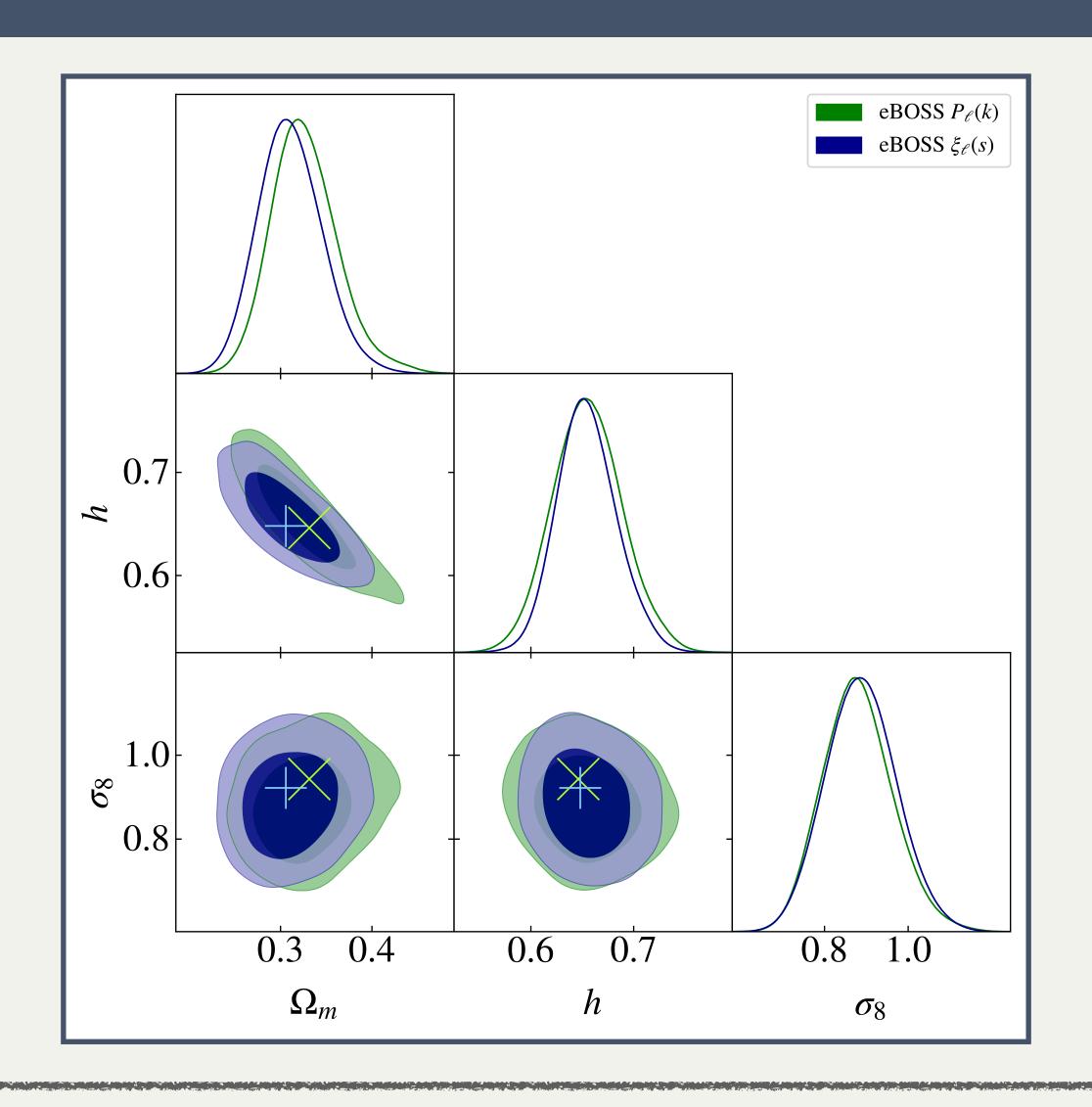
EZmock: mocks that are built to simulate eBOSS observational characteristics

Chuang++ [arXiv:1409.1124]

