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Problems with standard model:

Singularity

Horizon

Flatness

Homogeneity

Perturbations

Dark matter

Dark energy / cosmological constant

Baryogenesis

...

Topological defects (monopoles)

Accepted solution = INFLATION

(Linde’s book)
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Alternative model???

string based ideas (PBB, other brane models, string gas, …)

singularity, initial conditions & homogeneity

provide challengers!

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

Quantum gravity / cosmology

bounces
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Problems of Inflation 3
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Fig. 1. Space-time diagram (sketch) showing the evolution of scales in inflationary
cosmology. The vertical axis is time, and the period of inflation lasts between ti and
tR, and is followed by the radiation-dominated phase of standard big bang cosmol-
ogy. During exponential inflation, the Hubble radius H

−1 is constant in physical
spatial coordinates (the horizontal axis), whereas it increases linearly in time after
tR. The physical length corresponding to a fixed comoving length scale labelled by
its wavenumber k increases exponentially during inflation but increases less fast than
the Hubble radius (namely as t

1/2), after inflation.

From R. Brandenberger, in M. Lemoine, J. Martin & P. P. (Eds.), “Inflationary cosmology”,
Lect. Notes Phys. 738 (Springer, Berlin, 2007).

 Scalar field origin?

 Trans-Planckian

 Hierarchy (amplitude)

 Singularity

 Validity of GR?
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A brief history of bouncing cosmology

R. C. Tolman,  “On the Theoretical Requirements for a Periodic Behaviour of the Universe”, PRD 38, 1758 (1931) 

G. Lemaître,  “L’Univers en expansion”, Ann. Soc. Sci. Bruxelles (1933) 
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R. Durrer & J. Laukerman,  “The oscillating Universe: an alternative to inflation”, Class. Quantum Grav. 13, 1069 (1996) 

Quantum nucleation?

Penrose: BH formation 

PBB - Ekpyrotic - Modified gravity - Quantum cosmology - Quintom - 
Horava-Lifshitz - Lee-Wick - ...

A. A. Starobinsky,  “On one non-singular isotropic cosmological model”, Sov. Astron. Lett. 4, 82 (1978) 
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Pre Big Bang scenario: (cf. M.Gasperini & G. Veneziano, arXiv: hep-th/0703055)
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Pre Big Bang scenario: (cf. M.Gasperini & G. Veneziano, arXiv: hep-th/0703055)

20 M. Gasperini and G. Veneziano

tions [44, 45]. With such potential V = V (φ) the string cosmology equations
can be rewritten in terms of a, φ, ρ = ρa3 and p = pa3 as follows [36, 37, 38]:

φ̇
2
− 3H2 − V (φ) = 2λ2

se
φ ρ,

Ḣ − Hφ̇ = λ2
s e

φ p,

2φ̈ − φ̇
2
− 3H2 + V (φ) −

∂V

∂φ
= 0. (12)

These equations are still invariant under the duality transformations (4),
(7) but, differently from Eq. (5), they admit regular and self-dual solutions.
We can also obtain exact analytical integrations for appropriate forms of the
potential V (φ), and for equations of state such that p/ρ can be written as
integrable function of a suitable time parameter [15].

Let us consider, as a simple example, the exponential potential V =
−V0 exp(2φ) (with V0 > 0), to be regarded here only as an effective, low-
energy description of the quantum-loop backreaction, possibly computable at
higher orders. Let us use, in addition, an equation of state (motivated by an-
alytical simulations concerning the equation of state of a string gas in back-
grounds with rolling horizons [46]) evolving between the asymptotic values
p = −ρ/3 at t → −∞ and p = ρ/3 at t → +∞, so as to match the low-energy
pre-and post-big bang solutions (10) and (8), respectively. The plot of the
corresponding solution (see [15] for the exact analytic form) is illustrated in
Fig. 2.
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Fig. 2. Example of smooth transition between a phase of pre-big bang inflation and
the standard radiation-dominated evolution.

