
Cargèse / 18 september 2014

Patrick Peter
Institut d’Astrophysique de Paris 

GRεCO

Bouncing Universe Models

Cargèse - 18 Sept. 2014



Cargèse / 18 september 2014

A brief history of bouncing cosmology
∃t; ℓ(t) = ℓ0

a0

a(t)
≤ ℓ

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf ≃ 10−3M
Pl

S1

1

∃t; ℓ(t) = ℓ0
a0

a(t)
≤ ℓ

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf ≃ 10−3M
Pl

S2 > S1

1

∃t; ℓ(t) = ℓ0
a0

a(t)
≤ ℓ

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf ≃ 10−3M
Pl

S3 > S2 > S1

1

Quantum nucleation?

Penrose: BH formation 

PBB - Ekpyrotic - Modified gravity - Quantum cosmology - Quintom -  
Horava-Lifshitz - Lee-Wick - ...

M. Novello & S.E. Perez Bergliaffa,  “Bouncing cosmologies”, Phys. Rep. 463, 127  (2008) 

R. C. Tolman,  “On the Theoretical Requirements for a Periodic Behaviour of the Universe”, PRD 38, 1758 (1931) 

G. Lemaître,  “L’Univers en expansion”, Ann. Soc. Sci. Bruxelles (1933) 

A. A. Starobinsky,  “On one non-singular isotropic cosmological model”, Sov. Astron. Lett. 4, 82 (1978) 
M. Novello & J. M. Salim,  “Nonlinear photons in the universe”, Phys. Rev. 20, 377  (1979) 

V. N. Melnikov, S.V. Orlov, Phys. Lett. A 70, 263 (1979).
 R. Durrer & J. Laukerman,  “The oscillating Universe: an alternative to inflation”, Class. Quantum Grav. 13, 1069 (1996) 

...

...



Cargèse / 18 september 2014

A brief history of bouncing cosmology
∃t; ℓ(t) = ℓ0

a0

a(t)
≤ ℓ

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf ≃ 10−3M
Pl

S1

1

∃t; ℓ(t) = ℓ0
a0

a(t)
≤ ℓ

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf ≃ 10−3M
Pl

S2 > S1

1

∃t; ℓ(t) = ℓ0
a0

a(t)
≤ ℓ

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf ≃ 10−3M
Pl

S3 > S2 > S1

1

Quantum nucleation?

Penrose: BH formation 

PBB - Ekpyrotic - Modified gravity - Quantum cosmology - Quintom -  
Horava-Lifshitz - Lee-Wick - ...

M. Novello & S.E. Perez Bergliaffa,  “Bouncing cosmologies”, Phys. Rep. 463, 127  (2008) 

R. C. Tolman,  “On the Theoretical Requirements for a Periodic Behaviour of the Universe”, PRD 38, 1758 (1931) 

G. Lemaître,  “L’Univers en expansion”, Ann. Soc. Sci. Bruxelles (1933) 

A. A. Starobinsky,  “On one non-singular isotropic cosmological model”, Sov. Astron. Lett. 4, 82 (1978) 
M. Novello & J. M. Salim,  “Nonlinear photons in the universe”, Phys. Rev. 20, 377  (1979) 

V. N. Melnikov, S.V. Orlov, Phys. Lett. A 70, 263 (1979).
 R. Durrer & J. Laukerman,  “The oscillating Universe: an alternative to inflation”, Class. Quantum Grav. 13, 1069 (1996) 

...

...

D. Battefeld & PP, “A Critical Review of Classical Bouncing Cosmologies”, 1406.2790



Cargèse / 18 september 2014

Singularity problem
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Implementing a bounce = problem with GR!

Violation of Null Energy Condition (NEC)
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rive the relevant perturbation potentials.

A. The de Sitter–like bounce

Once the background is fixed, the effective potentials for
the quantities u and v are completely specified. In this sec-
tion, our aim is therefore to discuss how one can model the
scale factor of a bouncing universe. At this point, one should
notice the differences !and similarities" with inflation. In an
inflationary universe, the behavior of the scale factor is
known: essentially, this is a#!$!!1, i.e. the de Sitter phase.
However, one can also treat slightly more complicated back-
grounds by means of an expansion around this de Sitter so-
lution. This expansion is characterized by the so-called slow-
roll parameters %24&, which are constrained to be small. The
de Sitter solution also exists in the bounce case %25& and, as
we shall see, it can be used in much the same way. However,
contrary to the inflation case, there is no fundamental reason
why the background equation of state should be close to
vacuum. Despite this fact, one can nevertheless expand
around the K"1 de Sitter spacetime and similarly define
parameters which control the departure from it. Obviously,
those parameters are not subject to tight constraints, and in
particular are not required to be small.
For K#0, the de Sitter solution %25& corresponds to the

scale factor a(t)"a0cosh('t), which is expressed as a func-
tion of the cosmic time t, with '"1/a0. More general solu-
tions are obtained by relaxing this last constraint and consid-
ering a general value for ' . These de Sitter–like solutions
are the ones we shall be concerned with in what follows: our
expansion will be based on these solutions. In terms of con-
formal time, one can integrate the relation ad$"dt to get

a!$""a0!1$tan2" $
$0

# , !21"

where the conformal time is bounded within the range
!(/2%$/$0%(/2 and the conformal time duration $0 is
related to the de Sitter coefficient ' through $0"(a0')

!1

%the solution !21" is shown in Fig. 1&.
In order to understand the dynamics of this solution, one

needs to obtain the evolution of the scalar field. It can be
integrated straightforwardly with the scale factor !21": from
Eqs. !4" and !5", one obtains

)")0$!2*

+ " $$
(

2
$0# , !22"

where we have set )→)0 as the cosmic time t→!, , i.e. as
$/$0→!(/2, and we also have defined a parameter

*-1!
1

$0
2

!23"

for further convenience. We shall keep this definition later on
for more general bounces than the quasi–de Sitter ones.
It should be noted that the parameter * , in the case of de

Sitter like expansion !21" is, according to the definition !6",
*dS"H 2. , which is proportional to /$p . As a result, the

null energy condition at the bounce can only be satisfied
provided *#0, i.e. if !$0!01: indeed, one has

lim
$→0

!/$p ""2
*

a0
2
, !24"

a relation which we shall use in the rest of the paper to define
* in a solution-independent way. As emphasized before, the
case $0"1 corresponds to a constant scalar field potential
and to an equation of state /"!p and is thus the exact
counterpart of the inflationary de Sitter solution. The scalar
field time derivative is now simply obtained as

d)

dt
"
d)

ad$
"
1

a0 $ 2*

+%1$tan2" $
$0

# &' 1/2

. !25"

Both the field and its time derivative are displayed in Fig. 2

FIG. 1. Scale factors as functions of the conformal time $ cor-

responding to the de Sitter–like solution %Eq. !21", full line& and its
various levels of approximations stemming from Eq. !30", namely
up to quadratic !dashed", quartic !dotted", sixth !dot-dashed" and
eighth power !dot-dot-dashed". The last two approximations, al-
though clearly better from the point of view of the scale factor, do

not lead to any new qualitative information as far as the evolution

of the perturbations is concerned.

FIG. 2. Behavior of the scalar field and its coordinate time

derivative as functions of the conformal time $ !varying between
!(/2 and (/2 for the overall evolution of the Universe" for the
de Sitter–like solution with $0"1.01.

PARAMETRIC AMPLIFICATION OF METRIC . . . PHYSICAL REVIEW D 68, 103517 !2003"

103517-5
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Modify GR?

Add new terms?

K-bounce, Ghost condensates, Galileons...?
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Singularity problem Purely classical effect?
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Pre Big Bang scenario: (cf. M. Gasperini & G. Veneziano, arXiv: hep-th/0703055)

20 M. Gasperini and G. Veneziano

tions [44, 45]. With such potential V = V (φ) the string cosmology equations
can be rewritten in terms of a, φ, ρ = ρa3 and p = pa3 as follows [36, 37, 38]:

φ̇
2
− 3H2 − V (φ) = 2λ2

se
φ ρ,

Ḣ − Hφ̇ = λ2
s e

φ p,

2φ̈ − φ̇
2
− 3H2 + V (φ) −

∂V

∂φ
= 0. (12)

These equations are still invariant under the duality transformations (4),
(7) but, differently from Eq. (5), they admit regular and self-dual solutions.
We can also obtain exact analytical integrations for appropriate forms of the
potential V (φ), and for equations of state such that p/ρ can be written as
integrable function of a suitable time parameter [15].

Let us consider, as a simple example, the exponential potential V =
−V0 exp(2φ) (with V0 > 0), to be regarded here only as an effective, low-
energy description of the quantum-loop backreaction, possibly computable at
higher orders. Let us use, in addition, an equation of state (motivated by an-
alytical simulations concerning the equation of state of a string gas in back-
grounds with rolling horizons [46]) evolving between the asymptotic values
p = −ρ/3 at t → −∞ and p = ρ/3 at t → +∞, so as to match the low-energy
pre-and post-big bang solutions (10) and (8), respectively. The plot of the
corresponding solution (see [15] for the exact analytic form) is illustrated in
Fig. 2.

t

H
2

gS

Ρe
Φ

pe
Φ

PRE#BIGBANG POST#BIGBANG

V

Fig. 2. Example of smooth transition between a phase of pre-big bang inflation and
the standard radiation-dominated evolution.

The solution smoothly interpolates between the string perturbative vac-
uum at t → −∞ and the standard, radiation-dominated phase at constant
dilaton (described by Eq. (8)) at t → +∞, after a pre-big bang phase of grow-
ing curvature and growing dilaton described by Eq. (10). The dashed curves

22 M. Gasperini and G. Veneziano

Η

HE

gS
ΡE

aE

PRE"BIGBANG POST"BIGBANG

Fig. 3. Example of pre-big bang evolution represented in the E-frame, where the
scale factor is shrinking and the Hubble parameter HE is negative. The plots are
obtained from Eq. (14) with a0 = 0.8, φ0 = 0, ρ0 = 1, η0 = 1.

strong coupling, in a marked quantum regime. Nevertheless, an epoch of pre-
big bang inflation is able to solve the kinematical problems of the standard
scenario starting from different initial conditions which are not necessarily
unnatural [49] or unlikely [50] (see also [51] for a detailed comparison of the
pre-big bang versus post-big bang inflationary kinematics). A possible excep-
tion concerns the presence of primordial “shear”, which is not automatically
inflated away during the phase of pre-big bang evolution: the isotropization
of the three-dimensional spatial sections might require some specific post-big
bang mechanism (see e.g. the discussion of [52]), differently from the standard
inflationary scenario where the dilution of shear is automatic.

Quantum effects, in the pre-big bang scenario, can become important to-
wards the end of the inflationary regime. We can say, in particular, that the
monotonic growth of the curvature and of the string coupling automatically
“prepares” the onset of a typically “stringy” epoch at strong coupling. This
epoch could be characterized by the production of a gas of heavy objects
(such as winding strings [53, 54] or mini-black holes [55]) as well as light,
higher-dimensional branes [56]. In such a context the interaction (and/ or the
eventual collision) of two branes can drive a phase of slow-roll inflation [26],
as discussed in Sect. 3.

At this point of the cosmological evolution there are two possible alterna-
tives.

i) The phase of string/brane dominated inflation is long enough to dilute
all effects of the preceding phase of dilaton inflation, and to give rise to
an epoch of slow-roll inflation able to prepare the subsequent evolution,
according to the conventional inflationary picture.

ii) The back-reaction of the quantum fluctuations, amplified by the phase of
pre-big bang inflation, induces a bounce as soon as the Universe reaches

string frame Einstein frame
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Quantum cosmology
Hamiltonian GR

N idt

nµ

dxi

x +i dxi
x i

d! = Ndt

"t+dt

"t

Fig. 1: The 3 + 1 decomposition of the manifold, with lapse function, N , and shift
vector, N i.

One can construct an intrinsic curvature tensor 3Ri
jkl(h) from the intrinsic

metric alone – this of course describes the curvature intrinsic to the hypersurfaces
⇥t. One can also define an extrinsic curvature, (or second fundamental form), which
describes how the spatial hypersurfaces ⇥t curve with respect to the 4-dimensional
spacetime manifold within which they are embedded. This is given by

Kij ⇥� ni;j = ��0
ijn0

=
1

2N

�
Ni|j +Nj|i �

�hij

�t

⇥
,

(2.5)

where a semicolon denotes covariant di⇤erentiation with respect to the 4-metric, gµ� ,
and a vertical bar denotes covariant di⇤erentiation with respect to the 3-metric, hij:
Ni|j ⇥ Ni,j ��k

ijNk etc.
For a given foliation ofM by spatial hypersurfaces, ⇥t, it is always possible to

choose Gaussian normal coordinates, in which

ds2 = �dt2 + hijdxidxj. (2.6)

These are comoving coordinates (N i = 0) with the additional property that t is
the proper time parameter (N = 1). This is the standard “gauge choice” that is
made in classical cosmology, and in such coordinates Kij = �ḣij, where dot denotes

9

Lapse function

Shift vector

Intrinsic metric 
= first fundamental form

Normal ton

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

Intrinsic curvature tensor

Extrinsic curvature 
= second fundamental form

Action:

�t

ds2 = gµ�dxµdx� = �N 2dt2 + hij

�
dxi +N idt

⇥ �
dxj +N jdt

⇥

3

⇥ or w ⌅ �1 perfect fluid ?

Kij ⇥ �⇧jni = ��0
ijn0

=
1

2N

�
⇧jNi +⇧iNj �

⇤hij

⇤t

⇥
(1)

(3)Ri
jkl(h)

Rµ� �
1

2
gµ�R = 8�GNTµ� + ⇥gµ�

⇥̇2 ⇤ V

⇥̈⇤ 3H⇥̇

⇥̈ + 3H⇥̇ +
dV

d⇥
= 0

1

⇥ or w ⌅ �1 perfect fluid ?