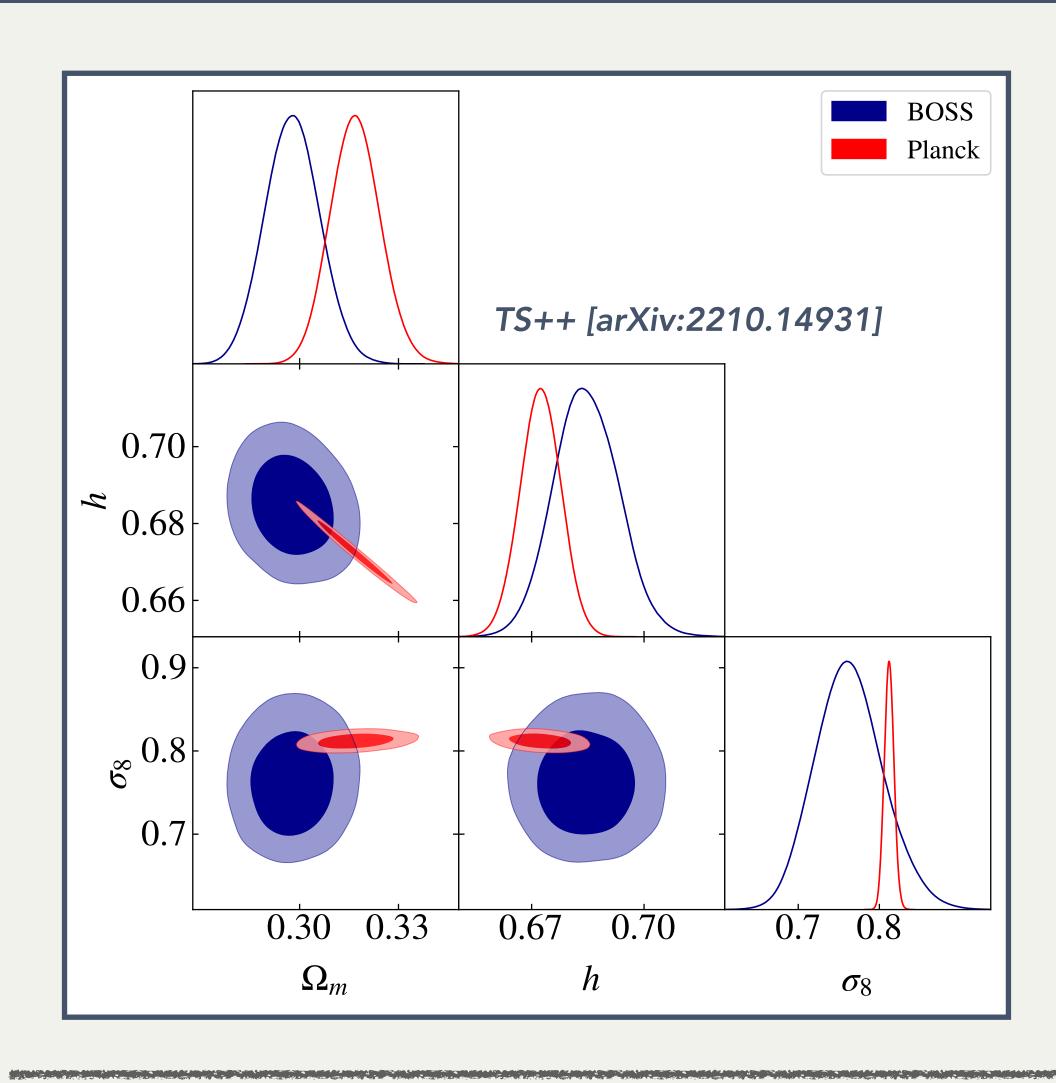
• Up to $k_{\rm max} = 0.24 h\,{\rm Mpc^{-1}}$, the best-fit values of the cosmological parameters are shifted with respect to the truth of the simulations by $\lesssim 1/3 \cdot \sigma$