The solution smoothly interpolates between the string perturbative vac-
uum at t → −∞ and the standard, radiation-dominated phase at constant
dilaton (described by Eq. (8)) at t → +∞, after a pre-big bang phase of grow-
ing curvature and growing dilaton described by Eq. (10). The dashed curves

22 M. Gasperini and G. Veneziano
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Fig. 3. Example of pre-big bang evolution represented in the E-frame, where the
scale factor is shrinking and the Hubble parameter HE is negative. The plots are
obtained from Eq. (14) with a0 = 0.8, φ0 = 0, ρ0 = 1, η0 = 1.

strong coupling, in a marked quantum regime. Nevertheless, an epoch of pre-
big bang inflation is able to solve the kinematical problems of the standard
scenario starting from different initial conditions which are not necessarily
unnatural [49] or unlikely [50] (see also [51] for a detailed comparison of the
pre-big bang versus post-big bang inflationary kinematics). A possible excep-
tion concerns the presence of primordial “shear”, which is not automatically
inflated away during the phase of pre-big bang evolution: the isotropization
of the three-dimensional spatial sections might require some specific post-big
bang mechanism (see e.g. the discussion of [52]), differently from the standard
inflationary scenario where the dilution of shear is automatic.

Quantum effects, in the pre-big bang scenario, can become important to-
wards the end of the inflationary regime. We can say, in particular, that the
monotonic growth of the curvature and of the string coupling automatically
“prepares” the onset of a typically “stringy” epoch at strong coupling. This
epoch could be characterized by the production of a gas of heavy objects
(such as winding strings [53, 54] or mini-black holes [55]) as well as light,
higher-dimensional branes [56]. In such a context the interaction (and/ or the
eventual collision) of two branes can drive a phase of slow-roll inflation [26],
as discussed in Sect. 3.

At this point of the cosmological evolution there are two possible alterna-
tives.

i) The phase of string/brane dominated inflation is long enough to dilute
all effects of the preceding phase of dilaton inflation, and to give rise to
an epoch of slow-roll inflation able to prepare the subsequent evolution,
according to the conventional inflationary picture.

ii) The back-reaction of the quantum fluctuations, amplified by the phase of
pre-big bang inflation, induces a bounce as soon as the Universe reaches

string frame Einstein frame
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Ekpyrotic scenario: 

3

inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
ing

S5 ∝
∫

M5

d5x
√

−g5

[

R
(5)

−
1

2
(∂ϕ)2 −

3

2

e2ϕF2

5 !

]

, (1)

where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely

S4 =

∫

M4

d4x
√

−g4

[

R
(4)

2κ
−

1

2
(∂φ)2 − V (φ)

]

, (2)

with

V (ϕ) = −Vi exp

[

−
4
√

πγ

mPl

(ϕ − ϕi)

]

, (3)

where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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Standard Failures and some solutions

Singularity

Horizon

Flatness

Homogeneity

Perturbations
Others

Merely a non issue in the bounce case!

see coming slides

dark matter/energy, baryogenesis, ...

T0a
3ω
0 ! 1500!Pl

nS = 0.96 ± 0.02 =⇒ w ∼< 8 × 10−4

! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

d

dt
|Ω − 1| = −2

ä

ȧ3

6

accelerated expansion (inflation) or decelerated contraction (bounce)

Last
Scattering
surface

ä < 0 & ȧ < 0

ρcrit ≡
3H2

8πGN

Ω ≡
ρtot

ρcrit

Ω = 1 =⇒ K = 0

ä

a
=

1

3
[Λ − 4πGN (ρ + p)]

H2 +
K
a2

=
1

3
(8πGNρ + Λ)