S =
1

16�GN

⇧⌥

M
d4x
⇧
�g

�
4R� 2⇥

⇥
+ 2

⌥

⇥M
d3x
⇧

hKi
i

⌃
+ Smatter

Kij ⇥ �⌃jni = ��0
ijn0

=
1

2N

⇤
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⇤hij
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(1)

3Ri
jkl(h)

Rµ� �
1

2
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⇥̇2 ⇤ V

⇥̈⇤ 3H⇥̇

1

3
Ri

jkl (h)

S ⇥
Z

dtL =
1

4�GN

Z
dtd3xN

⇤
h

⇣
KijK

ij �K2 +
3
R� 2�

⌘

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

4
R

S ⇥
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dtL =
1
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Z
dtd3xN

⇤
h

⇣
KijK

ij �K2 +
3
R� 2�

⌘

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1
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In 3+1 expansion:

Canonical momenta

Primary constraints

Hamiltonian

Variation wrt lapse Hamiltonian constraint

Variation wrt shift momentum constraint

}

}
=)

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt

�

1

Classical description

4
R

S ⇥
Z

dtL =
1

16�GN

Z
dtd3xN

⇤
h

⇣
KijK

ij �K2 +
3
R� 2�

⌘
+ Smatter

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥ij ⌘ �L

�ḣij

= �
p

h

16⇥GN

�
Kij � hijK

�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥� ⇥
�L

��̇
=

⇤
h

N

✓
�̇�N i ⇤�

⇤xi

◆

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥0 � �L

�Ṅ
= 0

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥i � �L

�Ṅi

= 0

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

H ⇥
Z

d3x
⇣
�0Ṅ + �iṄi + �ijḣij + ���̇

⌘
� L =

Z
d3x

⇣
�0Ṅ + �iṄi +NH +NiHi

⌘

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

H = 0

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

Hi = 0

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1
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Relevant configuration space?

parameters

GR          invariance / diffeomorphisms

Conf =
Riem(�)

Di⇥0(�

=)

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
dx

i + N

idt

� �
dx

j + N

jdt
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1
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=)

n

µ
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ds

2 = gµ�dx
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� = �N

2dt

2 + hij
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idt

� �
dx

j + N

jdt
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1
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Riem(�)
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µ
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ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij
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i + N

idt

� �
dx

j + N

jdt

�

1

superspace

Superspace & canonical quantisation

Wave functional ⇤ [hij(x), ⇥(x)]

Conf =
Riem(�)

Di⌅0(�)

=)

n

µ

�t

ds

2 = gµ�dx

µdx

� = �N

2dt

2 + hij

�
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i + N

idt

� �
dx

j + N
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�
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Dirac canonical quantisation

matter fields

Riem(�) �
n

hij (xµ), ⇥ (xµ) | x ⇥ �
o

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥ij ! �i
�

�hij

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥� ! �i
�

��

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥0 ⇥ �i
�

�N
A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

⇥i ⇥ �i
�

�Ni

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1
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Primary constraints
⇥̂⇤ = �i

�⇤

�N = 0

⇥̂i⇤ = �i
�⇤

�Ni
= 0

⇤ [hij(x), ⇥(x)]

Conf =
Riem(�)

Di⌅0(�)

=⇥

nµ

�t

1

Momentum constraint

⇥̂⇤ = �i
�⇤

�N = 0

⇥̂i⇤ = �i
�⇤

�Ni
= 0

⇤ [hij(x), ⇥(x)]
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Riem(�)

Di⌅0(�)

=⇥

nµ

�t

1

⇥̂⇤ = �i
�⇤

�N = 0

⇥̂i⇤ = �i
�⇤

�Ni
= 0

⇤ [hij(x), ⇥(x)]
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Di⌅0(�)

=⇥

nµ

�t

1

is the same for configurations

⇥̂⇤ = �i
�⇤

�N = 0

⇥̂i⇤ = �i
�⇤

�Ni
= 0

{hij(x), ⇥(x)}

⇤ [hij(x), ⇥(x)]

Conf =
Riem(�)
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=⇥

nµ

1

related by a coordinate transformation

Hamiltonian constraint

Wheeler - De Witt equation

N̂ i� = 0 =� i⇥(h)
j

✓
��

�hij

◆
= 8⇥GNT̂ 0i�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1
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"
�16⇥GNGijkl
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+

⇥
h

16⇥GN

⇣
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R + 2� + 16⇥GNT̂ 00
⌘#
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A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

Gijkl =
1

2
h�1/2 (hikhjl + hilhjk � hijhkl)

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

DeWitt metric...
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Minisuperspace
Restrict attention from an infinite dimensional configuration space to 2 dimensional space 
= mini-superspace 

hijdxidxj = a2(t)


dr2

1� kr2
+ r2

�
d⇥2 + sin2 ⇥d⇧2

��
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⇤ [hij(x), ⇥(x)]
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1

WDW equation becomes Schrödinger-like for⇤ [a(t), ⌅(t)]

hijdxidxj = a2(t)


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1� kr2
+ r2
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��
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{hij(x), ⇥(x)}
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Riem(�)

Di⌅0(�)

1

Conceptual and technical problems: 
!

Infinite number of dof       a few: mathematical consistency? 
Freeze momenta? Heisenberg uncertainties? 
QM = minisuperspace of QFT

⇤ � T [⇤]

|⇧⇤⇥⇧| �
⇤

d3xP (x)
|⇧

x

⇤⇥⇧
x

|
|| |⇧

x

⇤||2 = T [|⇧⇤⇥⇧|]

Li
x

=
��

⇥

⇥3/4

e��(qi�x)2/2

Prob[an; t] = |⇥an|⇧(t)⇤|2

i~ d

dt
|⇧(t)⇤ = Ĥ|⇧(t)⇤

A|an⇤ = an|an⇤

� [a(t), ⌅(t)]

1
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Minisuperspace
Restrict attention from an infinite dimensional configuration space to 2 dimensional space 
= mini-superspace 

hijdxidxj = a2(t)
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dr2
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⇤ [hij(x), ⇥(x)]

Conf =
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WDW equation becomes Schrödinger-like for⇤ [a(t), ⌅(t)]
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However, one can actually make calculations!
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Perfect fluid: Schutz formalism (’70)

Velocity potentials

canonical transformation: …

+ rescaling (volume…) + units… : simple Hamiltonian:

Exemple : Quantum cosmology of a perfect fluid
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Wheeler-De Witt
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What do we do with the wave function of the Universe???
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Quantum mechanics of closed systems

Physical system = Hilbert space of configurations 
                              State vectors 
                              Observables = self-adjoint operators 
                              Measurement = eigenvalue A|an⇥ = an|an⇥

⇥ [a(t), ⌅(t)]

hijdxidxj = a2(t)


dr2

1� kr2
+ r2

�
d⇥2 + sin2 ⇥d⇧2

��
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⇤̂i⇥ = �i
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�Ni
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{hij(x), �(x)}

⇥ [hij(x), �(x)]

1

Evolution = Schrödinger equation (time translation invariance) i~ d

dt
|⇧(t)⇥ = Ĥ|⇧(t)⇥

A|an⇥ = an|an⇥

⇥ [a(t), ⌅(t)]
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
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1

Hamiltonian
Born rule Prob[an; t] = |⇥an|⇧(t)⇤|2

i~ d

dt
|⇧(t)⇤ = Ĥ|⇧(t)⇤

A|an⇤ = an|an⇤

⇥ [a(t), ⌅(t)]
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
dr2
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after

Schrödinger equation = linear (superposition principle) / unitary evolution

Wavepacket reduction = non linear / stochastic }Mutually 
incompatible

 + External observer
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The measurement problem in quantum mechanics

Stern-Gerlach

Unitary, deterministic 
Schödinger evolution

Problem: how to reach the actual measurement                             or                             ?
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The measurement problem in quantum mechanics

Stern-Gerlach

What about situations in which 
one has only one realization?
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d|⇥ = �iĤ|⇥ dt +
⌦

�
⇣
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The measurement problem in quantum mechanics

Stern-Gerlach

What about situations in which 
one has only one realization?

What about the Universe itself?
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Schrödinger

Polar form of the wave function

Hamilton-Jacobi 

quantum 
potential

Hidden Variable Theories
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Properties: 

classical limit well defined
state dependent
      intrinsic reality

no need for external classical domain/observer!

strictly equivalent to Copenhagen QM
probability distribution (attractor) 

non local … 
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The two-slit experiment:
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The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...

X

… a phenomenon which is impossible, absolutely impossible, to explain in 
any classical way, and which has in it the heart of quantum mechanics. 

R. P. Feynman (1961)
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Back to the QC wave function 

Gaussian wave packet
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Hidden trajectory
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quantum potential
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Trajectory

J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal,!
Phys. Lett. A241, 229 (1998) 
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quantum potential
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Implementing a bounce = problem with GR!

Violation of Null Energy Condition (NEC)
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The problem with contraction: BKL/shear instability
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since in the present paper we adopt the convention that
the scalar field ⌅ is dimensionless.

The function g(⌅) is chosen such that a phase of ghost
condensation only occurs during a short time when ⌅ ap-
proaches ⌅ = 0. This requires the dimensionless function
g to be smaller than unity when |⌅|⇤ 1 but larger than
unity when ⌅ approaches the origin. To obtain a nonsin-
gular bounce, we must make an explicit choice of g as a
function of ⌅. We want g to be negligible when |⌅| ⇤ 1.
In order to obtain a violation of the Null Energy Con-
dition after the termination of the Ekpyrotic contracting
phase, g must become the dominant coe⇥cient in the
quadratic kinetic term when ⌅ approaches 0. Thus, we
suggest its form to be

g(⌅) =
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where g0 is a positive constant defined as the value of g
at the moment when ⌅ = 0, and is required to be larger
than unity, g0 > 1.

We have also introduced a non-trivial potential V for ⌅.
This potential is chosen such that Ekpyrotic contraction
is possible. It is well known that the homogeneous tra-
jectory of a scalar field can be an attractor solution when
its potential is an exponential function. One example is
inflationary expansion of the universe in a positive-valued
exponential potential, and the other one is the Ekpyrotic
model in which the homogeneous field trajectory for a
negative exponential potential is an attractor in a con-
tracting universe. For a phase of Ekpyrotic contraction,
we take the form of the potential to be

V (⌅) = � 2V0

e�
q

2
q ⇥ + ebV

q
2
q ⇥

, (7)

where V0 is a positive constant with dimension of (mass)4.
Thus the potential is always negative and asymptotically
approaches zero when |⌅|⇤ 1. Ignoring the second term
of the denominator, this potential reduces to the form
used in the Ekpyrotic scenario [32]. Both functions g(⌅)
and V (⌅) are shown on Fig. 1 with the parameters used
in the later parts of this work.

The term G(⌅, X) is a Galileon type6 operator which
is consistent with the fact that the Lagrangian contains
higher order derivative terms in ⌅, but the equation of
motion remains a second order di�erential equation. Phe-
nomenologically, there are few requirements on the ex-
plicit form of G(⌅, X). We introduce this operator since
we expect that it can be used to stabilize the gradi-
ent term of cosmological perturbations, which requires
that the sound speed parameter behaves smoothly and is
positive-definite throughout most of the background evo-
lution. For simplicity, we will choose G to be a simple

6 See [36] for a discussion of Galileon type Lagrangians.

Figure 1: Model functions g(�) and V (�) as given by Eqs. (6)
and (7), with background parameters taken as for the follow-
ing evolution figures, namely as in Eqs. (65) and (66).

function of only X:

G(X) = �X, (8)

where � is a positive-definite number.
We now turn to the study of the cosmology of this
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where t is cosmic time, ⇤i are linearly independent at
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In the case of a Ricci flat space, one can consider the
projection ⇤i = dxi and thus the metric is of Bianchi
type-I form. The factor a(t) can be viewed as the mean
scale factor of this universe, and the functions e�i(t) de-
scribe the correction of anisotropies to the scale factor.
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ily, one can impose an additional constraint
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where the overdot denotes the derivative with respect to
cosmic time t.

Since we are interested in studying anisotropies rather
than inhomogeneities we can treat the matter fields to be
homogeneous, which implies ⇧ is only a function of cosmic
time. Thus, the kinetic terms of the homogeneous scalar
field background become
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so that, for this background, the energy density of the
scalar field is
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as follows by computing the diagonal components of the
stress-energy tensor (4).

Additionally, the matter fluid contributes its own en-
ergy density ⌅m and pressure pm, and usually they are
associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1

3 ,
while for normal matter, wm = 0.
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From Eq. (16), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of
P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small

values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.

Finally, we can write down Einstein equations in this
background, given by
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where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (10) yields

⇤̈i + 3H ⇤̇i = 0, (22)

from which it follows that
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where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (10), one can read o� that
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Plugging Eq. (23) into Eq. (20) shows that one can
introduce an e�ective energy density of anisotropy
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whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.

III. BACKGROUND EVOLUTION

The initial conditions of our model are chosen (as in
[38]) such that we start in a contracting phase dominated
by regular matter. Since the energy density of the Ekpy-
rotic scalar field ⇧ grows faster than that of regular mat-
ter, ⇧ will at some time begin to dominate the energy
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since in the present paper we adopt the convention that
the scalar field ⌅ is dimensionless.

The function g(⌅) is chosen such that a phase of ghost
condensation only occurs during a short time when ⌅ ap-
proaches ⌅ = 0. This requires the dimensionless function
g to be smaller than unity when |⌅|⇤ 1 but larger than
unity when ⌅ approaches the origin. To obtain a nonsin-
gular bounce, we must make an explicit choice of g as a
function of ⌅. We want g to be negligible when |⌅| ⇤ 1.
In order to obtain a violation of the Null Energy Con-
dition after the termination of the Ekpyrotic contracting
phase, g must become the dominant coe⇥cient in the
quadratic kinetic term when ⌅ approaches 0. Thus, we
suggest its form to be

g(⌅) =
2g0

e�
q

2
p ⇥ + ebg

q
2
p ⇥

, (6)

where g0 is a positive constant defined as the value of g
at the moment when ⌅ = 0, and is required to be larger
than unity, g0 > 1.

We have also introduced a non-trivial potential V for ⌅.
This potential is chosen such that Ekpyrotic contraction
is possible. It is well known that the homogeneous tra-
jectory of a scalar field can be an attractor solution when
its potential is an exponential function. One example is
inflationary expansion of the universe in a positive-valued
exponential potential, and the other one is the Ekpyrotic
model in which the homogeneous field trajectory for a
negative exponential potential is an attractor in a con-
tracting universe. For a phase of Ekpyrotic contraction,
we take the form of the potential to be

V (⌅) = � 2V0

e�
q

2
q ⇥ + ebV

q
2
q ⇥

, (7)

where V0 is a positive constant with dimension of (mass)4.
Thus the potential is always negative and asymptotically
approaches zero when |⌅|⇤ 1. Ignoring the second term
of the denominator, this potential reduces to the form
used in the Ekpyrotic scenario [32]. Both functions g(⌅)
and V (⌅) are shown on Fig. 1 with the parameters used
in the later parts of this work.