TS++ [arXiv:2210.14931]

eBOSS $P_{\mathcal{C}}(k)$ vs eBOSS $\xi_{\mathcal{C}}(k)$



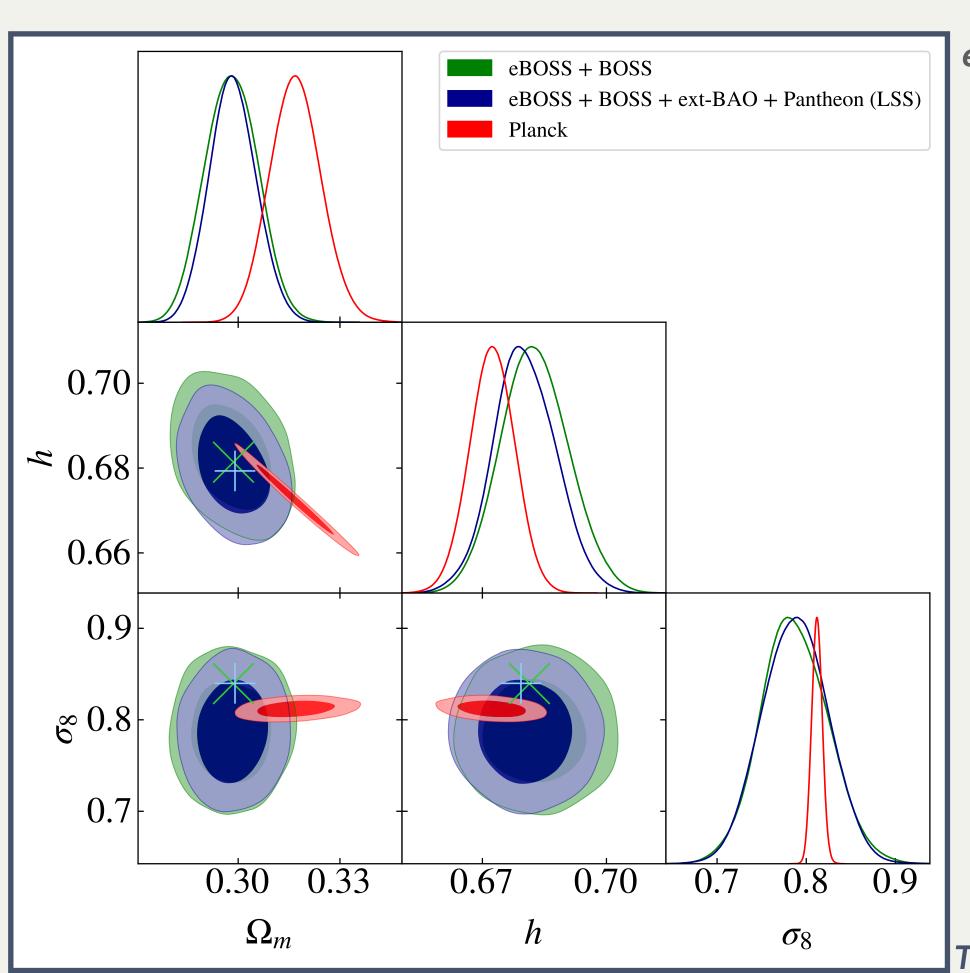
Application to BOSS data



The EFTofLSS analysis of BOSS data allows to determine Ω_m and h with a **precision of only** $10\,\%$ and $60\,\%$ lower than Planck

See also D'Amico++ [arXiv:1909.05271]; Philcox++ [arXiv:2002.04035]