ω =
1

3

p = ωρ

1

T0a
3ω
0 ! 1500!Pl

nS = 0.96 ± 0.02 =⇒ nS ∼< 8 × 10−4

! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

6

can be made divergent easily if

T0a
3ω
0 ! 1500!Pl

nS = 0.96 ± 0.02 =⇒ nS ∼< 8 × 10−4

! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

6

 Large & flat Universe + low initial density + diffusion

T0a
3ω
0 ! 1500!Pl

nS = 0.96 ± 0.02 =⇒ w ∼< 8 × 10−4

! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

d

dt
|Ω − 1| = −2

ä

ȧ3

tdiffusion

tHubble
∝

λ

R1/3
H

(

1 +
λ

AR2
H

)

=⇒

6

enough time to dissipate any wavelength

T0a
3ω
0 ! 1500!Pl

nS = 0.96 ± 0.02 =⇒ w ∼< 8 × 10−4

! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

d

dt
|Ω − 1| = −2

ä

ȧ3

tdiffusion

tHubble
∝

λ

R1/3
H

(

1 +
λ

AR2
H

)

=⇒

6

vacuum state!

tdissipation

η0

I = R −
√

3 (4RµνRµν − R2)

=⇒
dV

dϕ
= I

S =
1

16πG
N

∫

d4x
√
−g

[

R +
N

∑

i=1

ϕiI
(i) − V (ϕ)

]

s → nπ

ma
x(s) =

Aa sin
(

s
√

1 + x2
)

+ Ba cos
(

s
√

1 + x2
)

sin s

1
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Initial conditions
fixed in the 
contracting era

∃t; !(t) = !0
a0

a(t)
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf $ 10−3M
Pl

S3 > S2 > S1

η

1

∃t; !(t) = !0
a0

a(t)
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf $ 10−3M
Pl

S3 > S2 > S1

a(η)

1

∃t; !(t) = !0
a0

a(t)
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf $ 10−3M
Pl

S3 > S2 > S1

a(η)





Φ+
g

Φ+
d



 = Tij(k)





Φ−
g

Φ−

d





1

???????
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H
(t
)

S =

∫

d4x
√
−g

[

R

6!2
Pl

−
1

2
∂µϕ∂µϕ − V (ϕ)

]

7

11

Self consistent bounce:

One d.o.f. + 4 dimensions G.R.

S =

∫

d4x
√
−g

[

R

6!2
Pl

−
1

2
∂µϕ∂µϕ − V (ϕ)

]

ds2 = dt2 − a2(t)

(

dr2

1 −Kr2
+ r2dΩ2

)

7

Positive spatial curvature

S =

∫

d4x
√
−g

[

R

6!2
Pl

−
1

2
∂µϕ∂µϕ − V (ϕ)

]

ds2 = dt2 − a2(t)

(

dr2

1 −Kr2
+ r2dΩ2

)

H2 =
1

3

(

1

2
ϕ̇2 + V

)

−
K
a2

7

F. Falciano, M. Lilley & P. P., Phys. Rev. D77, 083513 (2008) 
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a = a0

[

1 +

(

T

T0

)2
]

1
3(1−ω)

K = +1

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T )Ψ(2) [v, T ; a (T )]

∆Φ = −
3!2

Pl

2

√

ρ + p

ω
a

d

dη

(v

a

)

ds2 = a2(η)
{

(1 + 2Φ) dη2 − [(1 − 2Φ) γij + hij ] dxidxj
}

dη = a3ω−1dT

i
∂Ψ(2)

∂η
=

∫

d3x

(

−
1

2

δ2

δv2
+

ω

2
v,iv

,i −
a′′

a

)

Ψ(2)

v′′k +

(

c2
S
k2 −

a′′

a

)

vk = 0

4

Perturbations:

S =

∫

d4x
√
−g

[

R

6!2
Pl

−
1

2
∂µϕ∂µϕ − V (ϕ)

]

ds2 = dt2 − a2(t)

(

dr2

1 −Kr2
+ r2dΩ2

)