The term G(⌅, X) is a Galileon type6 operator which
is consistent with the fact that the Lagrangian contains
higher order derivative terms in ⌅, but the equation of
motion remains a second order di�erential equation. Phe-
nomenologically, there are few requirements on the ex-
plicit form of G(⌅, X). We introduce this operator since
we expect that it can be used to stabilize the gradi-
ent term of cosmological perturbations, which requires
that the sound speed parameter behaves smoothly and is
positive-definite throughout most of the background evo-
lution. For simplicity, we will choose G to be a simple

6 See [36] for a discussion of Galileon type Lagrangians.

Figure 1: Model functions g(�) and V (�) as given by Eqs. (6)
and (7), with background parameters taken as for the follow-
ing evolution figures, namely as in Eqs. (65) and (66).

function of only X:

G(X) = �X, (8)

where � is a positive-definite number.
We now turn to the study of the cosmology of this

model. In order to characterize a homogeneous but
anisotropic universe, we take the metric to be of the form

ds2 = dt2 � a2(t)
⇤

i

e2�i(t)⇤i⇤i, (9)

where t is cosmic time, ⇤i are linearly independent at
all points in space-time and form a three dimensional
homogeneous space.

In the case of a Ricci flat space, one can consider the
projection ⇤i = dxi and thus the metric is of Bianchi
type-I form. The factor a(t) can be viewed as the mean
scale factor of this universe, and the functions e�i(t) de-
scribe the correction of anisotropies to the scale factor.
Since the values of scale factors can be re-scaled arbitrar-
ily, one can impose an additional constraint

⇤

i

⇥i = 0. (10)

Then, one can immediately define a mean Hubble param-
eter as follows,

H ⇥ ȧ

a
, (11)

and the individual Hubble parameters along spatial di-
rections are given by,
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d
dt
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= H + ⇥̇i, (no sum) (12)
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is consistent with the fact that the Lagrangian contains
higher order derivative terms in ⌅, but the equation of
motion remains a second order di�erential equation. Phe-
nomenologically, there are few requirements on the ex-
plicit form of G(⌅, X). We introduce this operator since
we expect that it can be used to stabilize the gradi-
ent term of cosmological perturbations, which requires
that the sound speed parameter behaves smoothly and is
positive-definite throughout most of the background evo-
lution. For simplicity, we will choose G to be a simple

6 See [36] for a discussion of Galileon type Lagrangians.

Figure 1: Model functions g(�) and V (�) as given by Eqs. (6)
and (7), with background parameters taken as for the follow-
ing evolution figures, namely as in Eqs. (65) and (66).

function of only X:

G(X) = �X, (8)

where � is a positive-definite number.
We now turn to the study of the cosmology of this

model. In order to characterize a homogeneous but
anisotropic universe, we take the metric to be of the form
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e2�i(t)⇤i⇤i, (9)

where t is cosmic time, ⇤i are linearly independent at
all points in space-time and form a three dimensional
homogeneous space.

In the case of a Ricci flat space, one can consider the
projection ⇤i = dxi and thus the metric is of Bianchi
type-I form. The factor a(t) can be viewed as the mean
scale factor of this universe, and the functions e�i(t) de-
scribe the correction of anisotropies to the scale factor.
Since the values of scale factors can be re-scaled arbitrar-
ily, one can impose an additional constraint
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⇥i = 0. (10)

Then, one can immediately define a mean Hubble param-
eter as follows,
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and the individual Hubble parameters along spatial di-
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Mean Hubble parameter

4

where the overdot denotes the derivative with respect to
cosmic time t.

Since we are interested in studying anisotropies rather
than inhomogeneities we can treat the matter fields to be
homogeneous, which implies ⇧ is only a function of cosmic
time. Thus, the kinetic terms of the homogeneous scalar
field background become

X =
1
2
⇧̇2,

�⇧ = ⇧̈ + 3H⇧̇, (13)

so that, for this background, the energy density of the
scalar field is

⌅⇤ =
1
2
M2

Pl
(1� g)⇧̇2 +

3
4
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and the pressure is
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4
�⇧̇4 � ⇥⇧̇2⇧̈� V (⇧), (15)

as follows by computing the diagonal components of the
stress-energy tensor (4).

Additionally, the matter fluid contributes its own en-
ergy density ⌅m and pressure pm, and usually they are
associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1

3 ,
while for normal matter, wm = 0.

To derive the equation of motion for ⇧, one can either
vary the Lagrangian with respect to ⇧ or, equivalently,
require that the covariant derivative of its stress-energy
tensor vanishes. This yields

P⇧̈ +D⇧̇ + V,⇤ = 0, (16)

where we have introduced

P = (1� g)M2
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2M2
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(⌅m + pm)⇧̇. (18)

From Eq. (16), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of
P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small

values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.

Finally, we can write down Einstein equations in this
background, given by

M2
Pl

�
Rµ⇥ �

R

2
gµ⇥

⇥
= T⇤

µ⇥ + Tm
µ⇥ . (19)

Once expanded in components, this tensor equation
yields the e�ective Friedmann equations,
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+
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i , (20)
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� 1
2
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i

⇤̇2
i , (21)

where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (10) yields

⇤̈i + 3H ⇤̇i = 0, (22)

from which it follows that

⇤̇i(t) = M�,i
a3

B

a3(t)
, (23)

where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (10), one can read o� that

⇤

i

M�,i = 0. (24)

Plugging Eq. (23) into Eq. (20) shows that one can
introduce an e�ective energy density of anisotropy

⌅� ⇥
M2

Pl

2

⇤

i

⇤̇2
i ⇤ a�6, (25)

whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.

III. BACKGROUND EVOLUTION

The initial conditions of our model are chosen (as in
[38]) such that we start in a contracting phase dominated
by regular matter. Since the energy density of the Ekpy-
rotic scalar field ⇧ grows faster than that of regular mat-
ter, ⇧ will at some time begin to dominate the energy
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Ekpyrotic/cyclic scenario: 

3

inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
ing

S5 ∝
∫

M5

d5x
√

−g5

[

R
(5)

−
1

2
(∂ϕ)2 −

3

2

e2ϕF2

5 !

]

, (1)

where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely

S4 =

∫

M4

d4x
√

−g4

[

R
(4)

2κ
−

1

2
(∂φ)2 − V (φ)

]

, (2)

with

V (ϕ) = −Vi exp

[

−
4
√

πγ

mPl

(ϕ − ϕi)

]

, (3)

where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
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brane, moving towards our universe to produce the Big-Bang
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brane that collides with the visible one, generating the hot
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of yet another, much lighter, freely moving, brane. In
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to move in the bulk. In both cases, this extra brane, if
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an exponential potential, namely
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. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).
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dominated phase.
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Beginning with Friedmann’s 1922 paper [1] introducing
expanding cosmological solutions in general relativity,
theorists have considered the possibility that the big
bang is a bounce from a preexisting contracting phase to
the current expanding phase. General models of this type
can be eliminated because the Universe undergoes chaotic
mixmaster oscillations during the contracting phase [2]
and becomes too inhomogeneous after the bounce to be
compatible with observations. Remaining possibilities,
though, are bouncing cosmologies in which there is a
phase of ultraslow contraction with w> 1 [3,4]. Such an
ekpyrotic phase not only suppresses chaotic mixmaster
oscillations [5] but actually smooths, isotropizes, and
flattens the Universe and can generate a nearly scale-
invariant spectrum of curvature perturbations, consistent
with current observations of the cosmic microwave back-
ground (CMB).

Whether the remaining possibilities are truly viable
depends on whether the bounce maintains the conditions
created during the ekpyrotic phase into the expanding
phase. Two types of bounces have been discussed. In a
‘‘singular bounce,’’ as used in the original ekpyrotic [6]
and cyclic [7] theories, the Universe contracts towards a
‘‘big crunch’’ until the scale factor aðtÞ is so small that
quantum gravity effects become important. The presump-
tion is that these quantum gravity effects introduce devia-
tions from conventional general relativity and produce a
bounce that preserves the smooth, flat conditions achieved
during the ultraslow contraction phase.

The other type is a ‘‘nonsingular bounce,’’ as considered
in the ‘‘new ekpyrotic model’’ [8], where the Universe
stops contraction and reverses to expansion at a finite value
of aðtÞ where classical general relativity is still valid. A
significant advantage of this scenario is that the entire
cosmological history can be described by 4D effective field
theory and classical general relativity, without invoking
extra dimensions or quantum gravity effects. However,
for the bounce to happen within classical general relativity,
the null energy condition (NEC) must be violated,

requiring a departure from the ekpyrotic phase into a
sustained period of w<"1 prior to the bounce.
In this Letter, we show that a nonsingular bounce is

problematic for cosmological perturbations. In particular,
while a scale-invariant component of curvature perturba-
tions is generated during or just after the ekpyrotic phase, a
potentially dangerous component of adiabatic curvature
perturbations is created at the same time. This mode has
been previously ignored because, after exiting horizon
when w % 1, its amplitude becomes exponentially sup-
pressed on large length scales compared to the scale-
invariant modes. In a singular bounce, this mode remains
completely negligible because w % 1 all the way up to the
bounce. However, for the nonsingular bounce, the ekpyr-
otic phase must end and w must fall below "1 in the
bouncing phase. We show that, right before crossing
w ¼ "1, the adiabatic mode undergoes exponential am-
plification such that the scale-invariant spectrum is spoiled
and perturbation theory breaks down.
To illustrate the effect, we take as an example the new

ekpyrotic model [8], which captures the generic features of
nonsingular bouncing models. In this example a scalar field
is introduced to drive both the ekpyrotic phase during
which it behaves as a fluid with w ! 1 and the bouncing
phase during which w<"1 by means of ghost condensa-
tion [9]. This framework can be described by an effective
Lagrangian

L ¼ ffiffiffiffiffiffiffi"g
p ½PðXÞ " Vð!Þ(; X ) "1

2ð@!Þ2; (1)

for a scalar field ! and a Friedmann-Robertson-Walker
background metric g"# with signature ("þþþ). The
kinetic term PðXÞ is designed as in Fig. 1, where it is linear
for large X, PðXÞ + X, but has a minimum at a low energy
scale Xc. The potential Vð!Þ is sketched in Fig. 2, where,
beginning from the right-hand side, V is approximated by a

negative exponential "V0e
"

ffiffiffiffiffiffi
2=p

p
! over a range between

Vek-beg and Vek-end, then bottoms out and undergoes a steep
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Ekpyrotic solution:
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Hence a singular bounce!

Problem: regular bounce phase with 
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sity ⌅) is dominant in the contracting phase3. Such an
equation of state can be realized by treating the dominant
form of matter as a scalar field with negative exponen-
tial potential. Since the energy density of the dominant
matter then scales with a�q with q ⇤ 6, anisotropies be-
come negligible and the BKL instability is avoided [37]4.
In a recent paper [38], a subset of the present authors
introduced a scalar field with an Ekpyrotic potential to
construct a matter bounce scenario which is free from the
BKL instability problem.

The Ekpyrotic scenario in its original formulation [32]
involves a singular bounce. In addition, the curvature
spectrum of ⇥ is an nS = 3 spectrum rather than a scale-
invariant nS = 1 one [39–42]. Hence, without non-trivial
matching of ⇥ across the bounce, one cannot obtain a
scale-invariant spectrum at late time5. To solve this
problem, a new and non-singular version of the Ekpyrotic
scenario [46] was proposed in which a second scalar field
is introduced which does not influence the background
dynamics but develops a scale-invariant spectrum which
starts out as an isocurvature mode but which is trans-
ferred to the adiabatic mode during the evolution. The
second field can also be given a “ghost condensate” La-
grangian [47] in which case it mediates a non-singular
bounce. However, as has been pointed out in [48], in
this “New Ekpyrotic” scenario the anisotropies which are
highly suppressed during the contracting phase again
raise their head and lead to a BKL instability.

In our previous work [38], we argued qualitatively that
in the model we considered the anisotropies remained
negligibly small during the bouncing phase. The reason
for the di�erence compared to what happens in the model
of [46] is that in our model the kinetic condensate which
grows as the bounce is approached does not need to de-
crease again by the time of the bounce point. This leads
to a shorter bounce time scale and to di�erent dynamics.

In this paper we carefully study the development of
anisotropies in the bouncing cosmology with an Ekpy-
rotic phase of contraction introduced in [38]. We work
in the context of a homogeneous but anisotropic Bianchi
cosmology in which the scale factors in each spatial di-
mension evolve independently. We are able to show that
no BKL type instability develops, in agreement with
what the study of [38] indicated. Our work thus shows
that the arguments against non-singular (as opposed to
singular) bouncing cosmologies put forwards in [48] do

3 There are other approaches to address the anisotropy prob-
lem. For example, nonlinear matter terms may smooth out the
anisotropies [33]. Adding quadratic R�⇥R�⇥ terms to the grav-
itational action can also prevent the BKL instability [34].

4 Note, however, that including anisotropic pressures may reintro-
duce instabilities towards anisotropy generation [35].

5 However, the spectrum of the Bardeen potential � is scale-
invariant [43], and, as argued in [10] and shown explicitly in some
examples [44, 45], it is this spectrum which may pass through
the bounce, thus yielding a scale-invariant spectrum of curva-
ture fluctuations at late times.

not apply to all non-singular bouncing cosmologies.
The outline of this paper is as follows. In the next sec-

tion we review the bounce model introduced in [38] and
derive the resulting equations of motion for a homoge-
neous but anisotropic universe. In Section 3 we analyt-
ically study the background dynamics in each phase of
the cosmological evolution from the initial matter phase
of contraction through the Ekpyrotic phase to the bounc-
ing phase and the subsequent fast-roll expanding period.
Specifically, we determine the decay or growth rates of
the anisotropy parameter in each phase. In Section 4 we
solve the dynamical system numerically and present our
final results. We close with a general discussion.

A word on notation: We define the reduced Planck
mass by MPl = 1/

�
8⇤GN where GN is Newton’s gravi-

tational constant. The sign of the metric is taken to be
(+,�,�,�). Note that we take the value of the mean
scale factor at the bounce point to be aB = 1 throughout
the paper.

II. A NONSINGULAR BOUNCE MODEL

We consider a nonsingular bounce model in which the
universe is filled with two matter components, a cosmic
scalar field ⇧ and a generic matter fluid, as proposed in
Ref. [38] (which, in turn, is based on the theory devel-
oped in [49]). The Lagrangian of ⇧ is given by

L [⇧ (x)] = K(⇧, X) + G(⇧, X)�⇧, (1)

where K and G are functions of ⇧ and its canonical ki-
netic term

X ⇥ 1
2
⌃µ⇧⌃µ⇧, (2)

while the other kinetic terms of ⇧ include the operator

�⇧ ⇥ gµ�⌅µ⌅�⇧. (3)

Variation of the above scalar field Lagrangian mini-
mally coupled to Einstein gravity leads to the following
corresponding energy momentum tensor

T⇤
µ� = (�K + 2XG,⇤ + G,X⌅⇥X⌅⇥⇧)gµ�

+(K,X + G,X�⇧� 2G,⇤)⌅µ⇧⌅�⇧

�G,X(⌅µX⌅�⇧ +⌅�X⌅µ⇧), (4)

in which we use the notation that F,⇤ and F,X denote
derivatives of whatever functional F(⇧, X) may be with
respect to ⇧ and X, respectively.