LSS data vs Planck

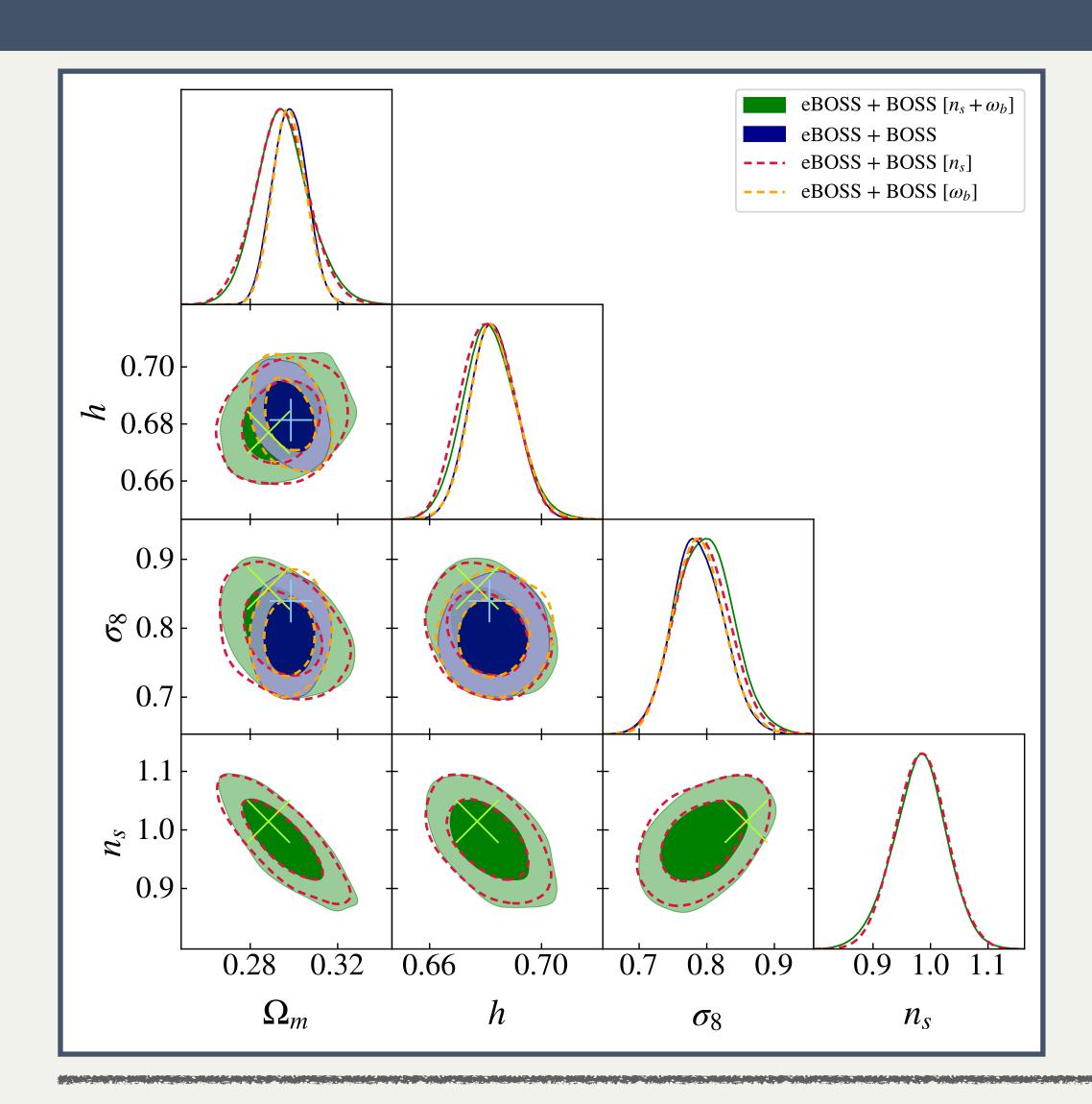


ext-BAO: 6dF & MGS (SDSS) data

- The combination of eBOSS + BOSS allows to determine Ω_m and h at a precision similar to Planck
- The combination of LSS data remains consistent with Planck → we can combine them!

TS++ [arXiv:2210.14931]

Variation of n_s and ω_b



- ullet We impose a uninformative large flat prior on $n_{\!\scriptscriptstyle S}$, while we impose a BBN Gaussian prior on ω_b
- The variation of ω_b within the BBN prior has a negligible impact on the cosmological results: we have a relative shift of $\lesssim 0.04\sigma$
- The variation of n_s within a uninformative large flat prior leads to a relative shift $\lesssim 0.4\sigma$