H2 =
1

3

(

1

2
ϕ̇2 + V

)

−
K
a2

Φ =
3Hu

2a2θ
θ ≡

1

a

√

ρϕ

ρϕ + pϕ

(

1 −
3K

ρϕa2

)

7

S =

∫

d4x
√
−g

[

R

6!2
Pl

−
1

2
∂µϕ∂µϕ − V (ϕ)

]

ds2 = dt2 − a2(t)

(

dr2

1 −Kr2
+ r2dΩ2

)

H2 =
1

3

(

1

2
ϕ̇2 + V

)

−
K
a2

Φ =
3Hu

2a2θ
θ ≡

1

a

√

ρϕ

ρϕ + pϕ

(

1 −
3K

ρϕa2

)

u′′ +

[

k2 −
θ′′

θ
− 3K

(

1 − c2
S

)

]

u = 0

Pζ = Akn
S
−1 cos

(

ω
kph

k#
+ ψ

)

L = p(X, ϕ)

X ≡
1

2
gµν∂µϕ∂νϕ

T µν = (ρ + p)uµuν − pgµν

ρ ≡ 2X
∂p

∂X
− p

uµ ≡
∂µϕ√
2X

8

ω > −
1

3

S =

∫

d4x
√
−g

[

R

6"2
Pl

−
1

2
∂µϕ∂µϕ − V (ϕ)

]

ds2 = dt2 − a2(t)

(

dr2

1 −Kr2
+ r2dΩ2

)

H2 =
1

3

(

1

2
ϕ̇2 + V

)

−
K
a2

Φ =
3Hu

2a2θ
θ ≡

1

a

√

ρϕ

ρϕ + pϕ

(

1 −
3K

ρϕa2

)

u′′ +

[

k2 −
θ′′

θ
− 3K

(

1 − c2
S

)

]

u = 0

Pζ = AknS−1 cos2
(

ω
kph

k#
+ ψ

)

L = p(X, ϕ)

X ≡
1

2
gµν∂µϕ∂νϕ

T µν = (ρ + p)uµuν − pgµν

ρ ≡ 2X
∂p

∂X
− p

8

Cargese - 6th July 2010 14

10 20 50 100 200 500 1000

1000

2000

3000

4000

5000

6000

l

!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!

!l"1"
C
l

2
Π

Data!

105 

104 

1000 

100 

10 

1 

104 1000 

0.001 0.01 0.1 1 10 

100 10 1 

Wavelength (h–1 Mpc)

Wave number k (h / Mpc)

Po
w

er
 s

pe
ct

ru
m

 t
od

ay
 P

(k
) 

(h
–1

 M
pc

)3

CMB
SDSS Galaxies 
Cluster abundance
Gravitational lensing
Lyman – α forest

No obvious oscillations ...



Cargese - 6th July 2010 15

1 10 100 1000
l

0
2
0
0
0

4
0
0
0

6
0
0
0

 l
(l

+
1
)C

l 
/2
!
!!
"!
#
"
$%

WMAP1
WMAP3

#=10
3
  k

*
=10

-2
 Mpc

-1

Cargese - 6th July 2010

T0a
3ω
0 ! 1500!Pl

nS = 0.96 ± 0.02 =⇒ w ∼< 8 × 10−4

! 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
! 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

d

dt
|Ω − 1| = −2

ä

ȧ3

tdiffusion

tHubble
∝

λ

R1/3
H

(

1 +
λ

AR2
H

)

=⇒

ω > −
1

3

6

16

A specific model: 4D Quantum cosmology

Perfect fluid: bounce

no horizon problem if 

Results:
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Digression: about QM

Schrödinger

Polar form of the wave function

Hamilton-Jacobi 

quantum
potential

Cargese - 6th July 2010 18

Ontological interpretation (BdB)

Trajectories satisfy

Properties: 

classical limit well defined
state dependent
      intrinsic reality

no need for external classical domain!

