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Reading

• Leclercq, Pisani & Wandelt 2014, Cosmology: from theory to 
data, from data to theory, arXiv:1403.1260

• Alsing & Wandelt 2017, Generalized massive optimal data 
compression, arXiv:1712.00012
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What we want to know

• How did the Universe begin?
• How did structure appear in the Universe?
• How did it evolve until today?
• What is the Universe made of?
• What are the properties of dark matter?
• What are the properties of dark energy?
• What is the geometry and the symmetry of the Universe?
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The playground of cosmological physics

The End of the Beginning

CMB is emitted

“Dark ages“ (absorption only)

First stars, emit light, ionize universe

Matter dominates

Creation of the elements
Radiation dominates

Dark energy dominates – expansion accelerates

You, TodayWhat we observe

Large scale structure surveys, 
Galaxies, Clusters

21-cm brightness mappingWeak lensingQuasars, Ly-α21-cm absorption
Cosmic Microwave BackgroundCMB Spectral distortions

Neutrino background

Primordial gravitational waves

Cosmological physics

Benjamin Wandelt



Benjamin Wandelt

CMB

Galaxies,
clusters form

You, Today



The initial 
conditions of 
the universe 

on the base of 
the past light 

cone

(curvature 
perturbations)

Your worldline
starts here
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What cosmologists want to learn

Cosmic Beginning

Cosmic Content

Cosmic Fate

Statistics of the “initial 
conditions”
Recipe for our universe

Dynamics

Expansion geometry
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𝐻!, Ω", 𝑤!, 𝑤#, …

𝐴$, 𝑛$, 𝑟, 𝑓%&,… 

Ω', Ω(, 𝑚), 𝜏,…

Dark Energy

Dark matter baryons

Neutrino mass

non-Gaussianity

Star formation

Black holes

Inflation

Primordial gravitational waves

Expansion
speed



PLANCK
SDSS I, II, III, IV, V

Surveys are sampling our past light 
cone exponentially fast!

(Your favorite survey here)



What is there to observe?
What about the universe is 

“knowable?”
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Causal structure of your Universe

End of inflation

Recombination (CMB is emitted)

Dark ages (absorption only)

Structure lights up, reionization

Matter and radiation equality

Dark energy - dark matter equality

You, TodayObservables

Large scale structure surveys, 
Galaxies, Clusters

21-cm brightness mappingWeak lensingQuasars, Ly-α21-cm absorption
Cosmic Microwave BackgroundCMB Spectral distortions

Neutrino background
Gravitational wavesfrom inflation

Physics
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Some exercises with the causal structure of the 
Universe

• Draw a causal diagram.
• Where is your past? Mark it on the diagram.
• Define “the present.” Then show where that is on the diagram.
• Mark the future on the diagram.
• Draw in your entire existence (your world line from birth to 

death).
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Some more exercises

• Draw another causal diagram
• Define “seeing” as receiving all the photons that reach you 

NOW, in this moment, from everywhere in the Universe, from 
all directions and without obstructions. Draw the 3-volume of 
what you see right now on the diagram.

• Draw the 4-volume corresponding to everything you have ever 
seen and you will ever see.



More exercises

• Draw another causal diagram
• Draw the 4-volume of everything you can learn about 

indirectly from what you see right now.
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Indirect observation – friendly aliens

• Draw another causal diagram
• Draw the 2-sphere corresponding to the cosmic microwave 

background that you see (the surface of last scattering, SLS)
• On your diagram, illustrate how we could learn more about the 

cosmic microwave background if friendly aliens had observed it 
for us in the past and sent us radio transmissions through 
cosmic time.
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Indirect observation – time capsule

• A time capsule is a durable container kept in a safe place, 
which protects a message or objects intended for future 
generations.

• Can you think of cosmological observables that are like time 
capsules?



Causal diagrams give quick and correct answers to 
interesting questions

• Is the CMB really the ultimate way to observe the largest 
possible scales?
– No. In principle, causality allows accessing the entire volume

• How is it possible to see “super-Horizon” scales in the CMB?
– These are scales that were super-Horizon at the time the CMB was 

emitted
– They are now sub-Horizon



How do these observable signals 
relate to what we want to know?