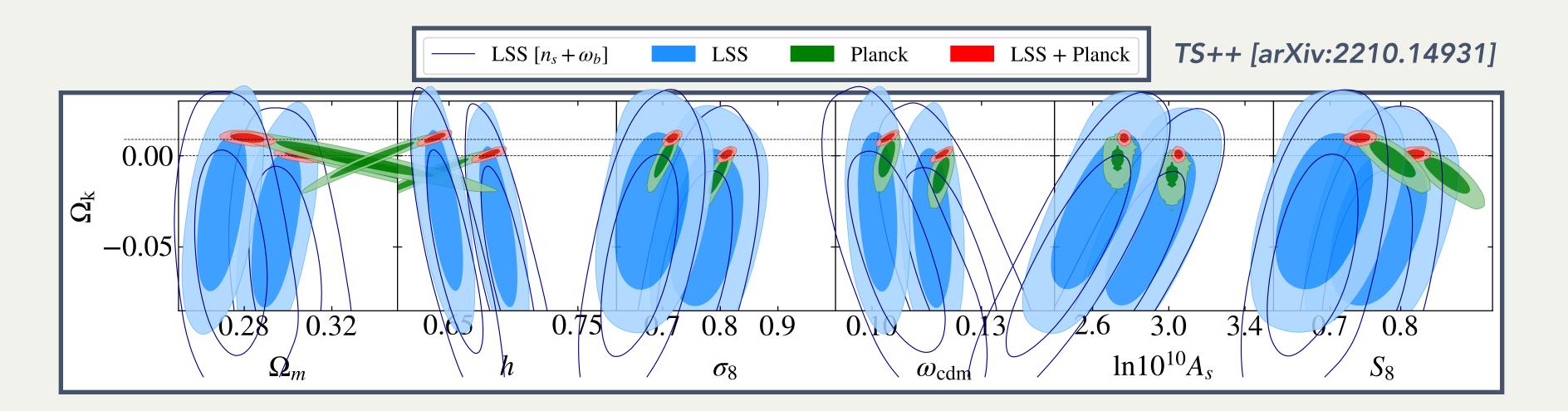
Extensions to Λ CDM: curvature density fraction Ω_k

- ullet With LSS data only, we find Ω_k compatible with zero curvature at 1.3σ
- The EFT analysis **significantly improves the constraints** on Ω_k by $\sim 50\,\%$ compared to the conventional BAO/ $f\sigma_8$ analysis
- ullet The combination of LSS and Planck leads to a **strong constraint** and excludes the (slightly favored) negative values of Ω_k

LSS: $\Omega_k = -0.039^{+0.028}_{-0.029}$

LSS+Planck:

 $\Omega_k = 0.0008^{+0.0018}_{-0.0017}$



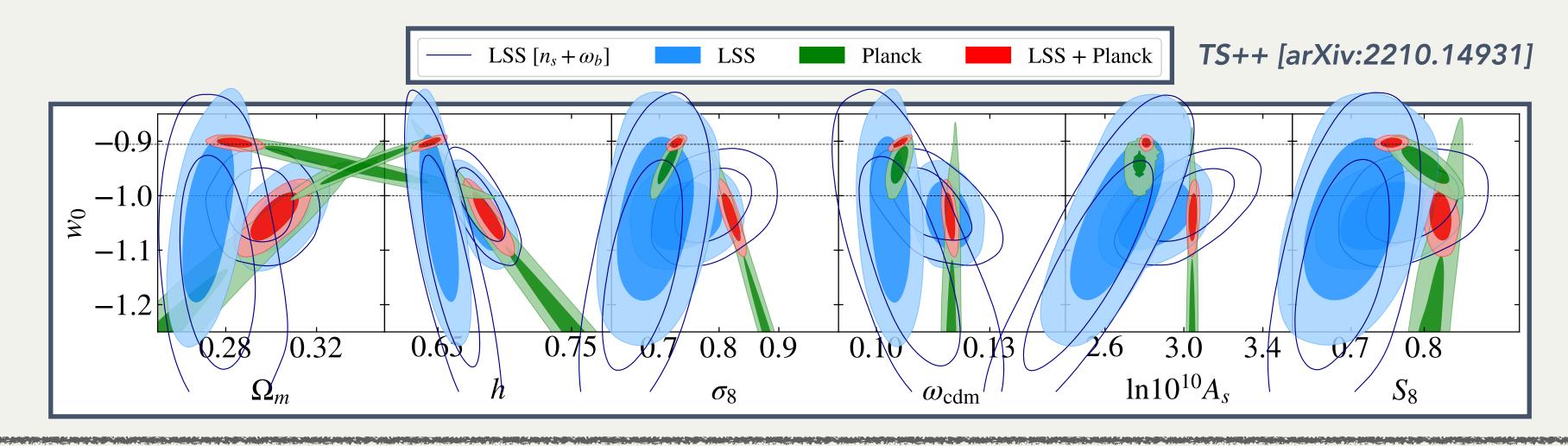
Extensions to Λ CDM: dark energy equation of state w_0

