

## The Cosmic Graph: Optimal Information Extraction from Large-Scale Structure using Catalogues

T. Lucas Mäkinen

arXiv:2207.05202, arXiv:2107.07405 Future Cosmology School, Cargèse, France

With Tom Charnock (IAP), Ben Wandelt (IAP), and Pablo Lemos (U. Sussex), Alan Heavens & Natalia Porqueres (Imperial), & Ben Wandelt (IAP)

## **Cosmic Graphs**



Makinen et al (2022) arXiv:2207.05202

#### **ILI: Implicit Likelihood Inference**



Thanks to Ben for the diagram !

## **Cosmology:** an Optimization Problem

**Objective**: constraints on cosmological parameters

**Path**: find statistic that captures the most relevant cosmological information

**Question**: Can we *learn* this path by minimizing (or maximizing) the objective ?

#### **Fisher Information 101**

tells us (on average) how informative some data **d** is about a parameter  $\theta$  of a distribution,  $\mathcal{L}(\mathbf{d}|\theta)$  that models **d** 

$$\mathbf{F}_{\alpha\beta} = - \left( \frac{\partial^2 \ln \mathcal{L}}{\partial \theta_{\alpha} \partial \theta_{\beta}} \right)_{\substack{\theta = \theta_{\text{fid}}}}$$
Think of this as the *curvature* of the log-likelihood, ln  $\mathcal{L}$  at  $\theta_{\text{fid}}$ 



#### Cramér-Rao bound:

$$\langle (\theta_{\alpha} - \langle \theta_{\alpha} \rangle) (\theta_{\beta} - \langle \theta_{\beta} \rangle) \rangle \geq \mathbf{F}_{\alpha\beta}^{-1}$$

Gives us a lower bound for the (average) variance of a parameter estimate

**Example:** draw  $n_d$  independent datapoints from a normal distribution,  $\mathcal{N}(\mu, \sigma)$ . Then the likelihood is:

$$\mathcal{L}(\mathbf{d}|\mu,\sigma) = \prod_{i=1}^{n_d} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2} \frac{(d_i - \mu)^2}{\sigma^2}\right)$$

And the Fisher matrix is:

$$F = -\left(\frac{\partial^2 \ln \mathcal{L}}{\partial \theta_{\alpha} \partial \theta_{\beta}}\right)_{\theta_{\text{fid}}} = \left(\begin{array}{cc} -n_d & 0\\ \sigma^2 & 0\\ 0 & \frac{-n_d}{2\sigma^4} \end{array}\right)_{\sigma_{\text{fid}}}$$

What if we can't differentiate through our likelihood / statistic ?

For an arbitrary statistic Q:

$$F_{ij} = \frac{\partial Q_{\alpha}}{\partial \theta_i} C_{\alpha\beta}^{-1} \frac{\partial Q_{\beta}}{\partial \theta_j}$$

where

$$\frac{\partial Q_{\alpha}}{\partial \theta_{i}} \approx \frac{Q(\theta_{i}^{+}) - Q(\theta_{i}^{-})}{\theta^{+} - \theta^{-}}$$





## **Cosmology:** an Optimization Problem

**Objective**: constraints on cosmological parameters

**Path**: find statistic that captures the most relevant cosmological information (using Information Maximising Neural Networks)

**Question**: Can we learn this path by minimizing (or maximizing) the objective ?

Cramér-Rao bound:  $\langle (\theta_{\alpha} - \langle \theta_{\alpha} \rangle) (\theta_{\beta} - \langle \theta_{\beta} \rangle) \rangle \geq \mathbf{F}_{\alpha\beta}^{-1}$ 

Gives us a lower bound for the (average) variance of a parameter estimate

#### Information Maximising Neural Networks

Can we train a neural network to compress a universe simulation down to a couple of numbers ?

 $f: \mathbf{d} \mapsto \mathbf{x}$ 



#### Information Maximising Neural Networks

1) adopt a Gaussian likelihood form in summary space to compute our Fisher information:

$$-2 \ln \mathcal{L}(\mathbf{x}|\mathbf{d}) = \left(\mathbf{x} - \boldsymbol{\mu}_{f}(\boldsymbol{\theta})\right)^{T} \begin{array}{c} \boldsymbol{C}_{f}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{f}(\boldsymbol{\theta})) \\ \boldsymbol{\rho}_{f}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{f}(\boldsymbol{\theta}))$$

Charnock et al (2018) arXiv:1802.03537

#### Information Maximising Neural Networks

1) adopt a Gaussian likelihood form to compute our Fisher information:

$$-2 \ln \mathcal{L}(\mathbf{x}|\mathbf{d}) = \left(\mathbf{x} - \boldsymbol{\mu}_f(\boldsymbol{\theta})\right)^T \boldsymbol{C}_f^{-1}(\mathbf{x} - \boldsymbol{\mu}_f(\boldsymbol{\theta}))$$

2) Compute IMNN Fisher:

$$\mathbf{F}_{\alpha\beta} = \mathrm{tr}[\boldsymbol{\mu}_{f,\alpha}^T \ C_f^{-1} \boldsymbol{\mu}_{f,\beta}]$$

3) train until Fisher information is maximised at a fiducial model

Charnock et al (2018) arXiv:1802.03537

#### Graphs 101

## G = (V, E, u)

A graph G is a *tuple* of nodes  $V = \{v_i\}$ , edges,  $E = \{e_k, s_k, r_k\}$ , and global features