"Do not believe any observational
result until it is confirmed by

theory." (Eddington)
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Cosmological Inflation
Is	a	high energy phase	of	accelerated expansion	in	the	early Universe ä > 0

Solves the	Hot	Big Bang	horizon	and	flatness problem

Can	be implemented with a	single	scalar field
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An	example:	« large	field inflation » V (�) =
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Cosmological Inflation

Solves	the	Horizon Problem

May 27, 2013 IAP, GreCo Seminar 25
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Scalar	Power	Spectrum

Cosmological Fluctuations:

are	combined gauge	invariant	perturbations	
of	the	metric and	of	the	inflaton field v

are	the	seeds of	temperature anisotropies	in	the	CMB
and	the	structure	and	dynamics of	matter
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Cartoon of perturbations arising from quantum 
fluctuations
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Curvature 
perturbation 
("potential")
on the light 

cone

You
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Primordial perturbations give rise to all 
observations of cosmic structure

…

Radiative
Transfer

+
Gravity

+
Astro-
physics
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Initial conditions of the universe

Gravity, Hydrodynamics,…

The observed universe

Ω', Ω(, 𝑚), …
Ω", w!, 𝑤#, …

𝐴$, 𝑛$, 𝑟, 𝑓%&,… 

Cosmological Computation



Initial conditions of the universe The observed universe

Ω', Ω(, 𝑚), …
Ω", w!, 𝑤#, …

𝐴$, 𝑛$, 𝑟, 𝑓%&,… 

The Cosmological Inference Problem

Inference



We have done it for the 
Cosmic Microwave Background anisotropies;

a linear time machine

Benjamin Wandelt



Simplicity is power: 
exploiting symmetries and physics

Benjamin Wandelt

• Most general way the observable CMB anisotropy can be related 
linearly related to initial perturbations: represent map in terms of 
a “Fourier” expansion. The coefficients relate back to the initial 
conditions like so

• In a homogeneous and isotropic universe with small fluctuations 
all the physics can be encoded in a linear transfer function g that 
must have the form

• g is the solution to a set of diff eqs (fluid equations coupled to GR)



Cosmological 
parameters from 

Planck’s CMB 
maps



So far we have dealt with 
(nearly) Gaussian random fields

• For standard inflation the initial perturbations are very nearly 
Gaussian

• The primary anisotropies in CMB temperature and polarization 
are linear functions of the initial perturbations (to a very good 
approximation)

Benjamin Wandelt



What is a Gaussian Random Field?

• This is something even some working cosmologists are 
confused about.

• I will take some time to explain this and answer your questions

Benjamin Wandelt



What is a Gaussian Random Field?

p(x |C,µ) = e
−
1
2
(x−µ )T C−1(x−µ )

2πC
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The power of Gaussian fields

• Completely specified by C and μ 
– Can calculate all moments etc.

• Marginals (integrals) and conditionals (sections) can be 
calculated using linear algebra

• Nice mathematical properties 
– C∞ and fast decay at ∞ so all polynomial moments exist.

• Nice physical properties
– Sums of independent random variates, even non-Gaussian 

ones, and sometimes even dependent non-Gaussian ones, 
tend to be Gaussian (central limit theorem)
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(Mis-)conceptions about Gaussian Random Fields

• True or false: Gaussian random fields have independent 
Fourier (or momentum) modes.

• False in general: only true for homogeneous random fields

Benjamin Wandelt



(Mis-)conceptions about Gaussian Random Fields

• True or false: Gaussian Random Fields are defined as fields 
with random phases

• Not true in general: 
– First of all: poorly defined ("random?")
– Argument works as follows: if a field is homogenous and Gaussian, 

then the phases are independent and drawn uniformly from [0,2π]
– But does not work in reverse: can of course construct non-Gaussian 

field with independent phases drawn uniformly from [0,2π]
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(Mis-)conceptions about Gaussian Random Fields

• True or false: Histograms of Gaussian Random Fields are 
Gaussian

• Not true in general. Simple counter-example: collection of n
independent Gaussians with different variances. For large n
histogram will converge to a mixture of Gaussians!

Benjamin Wandelt

Need to be careful about tests of 
Gaussianity – they can easily be 

confused by 
anisotropy/inhomogeneity.



Can we use GRFs to build a linear physics time 
machine? 

Benjamin Wandelt

• Let's take our CMB sky to 
be y and the slice of 
primordial potential we'd 
like to reconstruct as x.

• Then can use the formulae 
for the conditional density 
of x given y to build the 
optimal inference of x 
given y.



Komatsu, Spergel, Wandelt (2005)
Yadav and Wandelt (2005) 

Primordial curvature fluctuations

Our linear physics CMB time machine

• The CMB T&E 
anisotropies map the 
Universe at t=380,000

• By "inverting" linear 
physics we can infer 
primordial curvature 
perturbation and test 
model predictions for 
the power spectrum 
and beyond.

Benjamin Wandelt

simulation



Let’s do it for our actual Cosmic Microwave 
Background anisotropies
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Primordial curvature perturbations at 
r= ηCMB from Planck T data

SMICA
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Primordial curvature perturbations at 
r= ηCMB from both Planck T and 

polarization data
SMICA

… leading to many results, e.g. Planck constraints on 
inflation (spectra, non-Gaussianity) and other early universe paradigmsM
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Beyond Gaussian fields

Benjamin Wandelt
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Cosmological data covers a hierarchy of scales on the past 
light cone. Smaller scales è increasing complexity

Cosmic
Microwave
Background

Galaxy
surveys



How to deal with complexity on 
small scales?