For the model under consideration we choose:

K(⇧, X) = M2
Pl

[1� g(⇧)]X + �X2 � V (⇧), (5)

where we introduce a positive-definite parameter � so
that the kinetic term is bounded from below at high en-
ergy scales. Note that the first term of K involves M2

Pl
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since in the present paper we adopt the convention that
the scalar field ⌅ is dimensionless.

The function g(⌅) is chosen such that a phase of ghost
condensation only occurs during a short time when ⌅ ap-
proaches ⌅ = 0. This requires the dimensionless function
g to be smaller than unity when |⌅|⇤ 1 but larger than
unity when ⌅ approaches the origin. To obtain a nonsin-
gular bounce, we must make an explicit choice of g as a
function of ⌅. We want g to be negligible when |⌅| ⇤ 1.
In order to obtain a violation of the Null Energy Con-
dition after the termination of the Ekpyrotic contracting
phase, g must become the dominant coe⇥cient in the
quadratic kinetic term when ⌅ approaches 0. Thus, we
suggest its form to be

g(⌅) =
2g0

e�
q

2
p ⇥ + ebg

q
2
p ⇥

, (6)

where g0 is a positive constant defined as the value of g
at the moment when ⌅ = 0, and is required to be larger
than unity, g0 > 1.

We have also introduced a non-trivial potential V for ⌅.
This potential is chosen such that Ekpyrotic contraction
is possible. It is well known that the homogeneous tra-
jectory of a scalar field can be an attractor solution when
its potential is an exponential function. One example is
inflationary expansion of the universe in a positive-valued
exponential potential, and the other one is the Ekpyrotic
model in which the homogeneous field trajectory for a
negative exponential potential is an attractor in a con-
tracting universe. For a phase of Ekpyrotic contraction,
we take the form of the potential to be

V (⌅) = � 2V0

e�
q

2
q ⇥ + ebV

q
2
q ⇥

, (7)

where V0 is a positive constant with dimension of (mass)4.
Thus the potential is always negative and asymptotically
approaches zero when |⌅|⇤ 1. Ignoring the second term
of the denominator, this potential reduces to the form
used in the Ekpyrotic scenario [32]. Both functions g(⌅)
and V (⌅) are shown on Fig. 1 with the parameters used
in the later parts of this work.

The term G(⌅, X) is a Galileon type6 operator which
is consistent with the fact that the Lagrangian contains
higher order derivative terms in ⌅, but the equation of
motion remains a second order di�erential equation. Phe-
nomenologically, there are few requirements on the ex-
plicit form of G(⌅, X). We introduce this operator since
we expect that it can be used to stabilize the gradi-
ent term of cosmological perturbations, which requires
that the sound speed parameter behaves smoothly and is
positive-definite throughout most of the background evo-
lution. For simplicity, we will choose G to be a simple

6 See [36] for a discussion of Galileon type Lagrangians.

Figure 1: Model functions g(�) and V (�) as given by Eqs. (6)
and (7), with background parameters taken as for the follow-
ing evolution figures, namely as in Eqs. (65) and (66).

function of only X:

G(X) = �X, (8)

where � is a positive-definite number.
We now turn to the study of the cosmology of this

model. In order to characterize a homogeneous but
anisotropic universe, we take the metric to be of the form

ds2 = dt2 � a2(t)
⇤

i

e2�i(t)⇤i⇤i, (9)

where t is cosmic time, ⇤i are linearly independent at
all points in space-time and form a three dimensional
homogeneous space.

In the case of a Ricci flat space, one can consider the
projection ⇤i = dxi and thus the metric is of Bianchi
type-I form. The factor a(t) can be viewed as the mean
scale factor of this universe, and the functions e�i(t) de-
scribe the correction of anisotropies to the scale factor.
Since the values of scale factors can be re-scaled arbitrar-
ily, one can impose an additional constraint

⇤

i

⇥i = 0. (10)

Then, one can immediately define a mean Hubble param-
eter as follows,

H ⇥ ȧ

a
, (11)

and the individual Hubble parameters along spatial di-
rections are given by,

Hi ⇥
1

ae�i

d
dt

�
ae�i

⇥
= H + ⇥̇i, (no sum) (12)
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we expect that it can be used to stabilize the gradi-
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sity ⇤) is dominant in the contracting phase3. Such an
equation of state can be realized by treating the dominant
form of matter as a scalar field with negative exponen-
tial potential. Since the energy density of the dominant
matter then scales with a�q with q ⇤ 6, anisotropies be-
come negligible and the BKL instability is avoided [37]4.
In a recent paper [38], a subset of the present authors
introduced a scalar field with an Ekpyrotic potential to
construct a matter bounce scenario which is free from the
BKL instability problem.

The Ekpyrotic scenario in its original formulation [32]
involves a singular bounce. In addition, the curvature
spectrum of � is an nS = 3 spectrum rather than a scale-
invariant nS = 1 one [39–42]. Hence, without non-trivial
matching of � across the bounce, one cannot obtain a
scale-invariant spectrum at late time5. To solve this
problem, a new and non-singular version of the Ekpyrotic
scenario [46] was proposed in which a second scalar field
is introduced which does not influence the background
dynamics but develops a scale-invariant spectrum which
starts out as an isocurvature mode but which is trans-
ferred to the adiabatic mode during the evolution. The
second field can also be given a “ghost condensate” La-
grangian [47] in which case it mediates a non-singular
bounce. However, as has been pointed out in [48], in
this “New Ekpyrotic” scenario the anisotropies which are
highly suppressed during the contracting phase again
raise their head and lead to a BKL instability.

In our previous work [38], we argued qualitatively that
in the model we considered the anisotropies remained
negligibly small during the bouncing phase. The reason
for the di�erence compared to what happens in the model
of [46] is that in our model the kinetic condensate which
grows as the bounce is approached does not need to de-
crease again by the time of the bounce point. This leads
to a shorter bounce time scale and to di�erent dynamics.

In this paper we carefully study the development of
anisotropies in the bouncing cosmology with an Ekpy-
rotic phase of contraction introduced in [38]. We work
in the context of a homogeneous but anisotropic Bianchi
cosmology in which the scale factors in each spatial di-
mension evolve independently. We are able to show that
no BKL type instability develops, in agreement with
what the study of [38] indicated. Our work thus shows
that the arguments against non-singular (as opposed to
singular) bouncing cosmologies put forwards in [48] do
not apply to all non-singular bouncing cosmologies.

The outline of this paper is as follows. In the next sec-

tion we review the bounce model introduced in [38] and
derive the resulting equations of motion for a homoge-
neous but anisotropic universe. In Section 3 we analyt-
ically study the background dynamics in each phase of
the cosmological evolution from the initial matter phase
of contraction through the Ekpyrotic phase to the bounc-
ing phase and the subsequent fast-roll expanding period.
Specifically, we determine the decay or growth rates of
the anisotropy parameter in each phase. In Section 4 we
solve the dynamical system numerically and present our
final results. We close with a general discussion.

A word on notation: We define the reduced Planck
mass by MPl = 1/

�
8⇥GN where GN is Newton’s gravi-

tational constant. The sign of the metric is taken to be
(+,�,�,�). Note that we take the value of the mean
scale factor at the bounce point to be aB = 1 throughout
the paper.

II. A NONSINGULAR BOUNCE MODEL

We consider a nonsingular bounce model in which the
universe is filled with two matter components, a cosmic
scalar field ⌅ and a generic matter fluid, as proposed in
Ref. [38] (which, in turn, is based on the theory devel-
oped in [49]). The Lagrangian of ⌅ is given by

L [⌅ (x)] = K(⌅, X) + G(⌅, X)�⌅, (1)

where K and G are functions of ⌅ and its canonical ki-
netic term

X ⇥ 1
2
⇧µ⌅⇧µ⌅, (2)

while the other kinetic terms of ⌅ include the operator

�⌅ ⇥ gµ�⌅µ⌅�⌅. (3)

Variation of the above scalar field Lagrangian mini-
mally coupled to Einstein gravity leads to the following
corresponding energy momentum tensor

T⇤
µ� = (�K + 2XG,⇤ + G,X⌅⇥X⌅⇥⌅)gµ�

+(K,X + G,X�⌅� 2G,⇤)⌅µ⌅⌅�⌅

�G,X(⌅µX⌅�⌅ +⌅�X⌅µ⌅), (4)

T⇤
µ� = (�K + 2XG,⇤ + G,X⌅⇥X⌅⇥⌅) gµ� + (K,X + G,X�⌅� 2G,⇤)⌅µ⌅⌅�⌅�G,X(⌅µX⌅�⌅ +⌅�X⌅µ⌅) (5)

in which we use the notation that F,⇤ and F,X denote
derivatives of whatever functional F(⌅, X) may be with

respect to ⌅ and X, respectively.
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4

and the individual Hubble parameters along spatial di-
rections are given by,

Hi ⇥
1

ae�i

d
dt

�
ae�i

⇥
= H + ⇤̇i, (no sum) (13)

where the overdot denotes the derivative with respect to
cosmic time t.

Since we are interested in studying anisotropies rather
than inhomogeneities we can treat the matter fields to be
homogeneous, which implies ⇧ is only a function of cosmic
time. Thus, the kinetic terms of the homogeneous scalar
field background become

X =
1
2
⇧̇2,

�⇧ = ⇧̈ + 3H⇧̇, (14)

so that, for this background, the energy density of the
scalar field is

⌅⇤ =
1
2
M2

Pl
(1� g)⇧̇2 +

3
4
�⇧̇4 + 3⇥H⇧̇3 + V (⇧), (15)

and the pressure is

p⇤ =
1
2
M2

Pl
(1� g)⇧̇2 +

1
4
�⇧̇4 � ⇥⇧̇2⇧̈� V (⇧), (16)

as follows by computing the diagonal components of the
stress-energy tensor (4).

Additionally, the matter fluid contributes its own en-
ergy density ⌅m and pressure pm, and usually they are
associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1

3 ,
while for normal matter, wm = 0.

To derive the equation of motion for ⇧, one can either
vary the Lagrangian with respect to ⇧ or, equivalently,
require that the covariant derivative of its stress-energy
tensor vanishes. This yields

P⇧̈ +D⇧̇ + V,⇤ = 0, (17)

where we have introduced

P = (1� g)M2
Pl

+ 6⇥H⇧̇ + 3�⇧̇2 +
3⇥2

2M2
Pl

⇧̇4, (18)

D = 3(1� g)M2
Pl

H +
⇤

9⇥H2 � 1
2
M2

Pl
g,⇤

⌅
⇧̇ + 3�H⇧̇2

�3
2
(1� g)⇥⇧̇3 � 9⇥2H⇧̇4

2M2
Pl

� 3�⇥⇧̇5

2M2
Pl

�3
2
G,X

⇧

i

⇤̇2
i ⇧̇� 3G,X

2M2
Pl

(⌅m + pm)⇧̇. (19)

From Eq. (17), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of

P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small
values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.

Finally, we can write down Einstein equations in this
background, given by

M2
Pl

⇤
Rµ⇥ �

R

2
gµ⇥

⌅
= T⇤

µ⇥ + Tm
µ⇥ . (20)

Once expanded in components, this tensor equation
yields the e�ective Friedmann equations,

H2 =
⌅T

3M2
Pl

+
1
6

⇧

i

⇤̇2
i , (21)

Ḣ = �⌅T + pT

2M2
Pl

� 1
2

⇧

i

⇤̇2
i , (22)

where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (11) yields

⇤̈i + 3H ⇤̇i = 0, (23)

from which it follows that

⇤̇i(t) = M�,i
a3

B

a3(t)
, (24)

where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (11), one can read o� that

⇧

i

M�,i = 0. (25)

Plugging Eq. (24) into Eq. (21) shows that one can
introduce an e�ective energy density of anisotropy

⌅� ⇥
M2

Pl

2

⇧

i

⇤̇2
i ⇤ a�6, (26)

whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.
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where the overdot denotes the derivative with respect to
cosmic time t.

Since we are interested in studying anisotropies rather
than inhomogeneities we can treat the matter fields to be
homogeneous, which implies ⇧ is only a function of cosmic
time. Thus, the kinetic terms of the homogeneous scalar
field background become

X =
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�⇧̇4 � ⇥⇧̇2⇧̈� V (⇧), (16)

as follows by computing the diagonal components of the
stress-energy tensor (4).

Additionally, the matter fluid contributes its own en-
ergy density ⌅m and pressure pm, and usually they are
associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1

3 ,
while for normal matter, wm = 0.

To derive the equation of motion for ⇧, one can either
vary the Lagrangian with respect to ⇧ or, equivalently,
require that the covariant derivative of its stress-energy
tensor vanishes. This yields

P⇧̈ +D⇧̇ + V,⇤ = 0, (17)

where we have introduced

P = (1� g)M2
Pl

+ 6⇥H⇧̇ + 3�⇧̇2 +
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2M2
Pl

⇧̇4, (18)
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From Eq. (17), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of

P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small
values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.

Finally, we can write down Einstein equations in this
background, given by

M2
Pl

⇤
Rµ⇥ �

R

2
gµ⇥

⌅
= T⇤

µ⇥ + Tm
µ⇥ . (20)

Once expanded in components, this tensor equation
yields the e�ective Friedmann equations,

H2 =
⌅T

3M2
Pl

+
1
6

⇧

i

⇤̇2
i , (21)

Ḣ = �⌅T + pT

2M2
Pl

� 1
2

⇧

i

⇤̇2
i , (22)

where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (11) yields

⇤̈i + 3H ⇤̇i = 0, (23)

from which it follows that

⇤̇i(t) = M�,i
a3

B

a3(t)
, (24)

where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (11), one can read o� that

⇧

i

M�,i = 0. (25)

Plugging Eq. (24) into Eq. (21) shows that one can
introduce an e�ective energy density of anisotropy

⌅� ⇥
M2

Pl

2

⇧

i

⇤̇2
i ⇤ a�6, (26)

whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.
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cosmic time t.
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than inhomogeneities we can treat the matter fields to be
homogeneous, which implies ⇧ is only a function of cosmic
time. Thus, the kinetic terms of the homogeneous scalar
field background become

X =
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stress-energy tensor (4).