- With the LSS data only, we find **no evidence for a universe with** $w_0 \neq -1$
- The EFT analysis **improves the constraints** on w_0 by $\sim 20\,\%$ compared to the conventional BAO/ $f\sigma_8$ analysis
- The addition of LSS data select values of w_0 close to -1, located in the 2σ region reconstructed from Planck data

LSS: $w_0 = -1.038 \pm 0.041$

LSS+Planck:

 $w_0 = -1.039 \pm 0.029$



Dark energy equation of state $w_0 \ge -1$

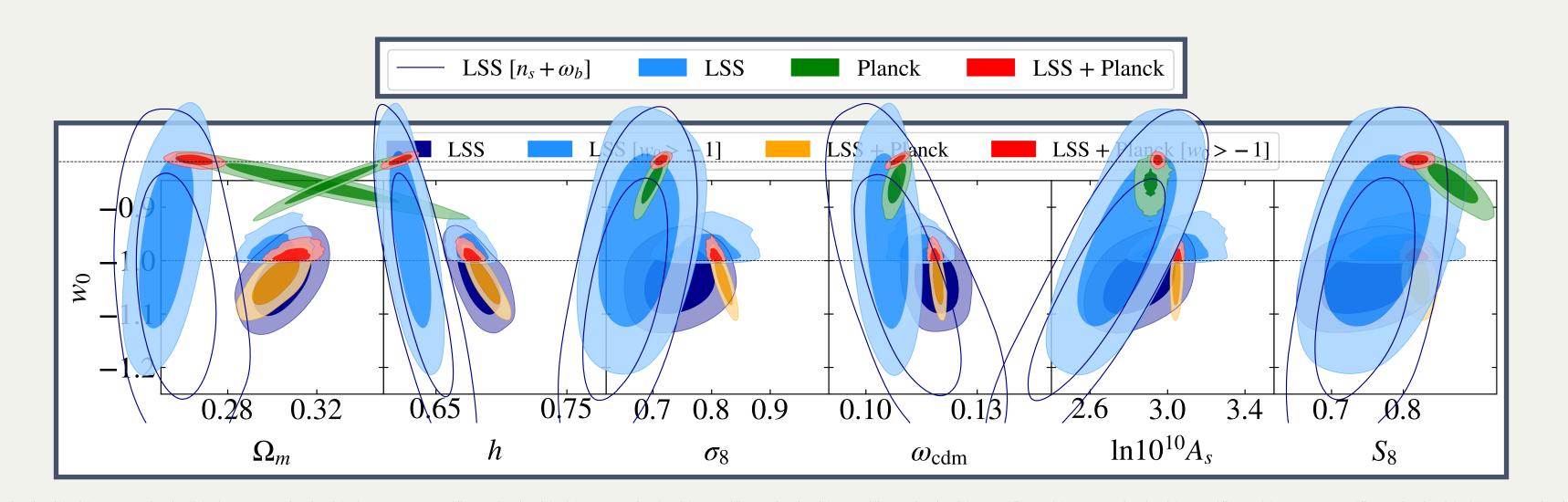
- One can see that this new prior shifts the 2D posteriors inferred from the LSS data in a non-negligible way, while it remains globally stable for the LSS + Planck
- For these analyses, $\Delta \chi^2 = 0$ with respect to Λ CDM, since we obtain best-fit values of $w_0 = -1$

LSS:

$$w_0 < -0.932$$

LSS+Planck:

$$w_0 < -0.965$$



Extensions to Λ **CDM:** effective number of relativistic species $N_{\rm eff}$

- ullet The value of $\Delta N_{
 m eff}$ is compatible with the standard model
- Unlike EFTofLSS, the conventional BAO/ $f\sigma_8$ analysis is unable to constrain this parameter
- ullet The addition of the LSS data **improves** the results of Planck alone by $\sim 20\,\%$

LSS: $\Delta N_{\text{eff}} = 0.40^{+0.44}_{-0.91}$

LSS+Planck:

 $\Delta N_{\rm eff} = -0.07^{+0.15}_{-0.16}$