How to deal with complexity on 
small scales?

Smooth away small scales?



How to deal with complexity on 
small scales?

Use a computational model?



Beyond the linear and the Gaussian

• Even for Gaussian fields, non-Gaussian statistics arise for 
covariance estimation (power spectrum inference, parameter 
inference)

• 21st century cosmology deals with non-linear, non-Gaussian 
problems: 
– Gravitational non-linearity! Galaxy formation! Gastrophysics! 
– Primordial non-Gaussianity?
– Data imperfections and systematics!



Current 
practice

1. Pick summary statistics 
(e.g., galaxy number, pair counts, 
triplets,… )

2. Compute predictions for these 
summaries using theory or 
simulations

3. Approximate likelihood 
(often Gaussian)



Risks of current practice

How do we know the chosen summaries exhaust the 
information content?

Inadequate theory (non-linear regime, 
(g)astrophysics, systematics, instruments…)

Inadequate statistical approximations (leading to 
tensions?)



We can do this

• Dropping the Gaussianity assumption boils down the problem 
to this:

"If I have a way to predict x from y then I can use x to constrain y"

P(y|x)P(x)=P(x|y)P(y)

Benjamin Wandelt



I think I've seen that before:

p(theory|data) = p(data|theory)p(theory)
p(data)

Benjamin Wandelt

p(✓|d) = p(d|✓)p(✓)
p(d)

è Lighting quick intro to 
Bayesian inference



Bayes' theorem

: likelihood 
: prior
: posterior
: evidence 

p(✓|d) = p(d|✓)p(✓)
p(d)

p(d)

p(✓)

p(✓|d)

p(d|✓)

Benjamin Wandelt



What is Bayesian analysis

One sentence summary of Bayesian stats: 

Whatever is uncertain gets a pdf.

:  data before it is known given parameters
:  parameters in the absence of data
:  parameters after the data are known
:  data before it is known (unknown parameters)p(d)

p(✓)

p(✓|d)

p(d|✓)

p(✓|d) = p(d|✓)p(✓)
(d)

Benjamin Wandelt



Inputs to Bayesian analysis

• Priors
– Modeling assumptions, both theoretical and experimental
– We often have excellent physical motivation for choosing priors in 

cosmology
– Specifying priors means getting the assumptions out in the open

• Whenever someone (Bayesian or frequentist) tells you "we did not have to assume 
anything!" DO NOT TRUST THEM.

• Data
– e.g. CMB data, Galaxy catalog, etc,…
– e.g. Detailed survey specifications

Benjamin Wandelt



Output of Bayesian analysis

• Key point: the output is the posterior density

Benjamin Wandelt

p(✓|d) = p(d|✓)p(✓)
p(d)



Output of Bayesian analysis

• Ok, you plug in your data into Bayes’ theorem. Now what?
• Explore the posterior

– Visualize
– Compute summaries e.g. 

• mean and variance of each parameter, marginalizing over all others
• Means and variances of groups of parameters

– Validate
– perform model/prior checking 

• Simulate data using parameters drawn from the posterior and see if it agrees with 
your data

Benjamin Wandelt

p(✓|d) = p(d|✓)p(✓)
p(d)



M-H sampling from the posterior

• Practical approaches generate a correlated "Markov Chain" 
with n steps, that converges to the posterior p(θ) for 

• E.g Metropolis-Hastings
– Specify proposal pdf q(θ'|θ)

• Draw θ' from q(θ'|θ)

• If 

then accept θ'; otherwise accept with probability a.

Benjamin Wandelt

n ! 1

a =
p(✓0)q(✓)

p(✓)q(✓0)
> 1



M-H problem
• M-H can be inefficient if 

proposal pdf q(θ') is 
suboptimal
– Hard to find good q(θ') if 

number of parameters is 
high (>10)

– Typically the chain 
moves very slowly
• Either due to tiny step 

size
• Or because a tiny fraction 

of proposals are accepted
– Can be diagnosed using 

lagged auto-correlation 
of the chain

Benjamin Wandelt
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Hamiltonian Monte Carlo
• Duane, Kennedy, Pendleton & Roweth (1987) proposed the 

following trick:
• Think of log-posterior as a potential
• Introduce conjugate momenta pi , one for each parameter
• Choose Gaussian pdf for {pi} to get Hamiltonian 

•

• Then do M-H step with the proposal defined by drawing 
from p({pi})and then moving θ using Hamiltonian integrator 
respecting symplectic symmetry

• This conserves the Hamiltonian and hence gives acceptance 
probability 1 !!!

