The Lyman-α forest flux auto-correlation function as a source of information on the z>5 universe

Molly Wolfson (UCSB) Supervisor: Joseph Hennawi

Lyman- α forest flux at high-z

Lyman- α forest flux at high-z

Lyman- α forest flux at high-z

1/9 Saturates for $\langle x_{\rm HI}(z) \rangle \gtrsim 10^{-4}$

What can we constrain with the Ly α forest from high-z quasars?

New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman- α forest data

Vid Iršič^{1,2,3},* Matteo Viel^{4,5,6},[†] Martin G. Haehnelt ⁷, James S. Bolton ⁸, Stefano Cristiani^{5,6}, George D. Becker^{7,9}, Valentina D'Odorico⁵, Guido Cupani⁵, Tae-Sun Kim⁵, Trystyn A. M. Berg¹⁰, Sebastian López¹¹, Sara Ellison¹⁰, Lise Christensen¹², Kelly D. Denny¹³, and Gábor Worseck¹⁴ 25 spectra 4.2 < z < 5.4

What can we constrain with the Ly α forest from high-z quasars?

New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman- α forest data

Vid Iršič^{1,2,3},* Matteo Viel^{4,5,6},[†] Martin G. Haehnelt ⁷, James S. Bolton ⁸, Stefano Cristiani^{5,6}, George D. Becker^{7,9}, Valentina D'Odorico⁵, Guido Cupani⁵, Tae-Sun Kim⁵, Trystyn A. M. Berg¹⁰, Sebastian López¹¹, Sara Ellison¹⁰, Lise Christensen¹², Kelly D. Denny¹³, and Gábor Worseck¹⁴ 25 spectra 4.2 < z < 5.4

15 spectra **Reve** 4 0 < 7 < 5 2

Revealing Reionization with the Thermal History of the Intergalactic Medium: New Constraints from the Ly α Flux Power Spectrum

Elisa Boera¹, George D. Becker¹, James S. Bolton², and Fahad Nasir¹

What can we constrain with the Ly α forest from high-z quasars?

New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman- α forest data

Vid Iršič^{1,2,3},* Matteo Viel^{4,5,6},[†] Martin G. Haehnelt ⁷, James S. Bolton ⁸, Stefano Cristiani^{5,6}, George D. Becker^{7,9}, Valentina D'Odorico⁵, Guido Cupani⁵, Tae-Sun Kim⁵, Trystyn A. M. Berg¹⁰, Sebastian López¹¹, Sara Ellison¹⁰, Lise Christensen¹², Kelly D. Denny¹³, and Gábor Worseck¹⁴ 25 spectra 4.2 < z < 5.4

Revealing Reionization with the Thermal History of the Intergalactic Medium: New Constraints from the Ly α Flux Power Spectrum

Elisa Boera¹, George D. Becker¹, James S. Bolton², and Fahad Nasir¹

Forecasting constraints on the mean free path of ionizing photons at $z \ge 5.4$ from the Lyman- α forest flux auto-correlation function

XQR-30 dataset

Molly Wolfson^{1*}, Joseph F. Hennawi^{1,2}, Frederick B. Davies³, and Jose Oñorbe⁴

15 spectra

4.0 < 7 < 5.2

What can we constrain with the Lya forest from high-z quasars?

New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman- α forest data

Vid Iršič^{1,2,3},* Matteo Viel^{4,5,6},[†] Martin G. Haehnelt ⁷, James S. Bolton ⁸, Stefano Cristiani^{5,6}, George D. Becker^{7,9}, Valentina D'Odorico⁵, Guido Cupani⁵, Tae-Sun Kim⁵, Trystyn A. M. Berg¹⁰, Sebastian López¹¹, Sara Ellison¹⁰, Lise Christensen¹², Kelly D. Denny¹³, and Gábor Worseck¹⁴ 25 spectra 4.2 < z < 5.4

15 spectra 4.0 < z < 5.2

Revealing Reionization with the Thermal History of the Intergalactic Medium: New Constraints from the Ly α Flux Power Spectrum

Elisa Boera¹, George D. Becker¹, James S. Bolton², and Fahad Nasir¹

XQR-30 dataset

Forecasting constraints on the mean free path of ionizing photons at $z \ge 5.4$ from the Lyman- α forest flux auto-correlation function

Molly Wolfson^{1*}, Joseph F. Hennawi^{1,2}, Frederick B. Davies³, and Jose Oñorbe⁴

р

XQR-30 Collaboration

XQR-30 data (xqr30.inaf.it):

- Uses VLT/X-Shooter (R ~ 8800 in the visible)
- 30 new observations of some of the brightest z > 5.8 quasars observed
- Supplemented with 12 archival observations

Differences between the models for different λ_{mfp} values are non-linear!

Gaussian likelihood:

$$\mathcal{L} = \frac{1}{\sqrt{\det(\Sigma)(2\pi)^n}} \exp\left(-\frac{1}{2}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)^{\text{T}} \Sigma^{-1}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)\right)$$

Gaussian likelihood:

$$\mathcal{L} = \frac{1}{\sqrt{\det(\Sigma)(2\pi)^n}} \exp\left(-\frac{1}{2}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)^{\text{T}} \Sigma^{-1} (\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle))\right)$$

Gaussian likelihood:

$$\mathcal{L} = \frac{1}{\sqrt{\det(\Sigma)(2\pi)^n}} \exp\left(-\frac{1}{2}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)^{\text{T}} \Sigma^{-1}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)\right)$$

Gaussian likelihood:

$$\mathcal{L} = \frac{1}{\sqrt{\det(\Sigma)(2\pi)^n}} \exp\left(-\frac{1}{2}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)^{\text{T}} \Sigma^{-1}\left(\boldsymbol{\xi} - \boldsymbol{\xi}_{\text{model}}(\lambda_{\text{mfp}}, \langle F \rangle)\right)\right)$$

MCMC:

Observed auto-correlation function

Wolfson et al. in prep

Observed Covariance Matrices

Forward modeled covariance matrices

Forward model the simulation with the observed properties:

8/9

Forward modeled covariance matrices

Forward model the simulation with the observed properties:

8/9

z = 5.6 simulation Wolfson et al. in prep

z = 5.6 simulation Wolfson et al. in prep

Forward modeled covariance matrices

Thank you! - Summary

- The Ly α forest from high-z quasars provides exciting insights into the z > 5 universe
 - The data is being built up!

Thank you! - Summary

- The Ly α forest from high-z quasars provides exciting insights into the z > 5 universe
 - The data is being built up!
- The auto-correlation function provides a new way to competitively constrain the evolution with redshift of λ_{mfo} with existing data
- Measurement of λ_{mfp} from XQR-30 data is ongoing
 - Estimating covariance matrix from limited data and uncertain modeling has been challenging

Things I would be happy to discuss:

- Re-weighting posteriors to correct for assumptions in our likelihood function (such assuming the data is Gaussian distributed)
- Measuring the thermal state of the IGM with high-resolution (KECK/HIRES) z > 5 quasar
 ^{9/9} data