Additionally, the matter fluid contributes its own en-
ergy density ⌅m and pressure pm, and usually they are
associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1
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while for normal matter, wm = 0.
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vary the Lagrangian with respect to ⇧ or, equivalently,
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From Eq. (17), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of

P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small
values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.
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where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (11) yields

⇤̈i + 3H ⇤̇i = 0, (23)

from which it follows that

⇤̇i(t) = M�,i
a3

B

a3(t)
, (24)

where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (11), one can read o� that

⇧

i

M�,i = 0. (25)

Plugging Eq. (24) into Eq. (21) shows that one can
introduce an e�ective energy density of anisotropy

⌅� ⇥
M2

Pl

2

⇧

i

⇤̇2
i ⇤ a�6, (26)

whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.

+ modified Klein-Gordon



Cargèse / 18 september 2014

4

and the individual Hubble parameters along spatial di-
rections are given by,

Hi ⇥
1

ae�i

d
dt

�
ae�i

⇥
= H + ⇤̇i, (no sum) (13)

where the overdot denotes the derivative with respect to
cosmic time t.

Since we are interested in studying anisotropies rather
than inhomogeneities we can treat the matter fields to be
homogeneous, which implies ⇧ is only a function of cosmic
time. Thus, the kinetic terms of the homogeneous scalar
field background become

X =
1
2
⇧̇2,

�⇧ = ⇧̈ + 3H⇧̇, (14)

so that, for this background, the energy density of the
scalar field is

⌅⇤ =
1
2
M2

Pl
(1� g)⇧̇2 +

3
4
�⇧̇4 + 3⇥H⇧̇3 + V (⇧), (15)

and the pressure is

p⇤ =
1
2
M2

Pl
(1� g)⇧̇2 +

1
4
�⇧̇4 � ⇥⇧̇2⇧̈� V (⇧), (16)

as follows by computing the diagonal components of the
stress-energy tensor (4).

Additionally, the matter fluid contributes its own en-
ergy density ⌅m and pressure pm, and usually they are
associated with a constant equation-of-state parameter
wm = pm/⌅m. Namely, for normal radiation, wm = 1

3 ,
while for normal matter, wm = 0.

To derive the equation of motion for ⇧, one can either
vary the Lagrangian with respect to ⇧ or, equivalently,
require that the covariant derivative of its stress-energy
tensor vanishes. This yields

P⇧̈ +D⇧̇ + V,⇤ = 0, (17)

where we have introduced

P = (1� g)M2
Pl

+ 6⇥H⇧̇ + 3�⇧̇2 +
3⇥2

2M2
Pl

⇧̇4, (18)

D = 3(1� g)M2
Pl

H +
⇤

9⇥H2 � 1
2
M2

Pl
g,⇤

⌅
⇧̇ + 3�H⇧̇2

�3
2
(1� g)⇥⇧̇3 � 9⇥2H⇧̇4

2M2
Pl

� 3�⇥⇧̇5

2M2
Pl

�3
2
G,X

⇧

i

⇤̇2
i ⇧̇� 3G,X

2M2
Pl

(⌅m + pm)⇧̇. (19)

From Eq. (17), it is clear that the function P determines
the positivity of the kinetic term of the scalar field and
thus can be used to determine whether the model con-
tains a ghost or not at the perturbative level; the function
D on the other hand, represents an e�ective damping
term. By keeping the first terms of the expressions of

P and D and setting g = 0, one can recover the stan-
dard Klein-Gordon equation in the FRW background.
Neglecting the other terms is a good approximation when
the velocity of ⇧ is sub-Planckian. Note that the friction
term D contains the contributions from anisotropic fac-
tors and matter fluid, which can be suppressed for small
values of ⇧̇. However, these terms will become important
during the bouncing phase where ⇧̇ reaches a maximal
value. For simplicity, in the following we will consider
matter fluid is cold and thus wm = 0.

Finally, we can write down Einstein equations in this
background, given by

M2
Pl

⇤
Rµ⇥ �

R

2
gµ⇥

⌅
= T⇤

µ⇥ + Tm
µ⇥ . (20)

Once expanded in components, this tensor equation
yields the e�ective Friedmann equations,

H2 =
⌅T

3M2
Pl

+
1
6

⇧

i

⇤̇2
i , (21)

Ḣ = �⌅T + pT

2M2
Pl

� 1
2

⇧

i

⇤̇2
i , (22)

where ⌅T and pT represent the total energy density and
pressure in the Bianchi type-I universe, i.e., the sum of
the contributions of the scalar field and the fluid.

Moreover, combining the spatial component of Ein-
stein equation with the constraint equation (11) yields

⇤̈i + 3H ⇤̇i = 0, (23)

from which it follows that

⇤̇i(t) = M�,i
a3

B

a3(t)
, (24)

where aB is the mean scale factor of the universe at the
bouncing point. The coe⇥cients M�,i are integral con-
stants with a dimension of mass. According to the con-
straint equation (11), one can read o� that

⇧

i

M�,i = 0. (25)

Plugging Eq. (24) into Eq. (21) shows that one can
introduce an e�ective energy density of anisotropy

⌅� ⇥
M2

Pl

2

⇧

i

⇤̇2
i ⇤ a�6, (26)

whose evolution as 1/a6 implies an e�ective equation-of-
state parameter equal to w� = 1. We see that this e�ec-
tive energy density increases faster than that of pressure-
less matter or radiation in a contraction universe. This
is the source of the BKL instability of the contracting
phase of many bouncing cosmologies.
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Fast-roll expansion

Radiation + Matter + ...

Produces scale invariant perturbations

Removes anisotropies

Connects to standard model!!

Leads to expansion

BB cosmology
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Anisotropies can remain small all throughout!!!!

explicit example...

9

than at the time tE when Ekpyrotic contraction begins.
In fact, it is straightforward to derive that

HF � |HE |e�(1�3q)NE/(1�q), (64)

showing that the value of HF should be much less than
|HE |. The Hubble rate HF is associated with the ini-
tial temperature TF when the expansion begins to follow
the Standard Big Bang evolution (it is the equivalent of
the temperature of reheating in inflationary cosmology).
Specifically, the relation is

HF ⌅
g1/2

s ⇤T 2
F

9.5MPl

, (65)

where gs is the e�ective partible number for radiation.
As a consequence, in analogy with inflationary cosmol-
ogy, the constraint (64) leads to an upper bound on the
e�ective “reheating” temperature:

TF �
�

3MPl |HB� |
g1/2

s

⇥ 1
2

e�(2�3q)NE/[2(1�q)] (66)

in our nonsingular bounce model. From the BBN con-
straint, we find that the lower limit of the “reheating”
temperature is of the order O(MeV). If we consider this
lower bound and take gs ⇤ 100, NE ⇤ 30 and q ⇤ 0.1,
then we find that HB+ > 10�17MPl which can easily be
implemented in the model, as we shall see in the following
numerical calculations.

F. Numerical estimates

To illustrate that a nonsingular bounce can be achieved
in our model, we numerically solved the background
equations of motion. Expressing all relevant functions
and parameters in the corresponding units of the reduced
Planck mass MPl , we set

V0 = 10�7, g0 = 1.1, � = 5, ⇥ = 10�3,

bV = 5, bg = 0.5, p = 0.01, q = 0.1 (67)

to illustrate the calculations.
Moreover, we consider the following parameters of the

matter fluid and the anisotropy

⌅m,B = 2.8⇥ 10�10, M�,1 = 2.2⇥ 10�6,

M�,2 = 3.4⇥ 10�6, M�,3 = �5.6⇥ 10�6, (68)

and choose as the initial conditions for the scalar field
the following:

⇧ini = �2, ⇧̇ini = 7.8⇥ 10�6. (69)

The actual computation also requires the initial value
of the mean Hubble parameter, which is determined by
imposing the Hamiltonian constraint equation. Figs. 2
and 3 show the evolution of the Hubble parameters and
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Figure 2: Time evolution of the Hubble parameters H (black
line) and Hi (red dashed, blue dotted and magenta dot-dashed
lines for the Hubble expansion rates along the x1, x2, and x3

axes, respectively), in units of the reduced Planck mass MPl ,
with background parameters given by Eqs. (67) and (68),
and initial conditions as in (69). The main plot shows that
a nonsingular bounce occurs, and that the time scale of the
bounce is short (it is a “fast bounce” model). The inner insert
shows a blowup of the smooth Hubble parameters during the
bounce phase: this zoomed-in view of the Hubble parameters
around the bounce point shows that the Hubble rates vanish
at di�erent times, so that the scale factors bounce at di�erent
times as well.

“e�ective” energy densities for matter components and
for the anisotropy, respectively.

From Fig. 2, one can see that Hubble parameters
along all spatial coordinates evolve smoothly through the
bouncing point with an approximate dependence on cos-
mic time which is linear. The maximal value of the mean
Hubble parameter, which we denote as the bounce scale
HB , is mainly determined by the value of the potential
parameter V0. Specifically, HB is of order O(10�4MPl) in
our numerical result. We also note that the bounces oc-
curring in the three spatial directions do not occur at ex-
actly the same moment – a consequence of the existence
of anisotropy. This could leave a smoking gun signature
for detecting nonsingular bounce cosmology in high accu-
racy CMB experiments since the di�erence in the times
of the bounces along various spatial coordinates would
a�ect the ultraviolet (UV) modes of primordial pertur-
bations passing through the bouncing phase. We leave
this issue for a forthcoming investigation.

From Fig. 3, one can easily see that the universe in
our model experiences four phases, which are matter con-
traction, Ekpyrotic contraction, the bounce, and fast-roll
expansion, in turn. At the beginning, the universe is
dominated by the matter fluid. At some point (time tE)
during the phase of contraction, the contribution of the
scalar field becomes dominant, and the universe enters
the Ekpyrotic phase. Note that the e�ective energy den-
sity of anisotropies grows faster than ⌅m but slower than
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than at the time tE when Ekpyrotic contraction begins.
In fact, it is straightforward to derive that

HF � |HE |e�(1�3q)NE/(1�q), (64)
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temperature is of the order O(MeV). If we consider this
lower bound and take gs ⇤ 100, NE ⇤ 30 and q ⇤ 0.1,
then we find that HB+ > 10�17MPl which can easily be
implemented in the model, as we shall see in the following
numerical calculations.
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To illustrate that a nonsingular bounce can be achieved
in our model, we numerically solved the background
equations of motion. Expressing all relevant functions
and parameters in the corresponding units of the reduced
Planck mass MPl , we set

V0 = 10�7, g0 = 1.1, � = 5, ⇥ = 10�3,

bV = 5, bg = 0.5, p = 0.01, q = 0.1 (67)

to illustrate the calculations.
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matter fluid and the anisotropy

⌅m,B = 2.8⇥ 10�10, M�,1 = 2.2⇥ 10�6,

M�,2 = 3.4⇥ 10�6, M�,3 = �5.6⇥ 10�6, (68)

and choose as the initial conditions for the scalar field
the following:

⇧ini = �2, ⇧̇ini = 7.8⇥ 10�6. (69)

The actual computation also requires the initial value
of the mean Hubble parameter, which is determined by
imposing the Hamiltonian constraint equation. Figs. 2
and 3 show the evolution of the Hubble parameters and
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Figure 2: Time evolution of the Hubble parameters H (black
line) and Hi (red dashed, blue dotted and magenta dot-dashed
lines for the Hubble expansion rates along the x1, x2, and x3

axes, respectively), in units of the reduced Planck mass MPl ,
with background parameters given by Eqs. (67) and (68),
and initial conditions as in (69). The main plot shows that
a nonsingular bounce occurs, and that the time scale of the
bounce is short (it is a “fast bounce” model). The inner insert
shows a blowup of the smooth Hubble parameters during the
bounce phase: this zoomed-in view of the Hubble parameters
around the bounce point shows that the Hubble rates vanish
at di�erent times, so that the scale factors bounce at di�erent
times as well.
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From Fig. 2, one can see that Hubble parameters
along all spatial coordinates evolve smoothly through the
bouncing point with an approximate dependence on cos-
mic time which is linear. The maximal value of the mean
Hubble parameter, which we denote as the bounce scale
HB , is mainly determined by the value of the potential
parameter V0. Specifically, HB is of order O(10�4MPl) in
our numerical result. We also note that the bounces oc-
curring in the three spatial directions do not occur at ex-
actly the same moment – a consequence of the existence
of anisotropy. This could leave a smoking gun signature
for detecting nonsingular bounce cosmology in high accu-
racy CMB experiments since the di�erence in the times
of the bounces along various spatial coordinates would
a�ect the ultraviolet (UV) modes of primordial pertur-
bations passing through the bouncing phase. We leave
this issue for a forthcoming investigation.

From Fig. 3, one can easily see that the universe in
our model experiences four phases, which are matter con-
traction, Ekpyrotic contraction, the bounce, and fast-roll
expansion, in turn. At the beginning, the universe is
dominated by the matter fluid. At some point (time tE)
during the phase of contraction, the contribution of the
scalar field becomes dominant, and the universe enters
the Ekpyrotic phase. Note that the e�ective energy den-
sity of anisotropies grows faster than ⌅m but slower than
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than at the time tE when Ekpyrotic contraction begins.
In fact, it is straightforward to derive that
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showing that the value of HF should be much less than
|HE |. The Hubble rate HF is associated with the ini-
tial temperature TF when the expansion begins to follow
the Standard Big Bang evolution (it is the equivalent of
the temperature of reheating in inflationary cosmology).
Specifically, the relation is
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, (65)

where gs is the e�ective partible number for radiation.
As a consequence, in analogy with inflationary cosmol-
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in our nonsingular bounce model. From the BBN con-
straint, we find that the lower limit of the “reheating”
temperature is of the order O(MeV). If we consider this
lower bound and take gs ⇤ 100, NE ⇤ 30 and q ⇤ 0.1,
then we find that HB+ > 10�17MPl which can easily be
implemented in the model, as we shall see in the following
numerical calculations.

F. Numerical estimates

To illustrate that a nonsingular bounce can be achieved
in our model, we numerically solved the background
equations of motion. Expressing all relevant functions
and parameters in the corresponding units of the reduced
Planck mass MPl , we set

V0 = 10�7, g0 = 1.1, � = 5, ⇥ = 10�3,

bV = 5, bg = 0.5, p = 0.01, q = 0.1 (67)

to illustrate the calculations.
Moreover, we consider the following parameters of the

matter fluid and the anisotropy

⌅m,B = 2.8⇥ 10�10, M�,1 = 2.2⇥ 10�6,

M�,2 = 3.4⇥ 10�6, M�,3 = �5.6⇥ 10�6, (68)

and choose as the initial conditions for the scalar field
the following:

⇧ini = �2, ⇧̇ini = 7.8⇥ 10�6. (69)

The actual computation also requires the initial value
of the mean Hubble parameter, which is determined by
imposing the Hamiltonian constraint equation. Figs. 2
and 3 show the evolution of the Hubble parameters and
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Figure 2: Time evolution of the Hubble parameters H (black
line) and Hi (red dashed, blue dotted and magenta dot-dashed
lines for the Hubble expansion rates along the x1, x2, and x3

axes, respectively), in units of the reduced Planck mass MPl ,
with background parameters given by Eqs. (67) and (68),
and initial conditions as in (69). The main plot shows that
a nonsingular bounce occurs, and that the time scale of the
bounce is short (it is a “fast bounce” model). The inner insert
shows a blowup of the smooth Hubble parameters during the
bounce phase: this zoomed-in view of the Hubble parameters
around the bounce point shows that the Hubble rates vanish
at di�erent times, so that the scale factors bounce at di�erent
times as well.