• In the end just ignore {pi} to get
Benjamin Wandelt
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Bayesian model comparison

• Second level inference
– If we have more than one model and prior I can 

compare their relative probability after having 
seen the data:

– Gives quantitative answers to everyday cosmology 
and astrophysics questions!

Benjamin Wandelt

p(M1|d)
p(M2|d)

=
p(d|M1)p(M1)

p(d|M2)p(M2)

Evidence for first level inference of model M1

Evidence for first level inference of model M1



Example questions answered by model comparison

• Is the universe flat?
• Is gravity GR or a modification?
• Initial conditions: Gaussian or non-Gaussian?
• Isocurvature: yes or no?
• Is the equation of state of the dark energy -1?

• Did I detect…
– a source?
– a spectral line?
– gravitational waves?
– a reionization bubble?
– non-zero neutrino mass?

Benjamin Wandelt



Why Bayesian model comparison?

l It answers the question most people want to ask
l Which of these do you find more intuitive:

- Frequentist null-hypothesis testing: “Given an ensemble of infinitely 
many fictional Gaussian Universes, what is the probability of the 
non-Gaussianity estimate from the ensemble being larger than the 
estimate from the data?”

- Bayesian model comparison: “What is the relative probability of cold 
or warm dark matter given the data?”

Benjamin Wandelt



Example application of Bayesian inference

Using this we can now build non-linear time machines using 
Bayesian posterior exploration

Benjamin Wandelt



• Gaussian prior + Gravity + likelihood for galaxies

• Hamiltonian Markov Chain with >107 parameters

Initial condition reconstruction using Explicit Likelihood Inference: 
a probabilistic forward model of galaxy surveys

BORG:	Bayesian	Origin	Reconstruction	from	Galaxies

BORG

Observations

Initial conditions, and inferred 
dark matter densities

z=100                                z=0

(galaxy catalog + meta-data: selection 
functions, completeness…)

Jasche & Wandelt 2013, arXiv:1203.3639
Jasche, Leclercq & Wandelt 2015, arXiv:1409.6308
Lavaux & Jasche 2017…

(includes Particle-Mesh or LPT gravity solver, survey model, bias model, 
automatic noise level calibration, selection function, mask, …)

Summaries
with

quantified
uncertainties

N-body
512^3
ICs-> mock in
10-15 secs
on 800 cores



Markov Chain through Initial Conditions (density slices in 3D field)

The movie shows Bayesian physical reconstruction of initial conditions from 
Large Scale Structure

SDSS-like
Galaxy mock

Reconstructed non-linear 
density distribution today

Reconstructed
primordial density

Benjamin Wandelt



Bayesian physical reconstruction of initial conditions from Large 
Scale Structure

Benjamin Wandelt

Posterior mean
One sample from the 
posterior pdf

True initial perturbations
In simulation

True evolved 
perturbations in sim

One sample from the 
posterior pdf Posterior mean



How to think about samples from the posterior

• “Samples from the posterior density” – what does this mean?
• I find it helpful to think of each sample as a possible version of 

the truth.
• The variation between samples quantifies the uncertainty that 

results from having, e.g.
– only one Universe (this is a more precise version of “cosmic 

variance”)
– Imperfect data (mask, finite volume, finite number of galaxies, photo-

z) 



BORG is currently the most advanced explicitly 
likelihood analysis framework for galaxy surveys.

So… are we done? Problem solved?

No.

Benjamin Wandelt



Challenges as a Bayesian Scientist

Even if likelihood and posterior are assumed to be known
• Posterior computation can be challenging
• Good MCMC  can be hard
• Likelihood can be costly to evaluate
• Evidence can be hard to compute

And most importantly:
• The full statistical power even of current data is enormous
• The key issue is model misspecification

Benjamin Wandelt



How to do science as a Bayesian

1. Work out the full physical and  stochastic model of data given 
parameters 𝜃. This is the Likelihood.

2. Get data 𝑑.
3. Specify prior
4. Write down posterior

5. Explore posterior for fixed data as a function of parameters, e.g. on 
a grid or using Markov Chain Monte Carlo.

6. Done!

Benjamin Wandelt

What if d  = ?



How to do science as a Bayesian

1. Work out the full physical and  stochastic model of data given 
parameters 𝜃. This is the Likelihood.

2. Get data 𝑑.
3. Specify prior
4. Write down posterior

5. Explore posterior for fixed data as a function of parameters, e.g. on 
a grid or using Markov Chain Monte Carlo.

Benjamin Wandelt

What if d  = ?

What if we can’t write down the prior?



Can we analyze data if all we can do is simulate?

Yes!

A major shift over the last 5 years.

Likelihood is represented implicitly through simulations
𝑑 ↩ 𝑝(𝑑|𝜃)

Let’s do a simple example.