strictly equivalent to Copenhagen QM
probability distribution (attractor) 

non local … 

∃ x(t)

m
d2

x(t)
dt2

= −∇ (V + Q)

∃t0; ρ (x, t0) = |Ψ (x, t0)|2

Q −→ 0

∃

ds
2 = N

2(τ)dτ − a
2(τ)γijdx

idx
j

p = p0

�
ϕ̇ + θṡ

N(1 + ω)

� 1+ω
ω

(ϕ, θ, s) =

T = −pse−s/s0p
−(1+ω)
ϕ s0ρ

−ω
0

H =
�
−p

2
a

4a
−Ka +

pT

a3ω

�
N

a
3ω

2
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The two-slit experiment:

Cargese - 6th July 2010 20

Trajectories in the two-slit experiment
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H =

(

−
p2

a

4a
−Ka +

pT

a3ω

)

N

a3ω

HΨ = 0

i
∂Ψ

∂T
=

1

4
a3(ω−1)/2 ∂

∂a

[

a(3ω−1)/2 ∂

∂a

]

Ψ + KaΨ

K = 0 =⇒ χ ≡
2a3(1−ω)/2

3(1 − ω)
=⇒ i

∂Ψ

∂T
=

1

4

∂2Ψ

∂χ2

χ > 0

Ψ̄
∂Ψ

∂χ
= Ψ

∂Ψ̄

∂χ

Ψ =

∫

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

[

8T0

π (T 2
0 + T 2)

2

]
1
4

exp

(

−
T0χ

2

T 2
0 + T 2

)

e−iS(χ,T )

S =
Tχ2

T 2
0 + T 2

+
1

2
arctan

T0

T
−

π

4

4

Quantum cosmology
+ canonical transformation
+ rescaling (volume …)
+ units

= a simple Hamiltonian:

space defined by constraint

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

3

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

3

Wheeler-De Witt

∃ x(t)

m
d2

x(t)
dt2

= −∇ (V + Q)

∃t0; ρ (x, t0) = |Ψ (x, t0)|2

Q −→ 0

ds
2 = N

2(τ)dτ − a
2(τ)γijdx

idx
j

p = p0

�
ϕ̇ + θṡ

N(1 + ω)

� 1+ω
ω

(ϕ, θ, s) =

T = −pse−s/s0p
−(1+ω)
ϕ s0ρ

−ω
0

H =
�
−p

2
a

4a
−Ka +

pT

a3ω

�
N

a
3ω

HΨ = 0

2

+ Technical trick:

21
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ȧ = {a, H}

a = a0

[

1 +

(

T

T0

)2
]

1
3(1−ω)

K = +1

a(T )

Q(T )

H = H(0) + H(2) + · · ·

Ψ = Ψ(0) (a, T )Ψ(2) [v, T ; a (T )]

∆Φ = −
3!2

Pl

2

√

ρ + p

ω
a

d

dη

(v

a

)

ds2 = a2(η)
{

(1 + 2Φ) dη2 − [(1 − 2Φ) γij + hij ] dxidxj
}

dη = a3ω−1dT

i
∂Ψ(2)

∂η
=

∫

d3x

(

−
1

2

δ2

δv2
+

ω

2
v,iv

,i −
a′′

a

)

Ψ(2)

5
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WKB exact superposition:
alternative way of getting the solution:

Gaussian wave packet

phase

Bohmian trajectory

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

3

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

3

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

�
8T0

π (T 2
0 + T 2)2

� 1
4

exp
�
− T0χ2

T 2
0 + T 2

�
e−iS(χ,T )

3

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

�
8T0

π (T 2
0 + T 2)2

� 1
4

exp
�
− T0χ2

T 2
0 + T 2

�
e−iS(χ,T )