“e�ective” energy densities for matter components and
for the anisotropy, respectively.

From Fig. 2, one can see that Hubble parameters
along all spatial coordinates evolve smoothly through the
bouncing point with an approximate dependence on cos-
mic time which is linear. The maximal value of the mean
Hubble parameter, which we denote as the bounce scale
HB , is mainly determined by the value of the potential
parameter V0. Specifically, HB is of order O(10�4MPl) in
our numerical result. We also note that the bounces oc-
curring in the three spatial directions do not occur at ex-
actly the same moment – a consequence of the existence
of anisotropy. This could leave a smoking gun signature
for detecting nonsingular bounce cosmology in high accu-
racy CMB experiments since the di�erence in the times
of the bounces along various spatial coordinates would
a�ect the ultraviolet (UV) modes of primordial pertur-
bations passing through the bouncing phase. We leave
this issue for a forthcoming investigation.

From Fig. 3, one can easily see that the universe in
our model experiences four phases, which are matter con-
traction, Ekpyrotic contraction, the bounce, and fast-roll
expansion, in turn. At the beginning, the universe is
dominated by the matter fluid. At some point (time tE)
during the phase of contraction, the contribution of the
scalar field becomes dominant, and the universe enters
the Ekpyrotic phase. Note that the e�ective energy den-
sity of anisotropies grows faster than ⌅m but slower than
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Figure 3: Time evolution of the “E�ective” energy densities of
the scalar field ⇥⇥ (full black line), the matter fluid ⇥m (dot-
dashed green line) and the anisotropy factors ⇥�i (red dashed,
blue dotted and magenta dot-dashed lines), with same initial
conditions and background parameters are in Fig. 2.

⇥⇥ during the matter contraction phase. Thus, if ⇥�i

does not dominate over the background before tE , it will
never become dominant throughout the whole evolution,
as already discussed in the previous sections. After the
bounce, the scalar field ⌅ enters a fast roll phase with
an e�ective equation of state equal to unity. As a con-
sequence, the energy densities ⇥⇥ and ⇥�i dilute at the
same rate, and finally the matter fluid catches up with
the density of ⌅ at the time tF .

Fig. 4 shows the evolution of the anisotropy factors
�i and their time derivatives. Although the anisotropy
functions grow during the contraction, they evolve to-
wards constant values in the expanding epoch. There-
fore, after the time tF , one can rescale all scale factors by
absorbing the asymptotic factors in a redefinition of the
coordinates, and we finally get an isotropic universe. It
implies that at the level of homogeneous cosmology the
anisotropies do not destabilize our nonsingular bounce
model. This can also be read from the upper panel of
Fig. 4 which shows that �̇i approach zero after a su⇥-
ciently long period of expansion.

In order to better characterize the anisotropy quanti-
tatively, we can define the so-called shear parameters

⇤i � �̇ie2�i , (70)

and the density parameters

�I �
⇥I�
I
⇥I

, (71)

where the subscript “I” represents ⌅, m and �, respec-
tively. Fig. 5 shows the numerical solution we obtained
for their time development. The shear functions increase
up to their maximal values at the bounce point, after
which they rapidly decrease to end up vanishingly small
when the universe connects with the Standard Big Bang
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Figure 4: Time evolution of the anisotropy factors �i (lower
panel) and their time derivatives �̇i (upper panel), with same
initial conditions and background parameters are in Fig. 2.
The anisotropies increase during the contracting phase but
rapidly approach constant values in the following expanding
phase.
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Figure 5: Time evolution of the density parameters �⇥, �m,
and �� (upper panel), and of the shear function ⇤i (lower
panel), with same initial conditions and background parame-
ters are in Fig. 2.

evolution. From the evolution of the density parameters,
we see that the contribution of the anisotropy only grows
relative to the dominant density in the phase of matter
contraction, but it then rapidly decreases in the Ekpy-
rotic phase and in the fast roll phase.
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Density parameters 
and shears
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Figure 3: Time evolution of the “E�ective” energy densities of
the scalar field ⇥⇥ (full black line), the matter fluid ⇥m (dot-
dashed green line) and the anisotropy factors ⇥�i (red dashed,
blue dotted and magenta dot-dashed lines), with same initial
conditions and background parameters are in Fig. 2.

⇥⇥ during the matter contraction phase. Thus, if ⇥�i

does not dominate over the background before tE , it will
never become dominant throughout the whole evolution,
as already discussed in the previous sections. After the
bounce, the scalar field ⌅ enters a fast roll phase with
an e�ective equation of state equal to unity. As a con-
sequence, the energy densities ⇥⇥ and ⇥�i dilute at the
same rate, and finally the matter fluid catches up with
the density of ⌅ at the time tF .

Fig. 4 shows the evolution of the anisotropy factors
�i and their time derivatives. Although the anisotropy
functions grow during the contraction, they evolve to-
wards constant values in the expanding epoch. There-
fore, after the time tF , one can rescale all scale factors by
absorbing the asymptotic factors in a redefinition of the
coordinates, and we finally get an isotropic universe. It
implies that at the level of homogeneous cosmology the
anisotropies do not destabilize our nonsingular bounce
model. This can also be read from the upper panel of
Fig. 4 which shows that �̇i approach zero after a su⇥-
ciently long period of expansion.

In order to better characterize the anisotropy quanti-
tatively, we can define the so-called shear parameters

⇤i � �̇ie2�i , (70)

and the density parameters

�I �
⇥I�
I
⇥I

, (71)

where the subscript “I” represents ⌅, m and �, respec-
tively. Fig. 5 shows the numerical solution we obtained
for their time development. The shear functions increase
up to their maximal values at the bounce point, after
which they rapidly decrease to end up vanishingly small
when the universe connects with the Standard Big Bang
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Figure 4: Time evolution of the anisotropy factors �i (lower
panel) and their time derivatives �̇i (upper panel), with same
initial conditions and background parameters are in Fig. 2.
The anisotropies increase during the contracting phase but
rapidly approach constant values in the following expanding
phase.
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Figure 5: Time evolution of the density parameters �⇥, �m,
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panel), with same initial conditions and background parame-
ters are in Fig. 2.
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conditions and background parameters are in Fig. 2.
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never become dominant throughout the whole evolution,
as already discussed in the previous sections. After the
bounce, the scalar field ⌅ enters a fast roll phase with
an e�ective equation of state equal to unity. As a con-
sequence, the energy densities ⇥⇥ and ⇥�i dilute at the
same rate, and finally the matter fluid catches up with
the density of ⌅ at the time tF .

Fig. 4 shows the evolution of the anisotropy factors
�i and their time derivatives. Although the anisotropy
functions grow during the contraction, they evolve to-
wards constant values in the expanding epoch. There-
fore, after the time tF , one can rescale all scale factors by
absorbing the asymptotic factors in a redefinition of the
coordinates, and we finally get an isotropic universe. It
implies that at the level of homogeneous cosmology the
anisotropies do not destabilize our nonsingular bounce
model. This can also be read from the upper panel of
Fig. 4 which shows that �̇i approach zero after a su⇥-
ciently long period of expansion.
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tatively, we can define the so-called shear parameters

⇤i � �̇ie2�i , (70)

and the density parameters

�I �
⇥I�
I
⇥I

, (71)

where the subscript “I” represents ⌅, m and �, respec-
tively. Fig. 5 shows the numerical solution we obtained
for their time development. The shear functions increase
up to their maximal values at the bounce point, after
which they rapidly decrease to end up vanishingly small
when the universe connects with the Standard Big Bang
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initial conditions and background parameters are in Fig. 2.
The anisotropies increase during the contracting phase but
rapidly approach constant values in the following expanding
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evolution. From the evolution of the density parameters,
we see that the contribution of the anisotropy only grows
relative to the dominant density in the phase of matter
contraction, but it then rapidly decreases in the Ekpy-
rotic phase and in the fast roll phase.

Note that all numerical calculations shown here are
meant to illustrate the discussion of the previous sections.
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Standard Failures and inflationary solutions

Singularity
Horizon
Flatness

Homogeneity & Isotropy

Perturbations
Others

Not solved... actually not addressed!

Bonus of the theory: superb predictions!!!

dark matter/energy, baryogenesis, ...

T0a
3ω
0 ≃ 1500ℓPl

nS = 0.96 ± 0.02 =⇒ w ∼< 8 × 10−4

≃ 0.62

T

S
=

C(T)
10

C(S)
10

= F (Ω, · · ·)
A2

T

A2
S

∝
√

w

T

S
≃ 4 × 10−2

√

nS − 1

dH ≡ a(t)

∫ t

ti

dτ

a(τ)

ti → −∞

d

dt
|Ω − 1| = −2

ä
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accelerated expansion (inflation)
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can be made as big as one wishes

Initial Universe = very small patch 
Accelerated expansion drives the shear to zero...
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Singularity
Horizon
Flatness

Homogeneity

Isotropy
Others

Merely a non issue in the bounce case!

Potentially problematic: model dependent

dark matter/energy, baryogenesis, ...
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can be made divergent easily if
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 Large & flat Universe + low initial density + diffusion
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Initial conditions 
fixed in the  
contracting era
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Geometric matching conditions?
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A generic model-independent treatment of the bounce phase?
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rive the relevant perturbation potentials.

A. The de Sitter–like bounce

Once the background is fixed, the effective potentials for
the quantities u and v are completely specified. In this sec-
tion, our aim is therefore to discuss how one can model the
scale factor of a bouncing universe. At this point, one should
notice the differences !and similarities" with inflation. In an
inflationary universe, the behavior of the scale factor is
known: essentially, this is a#!$!!1, i.e. the de Sitter phase.
However, one can also treat slightly more complicated back-
grounds by means of an expansion around this de Sitter so-
lution. This expansion is characterized by the so-called slow-
roll parameters %24&, which are constrained to be small. The
de Sitter solution also exists in the bounce case %25& and, as
we shall see, it can be used in much the same way. However,
contrary to the inflation case, there is no fundamental reason
why the background equation of state should be close to
vacuum. Despite this fact, one can nevertheless expand
around the K"1 de Sitter spacetime and similarly define
parameters which control the departure from it. Obviously,
those parameters are not subject to tight constraints, and in
particular are not required to be small.
For K#0, the de Sitter solution %25& corresponds to the

scale factor a(t)"a0cosh('t), which is expressed as a func-
tion of the cosmic time t, with '"1/a0. More general solu-
tions are obtained by relaxing this last constraint and consid-
ering a general value for ' . These de Sitter–like solutions
are the ones we shall be concerned with in what follows: our
expansion will be based on these solutions. In terms of con-
formal time, one can integrate the relation ad$"dt to get

a!$""a0!1$tan2" $
$0

# , !21"

where the conformal time is bounded within the range
!(/2%$/$0%(/2 and the conformal time duration $0 is
related to the de Sitter coefficient ' through $0"(a0')

!1

%the solution !21" is shown in Fig. 1&.
In order to understand the dynamics of this solution, one

needs to obtain the evolution of the scalar field. It can be
integrated straightforwardly with the scale factor !21": from
Eqs. !4" and !5", one obtains

)")0$!2*

+ " $$
(

2
$0# , !22"

where we have set )→)0 as the cosmic time t→!, , i.e. as
$/$0→!(/2, and we also have defined a parameter

*-1!
1

$0
2

!23"

for further convenience. We shall keep this definition later on
for more general bounces than the quasi–de Sitter ones.
It should be noted that the parameter * , in the case of de

Sitter like expansion !21" is, according to the definition !6",
*dS"H 2. , which is proportional to /$p . As a result, the

null energy condition at the bounce can only be satisfied
provided *#0, i.e. if !$0!01: indeed, one has

lim
$→0

!/$p ""2
*

a0
2
, !24"

a relation which we shall use in the rest of the paper to define
* in a solution-independent way. As emphasized before, the
case $0"1 corresponds to a constant scalar field potential
and to an equation of state /"!p and is thus the exact
counterpart of the inflationary de Sitter solution. The scalar
field time derivative is now simply obtained as

d)

dt
"
d)

ad$
"
1

a0 $ 2*

+%1$tan2" $
$0

# &' 1/2

. !25"

Both the field and its time derivative are displayed in Fig. 2

FIG. 1. Scale factors as functions of the conformal time $ cor-

responding to the de Sitter–like solution %Eq. !21", full line& and its
various levels of approximations stemming from Eq. !30", namely
up to quadratic !dashed", quartic !dotted", sixth !dot-dashed" and
eighth power !dot-dot-dashed". The last two approximations, al-
though clearly better from the point of view of the scale factor, do

not lead to any new qualitative information as far as the evolution

of the perturbations is concerned.

FIG. 2. Behavior of the scalar field and its coordinate time

derivative as functions of the conformal time $ !varying between
!(/2 and (/2 for the overall evolution of the Universe" for the
de Sitter–like solution with $0"1.01.
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still satisfied. As a consequence, this implies that H(! j) can-
not be large in comparison to K!1; in fact, since !0!1 and
x"1, H 2 is expected to be negligibly small compared to
unity right after the bounce. This means that one necessarily
connects the bounce to a regime where the curvature is im-
portant or, in other words, in a region where the sine function
appearing in the scale factor "39# cannot be approximated by
the first term of the Taylor expansion, a(!)!a r(!#! r) . The
only way to avoid this conclusion would be to violate the
null energy condition, as already noticed in Ref. $4% and to
have a small !0 but then it would have been useless to con-
sider the case K!1 for modeling the bounce since this was
done precisely in order to satisfy this condition. Therefore,
we conclude that between the bounce and the standard hot
big bang, another phase must necessary occur whose main
effect will be to drive H to sufficiently large values. This is
usually the role played by a phase of inflation.
With the general framework thus clarified, let us turn to

the evolution of the scalar gravitational perturbations through
the bounce by means of evaluating the effective potential for
the variable u related with the Bardeen potential through Eq.
"11#. We discuss the potential for the variable v in the dis-
cussion Sec. V A below.