Benjamin Wandelt
Challenge: Keep a running count of the number 
of likelihood and prior evaluations!
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The best diagram to 
explain Bayesian statistics
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Generate 𝜃 from the prior
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Simulate/generate 𝑑 given 𝜃
i.e.,draw from p(𝑑|𝜃)



Benjamin Wandelt

This is a sample from p(𝜃, 𝑑)
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Measure actual 𝑑



Benjamin Wandelt

Slice through p(𝜃, 𝑑) at 𝑑
(”condition on 𝑑”)
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Slice through p(𝜃, 𝑑) at 𝑑
(”condition on 𝑑”)
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This was the true 𝜃



Benjamin Wandelt

Posterior p 𝜃 𝑑



Simulated data are nothing other 
than draws from the likelihood!



This is Implicit Inference

• When likelihood and/or prior are not explicitly specified 
but implicit in…
– simulations, generative models, labelled data.

• Various forms known as
– Likelihood-free inference
– Simulation-based inference
–Approximate Bayesian Computation (ABC)

Benjamin Wandelt



The ABC algorithm for implicit inference

simulation

parameters
simulated 
data Draw from prior:

Simulate data:

If :
accept;

else:
reject;

data

?
=

In the limit
Benjamin Wandelt



Challenges for implicit inference

• The simplest version, ABC, becomes exponentially difficult when the 
data dimension is high.
• Curse of dimensionality

• Need to find informative summaries of the data.
• Or find smarter approaches to solving the problem.



simulation summariessimulation summaries

parametersparameters

simulated datasimulated data

data 𝑑

com
press

data 
summaries 𝑡(𝑑) posterior 𝑝(𝜃|𝑑)

parameters

simulated data

Model: 𝑑 ∼ 𝑝(𝑑|𝜃)

compress

simulation summaries

LFI

Prior: 𝜃 ∼ 𝑝(𝜃)

Implicit Inference 
with summaries The statistical model is 

learned from simulations.

Alsing, Wandelt & Feeney 
arXiv:1801.01497

Alsing, Charnock, Wandelt & Feeney 
arXiv:1903.00007

?



Machine learning takes us the rest of the way

• Recast inference problems as optimization problems.

• Write down a loss that defines the problem 
• Parameterize the solution using a neural network
• Minimize
• Validate



First example: variational Bayes

• Define a parameterized family of distributions
• Minimize Kullback-Leibler loss between neural family and true 

likelihood 

When using a neural density estimator this is DELFI, a (now) classic 
example of simulation-based inference.

Benjamin Wandelt

Papamakarios, Murray + 
coauthors, 
arXiv:1605.06376, 
1705.07057, 1805.07226
Alsing, Feeney & Wandelt, 
arXiv: 1801.01497, 
1903.01473



Directly learn conditional probability density of
compressed data given parameters, e.g., in terms of a 
mixture density or a neural density estimator, e.g., a conditional 
normalizing flow.

Alternative: likelihood-ratio estimation to do maximum likelihood 
estimation

LRE: Cranmer, Pavez & Louppe, arXiv1506.02169 
NDE: Papamakarios, Murray + coauthors, arXiv:1605.06376, arXiv:1705.07057, 
arXiv:1805.07226
NDE: pyDELFI: Alsing, Feeney & Wandelt, arXiv: 1801.01497, arXiv:1903.01473
Truncated LRE: Miller et al arXiv:2107.01214, Cole et al arXiv:2111.08030 

Density Estimation Likelihood-Free Inference



• Nuisance-hardened compression greatly reduces required number of 
simulations and allows many more parameters (Alsing & Wandelt 
arXiv:1903.01473). 

• pyDELFI includes ensembles of conditional neural density estimators to 
fit the likelihood  (Alsing, Charnock, Feeney, Wandelt arXiv:1903.00007)
• Includes active learning for deciding where to run simulations
• Also includes very fast, GPU-accelerated MCMC chains to explore posterior.

• SBI is a widely used package (but does not build ensembles out of the 
box)

Benjamin Wandelt

Density Estimation Likelihood-Free Inference



Example: 

Strong Gravitational 
Lensing

Legin et al. arXiv:2212.00044



Simulated images

Legin et al arXiv 2212.00044



Inference

Legin et al arXiv 2212.00044

Works with multimodal posteriors!



Validation

Legin et al arXiv 2212.00044



SBI PARAMETER INFERENCE USING OPTIMAL COMPRESSION

Charnock, Lavaux, Wandelt 
(arXiv:1802:03537)

• Idea: Likelihood is implicitly defined through forward simulations.

• Fit likelihood with neural density model (or accept/reject parameters based on similarity of simulations to data)

• Compress data for dimensional reduction. 

• ML safety through identical data and simulation pipelines.

• Optimal information summaries of the data found by neural networks trained on physical simulations: Information Maximizing 

Neural Networks (IMNN) or Regression Networks

• IMNN optimal loss on a test set is the recovered information content of the data.