S =
Tχ2

T 2
0 + T 2

+
1
2

arctan
T0

T
− π

4

3

i
∂Ψ
∂T

=
1
4
a
3(ω−1)/2 ∂

∂a

�
a
(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a
2(1−ω

/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

�
8T0

π (T 2
0 + T 2)2

� 1
4

exp
�
− T0χ2

T
2
0 + T 2

�
e−iS(χ,T )

S =
Tχ2

T
2
0 + T 2

+
1
2

arctan
T0

T
− π

4

ȧ = {a,H}

3
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quantum potential

i
∂Ψ
∂T

=
1
4
a
3(ω−1)/2 ∂

∂a

�
a
(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a
2(1−ω

/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

�
8T0

π (T 2
0 + T 2)2

� 1
4

exp
�
− T0χ2

T
2
0 + T 2

�
e−iS(χ,T )

S =
Tχ2

T
2
0 + T 2

+
1
2

arctan
T0

T
− π

4

ȧ = {a,H}

a = a0

�
1 +

�
T

T0

�2
� 1

3(1−ω)

K = 0

3

i
∂Ψ
∂T

=
1
4
a
3(ω−1)/2 ∂

∂a

�
a
(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a
2(1−ω

/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

Ψ =
�

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

�
8T0

π (T 2
0 + T 2)2

� 1
4

exp
�
− T0χ2

T
2
0 + T 2

�
e−iS(χ,T )

S =
Tχ2

T
2
0 + T 2

+
1
2

arctan
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What about the perturbations?

conformal time
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+ canonical transformations:

Fourier mode
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+ evolution (matchings and/or numerics)
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FIG. 1: Time evolution of the scalar mode function for the equation of state ω = 0.1 in the one-fluid model of the bounce. The
left panel shows the full time evolution which was computed, i.e., the function S(x), while the right panel shows v(x) itself,
both plots having k̃ = 10−3. For x < 0, there are oscillations only in the real and imaginary parts of the mode, so the amplitude
shown is a non oscillating function of time. It however acquires an oscillating piece after the bounce has taken place.
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coming from Eq. (17) reads
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which implies in the Bohm interpretation that
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in accordance with the classical relations ȧ = {a, H} =
−a(3ω−1)Pa/2 and Pa = ∂S/∂a.

Inserting the phase of (20) into Eq. (22), we obtain the
Bohmian quantum trajectory for the scale factor:
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Note that this solution has no singularities and tends to
the classical solution when T → ±∞. Remember that we
are in the gauge N = a3ω, and T is related to conformal
time through

NdT = adη =⇒ dη = [a(T )]3ω−1 dT. (24)

The solution (23) can be obtained for other initial wave
functions (see Ref. [8]).

The Bohmian quantum trajectory a(T ) can be used
in Eq. (16). Indeed, since one can view a(T ) as a func-
tion of T , it is possible to implement the time dependent
canonical transformation generated by
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ȧv2

2a

)]

× (25)

× exp

{

i

[
∫

d3x

(

vπ + πv

2

)

ln

(

1

a

)]}

. (26)

As a(T ) is a given quantum trajectory coming from
Eq. (17), Eq. (25) must be viewed as the generator of
a time dependent canonical transformation to Eq. (17).
It yields, in terms of conformal time, the equation for
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This is the most simple form of the Schrödinger equa-
tion which governs scalar perturbations in a quantum
minisuperspace model with fluid matter source. The cor-
responding time evolution equation for the operator v in
the Heisenberg picture is given by
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where a prime means derivative with respect to confor-
mal time. In terms of the normal modes vk, the above
equation reads
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These equations have the same form as the equations for
scalar perturbations obtained in Ref. [1]. This is quite
natural since for a single fluid with constant equation of
state ω, the pump function z′′/z obtained in Ref. [1] is
exactly equal to a′′/a obtained here. The difference is
that the function a(η) is no longer a classical solution
of the background equations but a quantum Bohmian
trajectory of the quantized background, which may lead
to different power spectra.
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FIG. 1: Time evolution of the scalar mode function for the equation of state ω = 0.1 in the one-fluid model of the bounce. The
left panel shows the full time evolution which was computed, i.e., the function S(x), while the right panel shows v(x) itself,
both plots having k̃ = 10−3. For x < 0, there are oscillations only in the real and imaginary parts of the mode, so the amplitude
shown is a non oscillating function of time. It however acquires an oscillating piece after the bounce has taken place.
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Bohmian quantum trajectory for the scale factor:
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Note that this solution has no singularities and tends to
the classical solution when T → ±∞. Remember that we
are in the gauge N = a3ω, and T is related to conformal
time through