D. The potential Vu„!…
The effective potential for the variable u in the de Sitter–

like solution is, according to Eq. "29#, constant in time. This
is however very specific to this particular solution, as any
displacement away from it immediately leads to a different
form of the potential. This is illustrated in Fig. 4 which
shows the relative accuracy of the expansion "30# around the
de Sitter–like solution "21#. It is also clear from the figure
that the expansion "30#, if pushed to sufficiently high orders
in ! , gives back the correct constant value over a large range
of conformal times. Let us now turn to the more general
bounce case of Eq. "30#.
Arbitrary values for the parameter & restricted to the range

of interest discussed above lead to the generic shape illus-

trated in Fig. 5. The calculation of the effective potential is
extremely complicated even with the quartic approximation
of the scale factor. Even if it can be done in full generality
since, for a scale factor given by Eq. "30#, the potential
Vu(!) reads

Vu"!#'
(!
(

$3K"1#cS
2#!

P24"!#

Q24"!#
, "41#

where P24(!) and Q24(!) are two polynomials of order 24,
in practice the calculation is not tractable. However, since in
practice we always have !/!0"1, only the first monomials
are important. One can check that the following approxima-
tion

Vu
(app)"!#!3

c0$c2!
2

d0$d2!
2$d4!

4
, "42#

FIG. 4. Absolute value of the effective potential Vu(!) for the perturbation variable u(!) for the de Sitter–like case "full line on both
panels#, for which it is constant and for the various approximation levels "from quadratic to eighth power of the scale factor#. The left panel
shows the potential as obtained by using the quadratic "dotted line# and quartic "dashed# expansions of the scale factor only, whereas the right
panel presents the situation when quartic "dashed#, sixth "dotted# and eighth "dot-dashed# terms are used. It is clear that the quadratic
approximation is qualitatively wrong and cannot be used to describe a de Sitter bounce. The value !0!1.01 has been used to derive these
plots.

FIG. 5. Absolute value of the potential Vu(!) as a function of
rescaled conformal time !/!0 for !0!1.01 as derived using either
the assumption that the scale factor behaves as a square root, i.e.,

a!a0!1$(!/!0)
2, "full line# or Eq. "30# up to quadratic "dotted

line# and quartic order with )!0 and &!#2/5 "dashed line#. The
quartic approximation is extremely close to the exact solution, ex-

emplifying its accuracy, while the quadratic approximation appears

to be at best qualitatively correct.
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Non trivial transfer matrix

Id

τa

A(1, 1) ... A(1, n)
... ... ...

A(m, 1) ... A(m, n)

Tij(k) =

[

A(k) B(k)
C(k) D(k)

]

⟨a†a⟩ ≫ 1

c2
T

=
T

U

Ωvortons ≫ 1

1

“Causality” argument... J. Martin & PP, Phys. Rev. Lett. 92, 061301 (2004)!
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where the k dependence stems from the solution !78" and the
unknown matrices T?

! and T?
" refer to the unknown parts

sketched in Fig. 10. The coefficients one is interested in,
namely T11 and T12 , giving the amplitude of the growing
mode in the expanding phase as functions of the modes in
the contracting phase, accordingly can depend on k. In addi-
tion, it is important to notice that, as shown in Ref. #16$, this
mechanism does not violate causality; a similar statement
was also emphasized in Ref. #30$.
Paradoxically, obtaining a spectral modification at the

bounce is possible provided the bounce lasts the minimal
amount of conformal time compatible with the NEC preser-
vation. Nevertheless, the assumption of no effect can be jus-
tified provided the constraint %0#1$” 1 is satisfied, or in the
pure de Sitter case having %0%1 strictly. This last situation
is what happens in models in which the bounce takes place
for a vanishing value of the scalar field kinetic energy #5$,
whereas the former case implies a kinetic energy density !not
the scalar field itself" for the scalar field comparable to the
Planck scale, which may render the semi-classical field
theory dubious.
This can be particularly important in view of the string

motivated potential alternatives to inflation of the pre big
bang kind if it turns out that these models might lead to such
spectral corrections as discussed above. This condition needs

be verified in each particular situation. For instance, in the
pre big bang case, one would need to model the bounce
occurring in the Einstein frame, in which our formalism is
well suited, to see what the behavior of Vu is in this context.
Therefore, and unfortunately, one consequence of the failure
of any general argument preventing any alteration of the
spectrum is that one needs to explicitly model a regime in
which higher order string corrections are dominant. Avoiding
this was the main interest of the general argument in ques-
tion.
We also obtained that the relevant propagation variable is

not v , whose flat space equivalent is commonly used for
quantization, i.e. for setting up the initial conditions, but
rather the intermediate variable u, directly related to the
Bardeen potential. This is to be compared with what was
recently obtained in Ref. #6$, based on a completely different
theory of gravity, in which neither variable happens to be
bounded at the bounce.
The spectrum of gravitational wave cannot be affected by

propagating through these bounces. This exemplifies the fact
that there is no fundamental reason according to which scalar
and tensor modes should propagate similarly through a
bounce.
The picture that emerges for the construction of a com-

plete model of the universe is shown in Fig. 10 and consists
in a regime in which quantum field theory in a time-
dependent background is well suited, as is the case for in-
stance in many string motivated scenarios #7,8$; this first
phase allows an easy calculation of a spectrum of perturba-
tion that would be sort of pre-primordial. Then, unless the
curvature was always important in this first period, it is fol-
lowed by an unknown epoch which connects to the bounce
itself, which should also be followed by yet another un-
known epoch in order for the curvature to be negligible #16$.
This reveals the most important difference between bouncing
scenarios and inflation, namely the need for a high curvature
phase, which we have seen may drastically modify the physi-
cal predictions.
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ä

a
=

1

3
[Λ − 4πGN (ρ + p)]

H2 +
K
a2

=
1

3
(8πGNρ + Λ)

ω =
1

3

1

R. Abramo & P. P., JCAP 09, 001 (2007)



Cargèse / 18 september 2014

10
-2

10
-1

10
0

10
1

k

10
-4

10
-3

10
-2

10
-1

10
0

10
1

A
k

FB

MB

SB

k-mode mixing ...



Cargèse / 18 september 2014

A few problems…

spectral index n < 1s

Non gaussianities:

Following [31–33], we consider the simplest possible model in which a bounce can be accommodated in the
framework of GR: K = +1 with the matter content sourcing the Einstein equations (2.2) taken to be a single scalar
field � whose dynamics is governed by a canonical kinetic term and a potential V (�). The corresponding background
equations of motion (2.2) thus read
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the combination of which yields the Klein-Gordon equation �

00
+ 2H�

0
+ a

2
V,� = 0. The simplest background

cosmology in inflation is obtained from slight deviations from a spatially flat de Sitter cosmology. Here, instead, the
simplest background nonsingular cosmology is obtained from a slight deviation away from de Sitter cosmology in a
spacetime of constant positively curved spatial sections. The K = +1 de Sitter scale factor reads

a(⌘) = a0 sec (⌘) . (2.4)

and two kinds of generic deviations from the de Sitter solution can be introduced. The first is an overall deviation
from the de Sitter bouncing timescale through

a(⌘) = a0 sec

✓

⌘

⌘c

◆

, (2.5)

where ⌘c = 1/(!a0), ! being a dimensionful constant equal to 1/a0 in the de Sitter case. It can be checked that the
null energy condition is preserved provided ! < a

�1
0 , so that ⌘c � 1 [31]. Such non-de-Sitter bounces thus occur

over conformal timescales greater than ⇡. This first kind of deviation from the de Sitter case is however not sufficient
as it yields a constant potential for cosmological perturbations [31].

In order to achieve further deviations from de Sitter in the vicinity of the bounce point, we Taylor-expand (2.5)
and modify the resulting expression by introducing a set of parameters �i. The resulting scale-factor reads
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The scale factor stays close to de Sitter as long as ⌘c is close to unity, and if the parameters �i are close to zero.
Solving the Friedmann equations and the Klein-Gordon equation order by order in powers of ⌘, we can write

down the constants a0, ⌘c and the �i’s in terms of ⌥ ⌘ �

02
0 /2 and the successive derivatives of V (�) with respect to �,

evaluated at the bounce point. Introducing the following notation, reminiscent of the one used in slow roll inflation,
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we find that the coefficients �i in the Taylor expansion (2.6) can be expressed in terms of ⌥, " and ⌘V through
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The bounce is thus controlled by ⌥ and the two first derivatives of the potential normalized by V0. In a similar way,
we express the coefficients H0
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in terms of ⌥, "V and ⌘V . The background cosmology in the neighborhood of the bounce is thus entirely specified by
⌥, "V and ⌘V . Note that in the actual application below (Section 4.2 onwards), we shall concentrate on a symmetric

– 4 –

+ scalar field
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The scale factor stays close to de Sitter as long as ⌘c is close to unity, and if the parameters �i are close to zero.
Solving the Friedmann equations and the Klein-Gordon equation order by order in powers of ⌘, we can write
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The bounce is thus controlled by ⌥ and the two first derivatives of the potential normalized by V0. In a similar way,
we express the coefficients H0
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in terms of ⌥, "V and ⌘V . The background cosmology in the neighborhood of the bounce is thus entirely specified by
⌥, "V and ⌘V . Note that in the actual application below (Section 4.2 onwards), we shall concentrate on a symmetric

– 4 –

complete set of parameters

bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
computation scheme. What is therefore produced in our symmetric model can thus be understood as the minimum
level expected in curvature-dominated bounces.

Finally, note that although we have no specific knowledge on the pre-bounce phase, but because the de Sitter
solution is an attractor in most theories of gravity, we assume that our bouncing cosmolgy is driven towards the de
Sitter attractor. We will therefore take ⌥, "V and ⌘V , to be small and present the results in Section 4.2 onwards as
expansions in these parameters.

2.2 Linear perturbations

We work with the metric in the Poisson gauge (or the generalized Newtonian gauge) and consider only scalar pertur-
bations. The perturbed metric therefore reads
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where �ij is the metric on the background spatial hypersurface (2.1). In a homogeneous and isotropic spatial volume,
it is convenient to work in spherical coordinates where �ij takes the form
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In this work, we expand all quantities up to the second order as

X (x, ⌘) = X(1) (x, ⌘) +
1

2

X(2) (x, ⌘) + · · · , (2.12)

where X stands for �,  and �� etc, X(1) and X(2) are the first and second order perturbations respectively. In a
universe filled with single scalar field matter, the equation of motion for the linear perturbation  (1) is well-known
and reads (see Appendix A)
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Since K = +1, and in order to compute the spectral matrix P and the bispectrum B , the first order perturbation is
decomposed on the three-sphere in terms of the set of hyperspherical harmonics Q`mn(�, ✓,') as follows:

 (1)(x, ⌘) =

X

`mn

 `mn(⌘)Q`mn(�, ✓,') with Q`mn(�, ✓,') = R`n(�)Y`m(✓,'), (2.15)

with R`n(�) defined in Appendix C.

2.3 Stochastic initial conditions

In order to specify the set of initial conditions for the first order perturbation  (1) prior to the bounce, let us consider
some spatial hypersurface M at some initial time ⌘� before the bounce. On M, let us assume that the initial conditions
can be written as two classical gaussian random fields, one for  and one for its time derivative at ⌘�:
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In this work, we shall treat the set {x̂i} as the initial conditions and shall make use of their two-point correlations
which we define as (see Appendix B)
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The recently released Planck data [1, 2] have set new
standards as far as cosmological modeling is concerned,
imposing very tight constraints on early universe physics
[3, 4] and discriminating [5, 6] between numerous infla-
tionary theories [7]. Bouncing alternatives [8–10] have
been claimed to be able to reproduce the observed power
spectrum, but probably the most serious constraint to
date on primordial cosmological models is that provided
by the smallness of non-Gaussianities [11]. Whether or
not generic bouncing models can successfully pass this
test will decide on the viability of such alternatives. The
current work, drawing heavily on the results of Ref. [12],
seems to imply that the level of non-Gaussianity pro-
duced during the contraction to expansion transition
alone can be expected to be orders of magnitudes above
the current limits. Although our result applies, strictly
speaking, to the production of non-Gaussianities in a par-
ticular category of non-singular bouncing models with
constant positive spatial curvature1 and for which Gen-
eral Relativity (GR) is valid all along, we conjecture that
it could apply to a much wider set of models, hence rais-
ing a possibly generic problem with bouncing cosmologies
that would need to be addressed for each specific model.

1
Spatial curvature, being the only e↵ective negative energy com-

ponent at the bounce, is crucial for this category of models based

on positive energy single scalar field matter content. Although

many models are realized with vanishing or negligible spatial

curvature contribution, they necessarily involve other types of

negative energy fields, which may cause serious instabilities, and

hence also potentially large amounts of non-Gaussianities.

We start from the action describing a single scalar field
� with a canonical kinetic term and evolving in a poten-
tial V (�) within GR (in units in which 8⇡GN = 1),
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where R is the Ricci scalar derived from the metric ten-
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spatial metric which we take to be of constant positive
curvature (K ! 1) in order to obtain a non-singular

bouncing behavior, and where  =
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i! are the Bardeen potentials up to arbitrary order
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where the potential Vu(⌘) is sketched in Fig. 1, draw-
ing on the specific functional shapes of Vu(⌘) obtained
in the works [14–16]. As shown in the figure, a typically
asymmetric bouncing phase occurs at ⌘B and is gener-
ically preceded and followed by peaks in the potential
with model-dependent amplitudes and widths. The peak
that occurs prior to the bounce follows a regime in which
Vu vanishes, in such a way that unambiguous vacuum
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Université Pierre et Marie Curie - Paris 6, 98bis Boulevard Arago, 75014 Paris, France

(Dated: September 18, 2014)

The simplest possible classical model leading to a cosmological bounce is examined in the light
of the non-Gaussianities it can generate. Concentrating on the transition between contraction and
expansion only, i.e. assuming initially purely Gaussian perturbations, we find that the bounce acts
as a source such that the resulting value for the post-bounce fNL largely exceeds all current limits,
and can even cast doubts on the validity of the perturbative expansion. We conjecture that if the
non-Gaussianity production depends only on the bouncing behavior of the scale factor and not
on the specifics of the model examined, then any realistic model in which a non-singular classical
bounce takes place could exhibit a generic non-Gaussianity excess problem.

PACS numbers: 98.80.Cq, 98.70.Vc

The recently released Planck data [1, 2] have set new
standards as far as cosmological modeling is concerned,
imposing very tight constraints on early universe physics
[3, 4] and discriminating [5, 6] between numerous infla-
tionary theories [7]. Bouncing alternatives [8–10] have
been claimed to be able to reproduce the observed power
spectrum, but probably the most serious constraint to
date on primordial cosmological models is that provided
by the smallness of non-Gaussianities [11]. Whether or
not generic bouncing models can successfully pass this
test will decide on the viability of such alternatives. The
current work, drawing heavily on the results of Ref. [12],
seems to imply that the level of non-Gaussianity pro-
duced during the contraction to expansion transition
alone can be expected to be orders of magnitudes above
the current limits. Although our result applies, strictly
speaking, to the production of non-Gaussianities in a par-
ticular category of non-singular bouncing models with
constant positive spatial curvature1 and for which Gen-
eral Relativity (GR) is valid all along, we conjecture that
it could apply to a much wider set of models, hence rais-
ing a possibly generic problem with bouncing cosmologies
that would need to be addressed for each specific model.