• The IMNN training loss provably defines the optimal (LH score) compression at the fiducial model purely based on simula0ons.

Optimal compression 
network minimizes 

information loss
<latexit sha1_base64="S0R65Juu0hutbLmX+f70CPnVJjM=">AAACKXicbVBNSxxBFOxRk5g1iasevTQuAT1kmRFJchEWA+LBg4GsCjvL8KbnzW5jT8/Q/UZYxvk7XvwrXiIommv+SHrHPfiRgoai6hX9XsWFkpZ8/8Gbm1948/bd4vvW0oePn5bbK6vHNi+NwL7IVW5OY7CopMY+SVJ4WhiELFZ4Ep/9mPon52iszPUvmhQ4zGCkZSoFkJOidi/MgMYCVHVY734JleZhghQq0COFfD80DYmqYjO5CGmMBFGTMFmVyqTeqqN2x+/6DfhrEsxIh81wFLVvwiQXZYaahAJrB4Ff0LACQ1IorFthabEAcQYjHDiqIUM7rJpLa/7ZKQlPc+OeJt6oTxMVZNZOsthNTre0L72p+D9vUFL6fVhJXZSEWjx+lJaKU86ntfFEGhSkJo6AMNLtysUYDAhy5bZcCcHLk1+T4+1u8LUb/Nzp9PZmdSyydbbBNlnAvrEeO2BHrM8Eu2TX7JbdeVfeb+/e+/M4OufNMmvsGby//wBGxafn</latexit>

L = � ln dethF ip(d|✓fid)

Information maximizing neural networks: 
asymptotically optimal analysis, Fisher 
information, score computation if you don’t know 
the likelihood



IMNN recovers full info directly from the field

IMNN
trained 
here

IMNN posterior

IMNN PML 
estimator

Exact likelihood

Makinen et al., arXiv:2107.07405

https://arxiv.org/abs/2107.07405


The IMNN recovers the full information
Theoretical  (Cramer-Rao)
information
bound

Realized training loss

11 minutes on 1 GPUMakinen et al., arXiv:2107.07405

https://arxiv.org/abs/2107.07405


Non-Gaussian field 
inference with IMNN
and DELFI

Available as 
interactive notebook 
tutorial at
https://bit.ly/imnn-
cosmo

IMNN trained…

here first…
… then here.

Makinen et al., arXiv:2107.07405

https://bit.ly/imnn-cosmo
https://bit.ly/imnn-cosmo
https://arxiv.org/abs/2107.07405


Can define Fisher information and score on 
distributions of graphs

Makinen et al. arXiv:2207.05202

Example of using clusters 
of galaxies to infer 
cosmological parameters

Uses neurally derived 
Fisher score within 
pyDELFI.



Can define Fisher information and score on 
distributions of graphs



What if the number of parameters is large or 
simulations are scarce?
• General NDE becomes exponentially hard as number of dimensions 

increases.
• How do we handle high-dimensional problems?

• Simplify.



<latexit sha1_base64="m+IwnTiifUOvshEK789Mk/6gmUI="></latexit>

h✓ip(✓|d) = argmin
F(d)

Z
||✓ � F(d)||22 p(d, ✓)ddd✓

<latexit sha1_base64="ODaO3I3dMvZC1Pk8nZIhRMF/zDw=">AAAC33icfZFLb9QwEMed8CrhtYUjF4sV0hZtlyQHWkBIFe8LokjsttI6jSaON2vVech2EKskZ26IK3e+B5+Db4OTLBLbIkay9PPMf8aemagQXGnX/WXZFy5eunxl66pz7fqNm7cG27dnKi8lZVOai1weR6CY4Bmbaq4FOy4kgzQS7Cg6fdHGjz4xqXiefdSrggUpJBlfcArauMLBD5KCXsq0moFs5kQvmYYgrIpRj3W80zwjIJOUZ2HVaSmI6k0zMgHCM43rmozN6dS7RECWCNbfiOwum8XqOvRP/N3NSnV94oc+eYqLUTzutTs4jnHcsxMOhu7E7QyfB28Nw4Pn7uuflv/wMNy2hiTOaZmyTFMBSs09t9BBBVJzKljjkFKxAugpJGxuMIOUqaDqxtng+8YT40UuzTEddt6/MypIlVqlkVG2baizsdb5r9i81Iv9oOJZUWqW0f6hRSmwznG7GxxzyagWKwNAJTd/xXQJEqg2G3TIS2Z6keydqfu+YBJ0Lh9U6+U0preEjFv6nxA+/xEaMmP1zg7xPMz8ifdo4n0w832FettCd9E9NEIe2kMH6C06RFNELcdyrcfWExvsL/ZX+1svta11zh20Yfb331qa6mg=</latexit>

Var[✓]p(✓|d) = argmin
G(d)

Z
|| ||✓ � h✓ip(✓|d)||22 � G(d)||22 p(d, ✓)ddd✓

Main idea: skip compression step – go directly from data to posterior.