NdT = adη =⇒ dη = [a(T )]3ω−1 dT. (24)

The solution (23) can be obtained for other initial wave
functions (see Ref. [8]).
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This is the most simple form of the Schrödinger equa-
tion which governs scalar perturbations in a quantum
minisuperspace model with fluid matter source. The cor-
responding time evolution equation for the operator v in
the Heisenberg picture is given by
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where a prime means derivative with respect to confor-
mal time. In terms of the normal modes vk, the above
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)

vk = 0. (29)

These equations have the same form as the equations for
scalar perturbations obtained in Ref. [1]. This is quite
natural since for a single fluid with constant equation of
state ω, the pump function z′′/z obtained in Ref. [1] is
exactly equal to a′′/a obtained here. The difference is
that the function a(η) is no longer a classical solution
of the background equations but a quantum Bohmian
trajectory of the quantized background, which may lead
to different power spectra.
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FIG. 2: Rescaled power spectra for scalar and tensor pertur-
bations as functions of time for ω = 0.01 and two different
values of k̃. It is clear from the figure that not only both
spectra reach a constant mode, but also that this mode does
behave as indicated in Eqs. (46) and (50). It is purely inci-
dental that the actual constant value of both modes are very
close for that particular value of ω. The constant values ob-
tained in this figure are the one used to derive the spectrum
below. In this figure and the following, the value of nS used
to rescale Φ is the one derived in Eq. (46), thus proving the
validity of the analytic calculation.
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FIG. 3: Rescaled power spectra for ω = 8×10−4, correspond-
ing to the conservative maximum bound on the deviation from
a scale invariant spectrum nS = 1.01, as function of k. The
scalar spectrum PΦ is the full line, while the dashed line is
the gravitational wave spectrum Ph. Also shown is the ratio
T/S (dotted); in this case, the T/S " 5.2 × 10−3, i.e. almost
two orders of magnitude below the current limit. This case
has a typical bounce length-scale of L0 ∼ 1.47 × 103"Pl . The
amplitude of the modes is obtained as the constant part of
Fig. 2.

satisfies the same dynamical equation (51) with cs → 1,
with µ subject to initial condition

µini =

√

3

k
$Ple

−ikη . (57)

From the above defined spectra, one reads the ampli-
tudes
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Pζ (58)

and

A2
T
≡

1

100
Ph, (59)

where we assume the classical relation between Φ and the
curvature perturbation ζ through

ζ =
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Φ → Pζ =

[

5 + 3ω

3(1 + ω)

]2

PΦ, (60)

to obtain the observed spectrum. Since both spectra are
identical power laws, and indeed almost scale invariant
power laws, the tensor-to-scalar (T/S) ratio, defined by
the CMB multipoles C$ at $ = 10 as

T
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10

C(S)
10

= F(Ω, · · ·)
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T

A2
S

, (61)

can easily be computed (see, e.g., [16] and references
therein). In Eq. (61), the function F depends entirely
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WMAP constraint

predictions

spectrum slightly blue

power-law + concordance
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monopoles = ???

Dark energy ...

Cosmology without inflation?

 New solutions to old puzzles

 No singularity 

 G.R. ...

(oscillations, T/S ...)New predictions

String implementation

Cosmology without inflation!

Model dependence

Future

Non gaussianities