Each node and edge is a *vector* 



#### Catalogs: usually a bad idea

halo halo 2 1 halo n

| LOREOM IPSUMAT<br>CONSTRUM ETRIM KIST | Lorem<br>ipsum<br>dolor | Amister<br>umarki<br>finish | Gatolep<br>odio un<br>accums | Tortores<br>remus<br>justica |  |  |  |
|---------------------------------------|-------------------------|-----------------------------|------------------------------|------------------------------|--|--|--|
|                                       | 8 288                   | 123 %                       | YES                          | \$89                         |  |  |  |
|                                       | 123                     | 87 %                        | NO                           | \$129                        |  |  |  |
|                                       | 1005                    | 12 %                        | NO                           | \$99                         |  |  |  |
|                                       | 56                      | 69 %                        | N/A                          | \$199                        |  |  |  |
|                                       | 5 554                   | 18 %                        | NO                           | \$999                        |  |  |  |
|                                       | 12 569                  | 112 %                       | NO                           | \$123                        |  |  |  |
|                                       | 779                     | 33 %                        | N/A                          | \$56                         |  |  |  |
|                                       | 6 112                   | 27 %                        | YES                          | \$684                        |  |  |  |
| VectorStock*                          |                         |                             | VectorStock.com/26829535     |                              |  |  |  |

catalog



#### Catalogs: usually a bad idea



## **Cosmic Graphs**



Makinen et al (2022) arXiv:2207.05202

#### Graphs 101

Neural Networks also work on graphs !

Functions of edges and nodes can be learned with simple connected networks:

$$\mathbf{e}'_k \leftarrow \phi^e(\mathbf{e}_k, \mathbf{u})$$
$$\mathbf{v}'_i \leftarrow \phi^v(\mathbf{v}_i, \mathbf{e}'_k, \mathbf{u})$$
$$\mathbf{u}' \leftarrow \phi^u(\mathbf{v}'_i, \mathbf{e}'_k, \mathbf{u})$$

### Halo graph representation

Nodes: masses (positions)

**Edges**: distances and angles between halos

- 1. Take all halos with  $M > 1.5 \times 10^{15} M_{\odot}$  (roughly 100 halos per simulation)
- 2. Connect all halos within a radius  $r_{\text{connect}}$



#### Graphs can be used in the IMNN scheme !



Makinen et al (2022) https://arxiv.org/abs/2207.05202

#### **Graphs: super modular**

# Where is the information hiding ?



Makinen et al (2022) https://arxiv.org/abs/2207.05202

#### **TAKEAWAYS**

- Cosmology is just an optimization problem ! IMNNs can help find useful statistics automatically
- Graph structure is very sensitive to cosmology and can be interrogated modularly
- Neural-learned summaries can be interpretable

### Get the code !

CO Browser-based inference tutorial: <u>https://bit.ly/cosmicGraphsColab</u>



Blog: https://tlmakinen.github.io/blog/2022/09/12/cosmicgraphs



Github: <u>https://github.com/tlmakinen/</u>cosmicGraphs

## **THANKS** !



https://tlmakinen.github.io/



https://github.com/tlmakinen



CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik. Please keep this slide for attribution.

#### **Graph Neural Networks**



**Graphs: super modular** 

#### Where is the information hiding ?

![](_page_28_Figure_2.jpeg)

Makinen et al (2022) https://arxiv.org/abs/2207.05202

#### **Invariant vs non-invariant graphs**

![](_page_29_Figure_1.jpeg)

#### **Graphs: super modular**

Information plateaus to the same level across graphs / network architectures

![](_page_30_Figure_2.jpeg)

Makinen et al (2022) https://arxiv.org/abs/2207.05202

![](_page_31_Figure_1.jpeg)

#### What's being learned ?

| fixing catalogue length removes<br>cardinality feature - network can<br>cardinality learn number or mass | catalogue $N^v$ | graph assembly | $\ln\det F$ | epistemic        | aleatoric       |
|----------------------------------------------------------------------------------------------------------|-----------------|----------------|-------------|------------------|-----------------|
|                                                                                                          | fixed           | without mass   |             | $5.03\pm0.47$    | $5.98 \pm 1.06$ |
|                                                                                                          |                 | with mass      |             | $12.43 \pm 1.44$ | $12.39\pm0.22$  |
|                                                                                                          |                 | 2PCF           | 9.74        |                  |                 |
|                                                                                                          | variable        | without mass   |             | $17.89\pm0.33$   | $17.66\pm0.27$  |
|                                                                                                          |                 | with mass      |             | $17.40\pm0.57$   | $17.85\pm0.12$  |
|                                                                                                          |                 | 2PCF           | 14.19       |                  |                 |
|                                                                                                          |                 |                |             |                  |                 |
| density                                                                                                  |                 |                |             |                  |                 |
|                                                                                                          |                 |                |             |                  |                 |

#### **Adding Noise**

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

Makinen et al (2022) https://arxiv.org/abs/2207.05202

#### **Adding Noise**

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

![](_page_35_Figure_0.jpeg)

#### Makinen et al (2022) https://arxiv.org/abs/2207.05202

#### **Next steps**

Use catalogs for simulation-based inference

![](_page_36_Figure_2.jpeg)

Makinen et al (2022) https://arxiv.org/abs/2207.05202

0