• Moment networks: obtain posterior moments directly from data by training NNs to  
solve 

• Marginal posterior networks: obtain low-dimensional posterior marginals directly 
from data by minimizing Kullback-Leibler divergence  
 
 
 
over network weights of a condi>onal neural density es>mator q. 

Solves curse of dimensionality through a combina6on of direct neural es6mates of 
posterior moments and low-dimensional posterior marginals.

SBI WITH MOMENT AND POSTERIOR MARGINAL NETWORKS

(Jeffrey & Wandelt arXiv:2011.05991, presented at NeurIPS 2020)

<latexit sha1_base64="cr/B1XaSYNOSRjSzoBLeRJc8evE="></latexit>Z
ln q(✓i, ✓j |d, w)p(d, ✓)d✓ dd

construct ,



Moment Network Example

Cosmology and astrophysics from full 
hydrodynamical simulations including black 
holes, star formation,…

Benjamin Wandelt



Large suites of full, cosmological hydrosimulations as a function of 
cosmological parameters and astrophysics models with multiple codes 
(AREPO/Illustris, GIZMO/SIMBA, Astrid,…). 

Cosmology and Astrophysics with Machine Learning

F. Villaescusa-Navarro, S. Genel, D. Angles-Alcazar et al. arXiv:2109.10915
F. Villaescusa-Navarro, D. Angles-Alcazar, S. Genel et al. arXiv:2010.00619



Cosmology on small scales with baryons
15 different 2-dimensional fields:
1. Gas mass
2. Dark matter mass
3. Stellar mass
4. Gas velocity
5. Dark matter velocity
6. Neutral hydrogen mass
7. Gas temperature
8. Electron density
9. Gas metallicity
10. Gas pressure
11. Magnetic fields
12. Mg/Fe
13. Total mass
14. N-body
15. All fields except dark matter

15,000 images per field from 1,000 
CAMELS-IllustrisTNG simulations.
Each image:
• 250x250 pixels
• 25x25 (Mpc/h)2

• 100 kpc/h resolution

1

2
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SBI: COSMOLOGY FROM SMALL-SCALE HYDRO
Computing posterior means & variances 
from gas temperature 
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Computing posterior means & variances 
from gas metallicity 

Posterior 
means & 
variances 
computed by 
moment 
network 
minimizing 

SBI: COSMOLOGY FROM SMALL-SCALE HYDRO
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What the cosmological AI tells us about the
CAMELS Multifield Data set
1. There is cosmological information on very small scales (100 kpc) 

2. The hydro outputs contain more information than the dark matter 
density

3. For total matter, inferences are robust to baryonic physics (good 
news for weak lensing!)

Benjamin Wandelt

Villaescusa-Navarro et al., arXiv:2109.09747, arXiv:2109.10360



Cosmology robust to baryonic physics

Benjamin Wandelt

Villaescusa-Navarro et al., arXiv:2109.10360 
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Same initial conditions!



Implicit Likelihood Inference with moment 
networks from surveys generated with semi-
analytic galaxy formation models

stellar mass selected sample

L. Perez et al. 2204.02408

Moment networks trained on SAMs run on 1000 DM sims (100 h-1 Mpc)3



High dimensional application of Moment 
Networks (with a single training image)

Jeffrey, Boulanger, Wandelt, Regaldo-Saint Blancard, Allys, Levrier 2021, arXiv:2111.01138
(Allys et al. 2020; Regaldo-Saint Blancard et al. 2021; Jeffrey & Wandelt, arXiv:2011.05991)

Uses a generative model based on Wavelet Phase Harmonics



Moment networks: 
Posterior means and variances pass quantile test

Benjamin Wandelt
Jeffrey, Boulanger, Wandelt, Regaldo-Saint Blancard, Allys, Levrier 2021, arXiv:2111.01138



What about inference about models? 

Can we compute the evidence ratio if we 
don’t know the likelihood?

Bayes factor K



Bayesian model comparison 

Even if likelihood and posterior are explicitly given

• Likelihood can be costly to evaluate
• Evidence can be hard to compute

Benjamin WandeltJeffrey & Wandelt, in prep

⟹𝑃 𝑑 𝑀 = ∫ 𝑃 𝑑 𝜃,𝑀 𝑃 𝜃|𝑀 𝑑𝜃

𝑃 𝜃 𝑑,𝑀 =
𝑃 𝑑 𝜃,𝑀 𝑃 𝜃|𝑀

𝑃(𝑑|𝑀)



Evidence Networks: example loss 
construction

Jeffrey & Wandelt, in prep



Example: evidence ratio with 100 parameters

Evidence Networks with a 
variant of the exponential 
loss.

This evidence computation 
does not explicitly depend 
on number of parameters!

Jeffrey & Wandelt, in prep



Evidence nets: more accurate and faster than nested sampling

Computational cost of evidence network includes time to generate sims 
and train. Application to a given data set is nearly instantaneous.



Example: cosmological initial conditions

We can build a non-linear time machine and
sample possible initial states 

that could have given rise to our universe.

Benjamin WandeltR. Legin et al., arxiv:2304.03788 



Score-based Diffusion model

• Consider a random walk of images
• Initialise with initial conditions
• Add Gaussian noise at every step
• This has an attractor: a Gaussian noise distribution

• Then sample by solving a series of inference problems to go from Gaussian 
noise back to a sample of the initial conditions
• If the number of steps is large enough, each step is a Gaussian inference 

problem! 
• Train a neural network on simulations to learn the posterior mean for each 

of these steps



F. Villaescusa-Navarro et al.: The QUIJOTE 
simulations to train machine learning surrogates
• Largest release of N-body simulation data to date

• 43,100 full GADGET 3 simulations (1 Gpc)3,   5123 or 10243 particles
• ~1 PB of data

• Goal: quantify statistics information content of non-Gaussian non-
linear density field about cosmological parameters
• Includes full dark matter snapshots, halo and void catalogues,  and 

many pre-computed statistics.

Excellent tool for training machine learning surrogates.

Villaescusa-Navarro et al, arXiv:1909.05273



• 1 Gpc GADGET1024^3 
simulation at z=0
• Binned on 128^3 grid 

First full-field inference of initial conditions 
from fully non-linear density field

R. Legin et al., arxiv:2304.03788 



First full-field inference of initial conditions 
from fully non-linear density field

R. Legin et al., arxiv:2304.03788 



First full-field inference of initial conditions 
from fully non-linear density field

R. Legin et al., arxiv:2304.03788 



First full-field inference of initial conditions 
from fully non-linear density field

R. Legin et al., arxiv:2304.03788 



First full-field inference of initial conditions 
from fully non-linear density field

R. Legin et al., arxiv:2304.03788 



First full-field inference of initial conditions 
from fully non-linear density field

R. Legin et al., arxiv:2304.03788 



Faithful reconstruction…



… including uncertainties (posterior variance)



Accurate 
reconstructions 

Points to note:

• full non-linear gravity
• No need for 

differentiability



Bonus material

• How do we get all these simulations?



N. Chartier et al: CARPool reduces the number of 
needed simulations by orders of magnitude

Convergence 
Acceleration by 
Regression and 
Pooling

uses fast, 
approximate 
surrogates to give 
unbiased, low-
variance estimates of 
full simulation results.

N. Chartier et al, arXiv:2009.08970



N. Chartier et al: CARPool Covariance reduces the 
number of simulations by orders of magnitude

Covariance 
matrices and 
inverses
10 fold reduction 
in number of 
simulations for 
comparable 
accuracy

N. Chartier et al, arXiv:2106.11718



New: Bayesian CARPool estimators for the covariance

Chartier & Wandelt, arXiv:2204.03070 



The CARPool Bootstrap: a Non-perturbative, 
Statistical Approach to “Perturbation Theory”
• Take existing set of numerical simulations for Model A
• For Model B, change parameters, include new effects
• Use Model A solutions as “surrogates” and apply CARPool:

• Run a few simulations for Model B that are correlated with existing set (e.g., 
same initial conditions)

• Use Model A solutions to subtract statistical fluctuations.

• Result: precision expectation values and covariances for the new 
model with only a handful of simulations

Chartier & Wandelt, arXiv:2204.03070 



BORG and related projects: aquila-consortium.org

IMNN: bitbucket.org/tomcharnock/imnn/

DELFI: github.com/justinalsing/pydelfi

The Quijote Simulations: github.com/franciscovillaescusa/Quijote-simulations

The Camels Simulations: camel-simulations.org

Codes and Data

Benjamin Wandelt

http://aquila-consortium.org/
https://bitbucket.org/tomcharnock/imnn/
https://github.com/justinalsing/pydelfi
https://github.com/franciscovillaescusa/Quijote-simulations
https://www.camel-simulations.org/


Benjamin Wandelt



Easy evidence calculation

• If you have a nested model, and if the prior for the additional 
parameter is independent of the other parameters, evidence 
calculation becomes simple
– the Savage-Dickey ratio

Benjamin Wandelt

p(d|M✓,⇣)

p(d|M✓,⇣=0)
=

p(⇣ = 0|M✓,⇣)

p(⇣ = 0|d,M✓,⇣)

⇣

Posterior(    ) in bigger model⇣

Prior(    ) in bigger model⇣