1
Spatial curvature, being the only e↵ective negative energy com-

ponent at the bounce, is crucial for this category of models based

on positive energy single scalar field matter content. Although

many models are realized with vanishing or negligible spatial

curvature contribution, they necessarily involve other types of

negative energy fields, which may cause serious instabilities, and

hence also potentially large amounts of non-Gaussianities.

We start from the action describing a single scalar field
� with a canonical kinetic term and evolving in a poten-
tial V (�) within GR (in units in which 8⇡GN = 1),

S = �
Z

d4x
p�g

h

R+ (@�)
2

+ V (�)
i

, (1)

where R is the Ricci scalar derived from the metric ten-
sor gµ⌫ for the perturbed Friedman-Lemâıtre-Robertson-
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initial conditions can be set. In contrast with what hap-
pens in inflation, for which modes cross the potential only
once (e.g. k

3

in Fig. 1), in a bouncing cosmology, modes
may cross the potential three or more times (e.g. k

1

or
k

2

in Fig. 1). The primordial spectrum is therefore mod-
ified for wavenumbers k

1

, k
2

, with possible superimposed
oscillations [15, 16] and, as will be shown below, the am-
plitude of the three-point function of cosmological per-
turbations generated by the bounce is large [12].

We concentrate here on the calculation of the amount
of non-Gaussianity produced by the bouncing phase only.
It is thus su�cient for our purpose to expand the scale
factor around the bounce in powers of conformal time ⌘,
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where ⌘

c

is the characteristic timescale of the bounce,
and to compute the production of non-Gaussianity be-
tween an initial spatial hypersurface at time ⌘� satisfying
�⌘

c

. ⌘� < 0 and a final spatial hypersurface at time
⌘

+

satisfying 0 . ⌘

+

< ⌘

c

. In Eq. (4), the two additional
constants �

3

and �

4

parameterize deviations from a de
Sitter bounce at cubic and quartic order in ⌘ respectively
while ⌘

c

is an overall deviation in the bouncing timescale
from the de Sitter bouncing timescale.

FIG. 1: Prototypical potential Vu(⌘) as function of time and
wavenumber squared in a bouncing cosmology (see [14–16]
for explicit examples) with the bounce itself taking place be-
tween times ⌘� and ⌘+. At the level of two-point statistics,
small scale perturbations (e.g. those of wavenumber k4) re-
main una↵ected, while long wavelength perturbations (k1, k2
or k3) can be spectrally modified in di↵erent ways. For il-
lustrative purposes, the time evolution of two modes, uk2(⌘)
and uk3(⌘) is also shown. The bounce produces possibly large
non-Gaussianities for any {k1, k2, k3} configuration.

At the level of the background cosmology, introduc-

ing the parameter ⌥ = �
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/2 (the subscript “B” denotes

a quantity evaluated at the time of the bounce), one
may use the Einstein equations to express the bounc-
ing timescale as ⌘
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parameters "V = (V,�/V )|B and ⌘V = (V,��/V )|
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related to ⌥, �
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and �
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in Eq. (4) through the Einstein
equations, with the de Sitter bounce being recovered in
the limit ⌥ ! 0 [12, 14, 15]. In terms of ⌥, "V and ⌘V ,
the bounce is seen to be controlled by the kinetic energy
of � and the flatness of the potential V (�).
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is vanishing for i = 1; its explicit form is not
essential for our discussion and can be found in [12].
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providing the ini-

tial conditions of the first order perturbation and its time
derivative on the initial spatial hypersurface. As we are
interested in the amount of non-Gaussianity produced in
the bouncing phase, we shall assume that the variables x̂a

follow Gaussian statistics. The x̂a in turn define a spec-
tral matrix P at ⌘� by hx̂a (k1

) x̂b (k2

)i = �k1k2Pab (k).
It is important to note that, in general, and in contrast
to the more usual inflationary case, all four entries in P
are necessary to calculate the amount of non-Gaussianity
produced by the bouncing phase. Note also that the
background spacetime being of constant positive curva-
ture, all calculations are performed on the three-sphere
S3 and the wave vectors consist in three integer numbers,
n > 1, giving the amplitude k

2 = n(n + 2), ` > 0, and
m 2 [�`, `], while �k1k2 is the product of three Kronecker
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where Gk1k2k3 is a geometrical form factor generalizing
the flat case � (k
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+ k
3

) to S3; it is given by an inte-
gral over the product of three hyperspherical harmonics.
The bispectrum is also used to define the non-linearity
parameter fNL , obtained by expressing the non-Gaussian
signal in terms of the sum of squares of the two-point
functions for wavenumbers k

1
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and k
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through
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perturbations up to 2nd order

bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
computation scheme. What is therefore produced in our symmetric model can thus be understood as the minimum
level expected in curvature-dominated bounces.

Finally, note that although we have no specific knowledge on the pre-bounce phase, but because the de Sitter
solution is an attractor in most theories of gravity, we assume that our bouncing cosmolgy is driven towards the de
Sitter attractor. We will therefore take ⌥, "V and ⌘V , to be small and present the results in Section 4.2 onwards as
expansions in these parameters.

2.2 Linear perturbations

We work with the metric in the Poisson gauge (or the generalized Newtonian gauge) and consider only scalar pertur-
bations. The perturbed metric therefore reads
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where �ij is the metric on the background spatial hypersurface (2.1). In a homogeneous and isotropic spatial volume,
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In this work, we expand all quantities up to the second order as
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Since K = +1, and in order to compute the spectral matrix P and the bispectrum B , the first order perturbation is
decomposed on the three-sphere in terms of the set of hyperspherical harmonics Q`mn(�, ✓,') as follows:

 (1)(x, ⌘) =

X

`mn

 `mn(⌘)Q`mn(�, ✓,') with Q`mn(�, ✓,') = R`n(�)Y`m(✓,'), (2.15)

with R`n(�) defined in Appendix C.

2.3 Stochastic initial conditions

In order to specify the set of initial conditions for the first order perturbation  (1) prior to the bounce, let us consider
some spatial hypersurface M at some initial time ⌘� before the bounce. On M, let us assume that the initial conditions
can be written as two classical gaussian random fields, one for  and one for its time derivative at ⌘�:



 (1) (k, ⌘�)
 

0
(1) (k, ⌘�)

�

⌘


x̂1 (k)

x̂2 (k)

�

. (2.16)
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bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
computation scheme. What is therefore produced in our symmetric model can thus be understood as the minimum
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Finally, note that although we have no specific knowledge on the pre-bounce phase, but because the de Sitter
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hyperspherical harmonics

C Mode functions in K > 0 spacetime

As usual, it is convenient to work in k-space instead of configuration space. In our case, since the spatial volume has
constant positive curvature, we shall make use of the 3-dimensional hyperspherical harmonics Qn`m(�, ✓,�), which
are given by (C.4)-(C.5). Any real scalar field f(x) ⌘ f(�, ✓,�) can then be expanded in terms of Qn`m(�, ✓,�),
using the normalization given in (C.8), as
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The harmonics in S3 are given by hyperspherical harmonics which can be expressed as
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The associated Legendre functions of half-integer degree and order read
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and are related to the Gegenbauer polynomials according to the relation
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With the choice of normalisation made for ⇧n`(�), the quantity Qn`m (�, ✓,�) satisfies the orthogonality condition
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The addition theorem for hyperspherical harmonics on the 3-sphere reads
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Here, ⌦i ⌘ (�i, ✓i,�i) and ↵ is the angle between the two direction defined by the angles ⌦1 and ⌦2; C1
n(cos↵) is

the Gegenbauer polynomial of degree n and order 1.
Since the Qn`m’s form a complete and orthogonal basis in S3, the product of any two Qn`m’s can be expanded

as a summation over Qn`m:
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– 24 –

Legendre

effect of the bounce itself: initial conditions = classical gaussian fields

bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
computation scheme. What is therefore produced in our symmetric model can thus be understood as the minimum
level expected in curvature-dominated bounces.

Finally, note that although we have no specific knowledge on the pre-bounce phase, but because the de Sitter
solution is an attractor in most theories of gravity, we assume that our bouncing cosmolgy is driven towards the de
Sitter attractor. We will therefore take ⌥, "V and ⌘V , to be small and present the results in Section 4.2 onwards as
expansions in these parameters.
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Since K = +1, and in order to compute the spectral matrix P and the bispectrum B , the first order perturbation is
decomposed on the three-sphere in terms of the set of hyperspherical harmonics Q`mn(�, ✓,') as follows:
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2.3 Stochastic initial conditions

In order to specify the set of initial conditions for the first order perturbation  (1) prior to the bounce, let us consider
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can be written as two classical gaussian random fields, one for  and one for its time derivative at ⌘�:
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In this work, we shall treat the set {x̂i} as the initial conditions and shall make use of their two-point correlations
which we define as (see Appendix B)

⌦

x̂i (k) x̂j
�

k

0�↵ ⌘ �k,k0
Pij (k) with �k,k0 ⌘ �nn0

�``0�mm0 (2.17)

– 5 –

spectra

bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
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Finally, note that although we have no specific knowledge on the pre-bounce phase, but because the de Sitter
solution is an attractor in most theories of gravity, we assume that our bouncing cosmolgy is driven towards the de
Sitter attractor. We will therefore take ⌥, "V and ⌘V , to be small and present the results in Section 4.2 onwards as
expansions in these parameters.

2.2 Linear perturbations

We work with the metric in the Poisson gauge (or the generalized Newtonian gauge) and consider only scalar pertur-
bations. The perturbed metric therefore reads

ds2 = gµ⌫dxµdx⌫ = a

2
�

�e2�d⌘2 + e�2 
�ijdxidxj

�

, (2.10)

where �ij is the metric on the background spatial hypersurface (2.1). In a homogeneous and isotropic spatial volume,
it is convenient to work in spherical coordinates where �ij takes the form

�ijdxidxj = d�2
+K�1

sin

2
⇣p

K�

⌘

�

d✓2 + sin

2
✓d�2

�

. (2.11)

In this work, we expand all quantities up to the second order as

X (x, ⌘) = X(1) (x, ⌘) +
1

2

X(2) (x, ⌘) + · · · , (2.12)

where X stands for �,  and �� etc, X(1) and X(2) are the first and second order perturbations respectively. In a
universe filled with single scalar field matter, the equation of motion for the linear perturbation  (1) is well-known
and reads (see Appendix A)

 

00
(1) + F (⌘) 

0
(1) � ¯r2

 (1) +W (⌘) (1) = 0, (2.13)

where ¯r2 is the Laplacian w.r.t. the spatial metric (2.11) and where

F (⌘) = 2

✓

H�
¯

�

00
¯

�

0

◆

, W (⌘) = 2

✓

H0 �H
¯

�

00
¯

�

0 � 2K
◆

. (2.14)

Since K = +1, and in order to compute the spectral matrix P and the bispectrum B , the first order perturbation is
decomposed on the three-sphere in terms of the set of hyperspherical harmonics Q`mn(�, ✓,') as follows:

 (1)(x, ⌘) =

X

`mn

 `mn(⌘)Q`mn(�, ✓,') with Q`mn(�, ✓,') = R`n(�)Y`m(✓,'), (2.15)

with R`n(�) defined in Appendix C.

2.3 Stochastic initial conditions

In order to specify the set of initial conditions for the first order perturbation  (1) prior to the bounce, let us consider
some spatial hypersurface M at some initial time ⌘� before the bounce. On M, let us assume that the initial conditions
can be written as two classical gaussian random fields, one for  and one for its time derivative at ⌘�:



 (1) (k, ⌘�)
 

0
(1) (k, ⌘�)

�

⌘


x̂1 (k)

x̂2 (k)

�

. (2.16)

In this work, we shall treat the set {x̂i} as the initial conditions and shall make use of their two-point correlations
which we define as (see Appendix B)

⌦

x̂i (k) x̂j
�

k

0�↵ ⌘ �k,k0
Pij (k) with �k,k0 ⌘ �nn0

�``0�mm0 (2.17)

– 5 –

bounce, and thus set "V to zero. Inclusion of some amount of asymmetry during the bounce does not modify our
conclusions, except insofar as it induces the production of additional non-gaussianities at next-to-leading order in our
computation scheme. What is therefore produced in our symmetric model can thus be understood as the minimum
level expected in curvature-dominated bounces.

Finally, note that although we have no specific knowledge on the pre-bounce phase, but because the de Sitter
solution is an attractor in most theories of gravity, we assume that our bouncing cosmolgy is driven towards the de
Sitter attractor. We will therefore take ⌥, "V and ⌘V , to be small and present the results in Section 4.2 onwards as
expansions in these parameters.

2.2 Linear perturbations

We work with the metric in the Poisson gauge (or the generalized Newtonian gauge) and consider only scalar pertur-
bations. The perturbed metric therefore reads

ds2 = gµ⌫dxµdx⌫ = a

2
�

�e2�d⌘2 + e�2 
�ijdxidxj

�

, (2.10)

where �ij is the metric on the background spatial hypersurface (2.1). In a homogeneous and isotropic spatial volume,
it is convenient to work in spherical coordinates where �ij takes the form

�ijdxidxj = d�2
+K�1

sin

2
⇣p

K�

⌘

�

d✓2 + sin

2
✓d�2

�

. (2.11)

In this work, we expand all quantities up to the second order as

X (x, ⌘) = X(1) (x, ⌘) +
1

2

X(2) (x, ⌘) + · · · , (2.12)

where X stands for �,  and �� etc, X(1) and X(2) are the first and second order perturbations respectively. In a
universe filled with single scalar field matter, the equation of motion for the linear perturbation  (1) is well-known
and reads (see Appendix A)

 

00
(1) + F (⌘) 

0
(1) � ¯r2

 (1) +W (⌘) (1) = 0, (2.13)

where ¯r2 is the Laplacian w.r.t. the spatial metric (2.11) and where

F (⌘) = 2

✓

H�
¯

�

00
¯

�

0

◆

, W (⌘) = 2

✓

H0 �H
¯

�

00
¯

�

0 � 2K
◆

. (2.14)

Since K = +1, and in order to compute the spectral matrix P and the bispectrum B , the first order perturbation is
decomposed on the three-sphere in terms of the set of hyperspherical harmonics Q`mn(�, ✓,') as follows:

 (1)(x, ⌘) =

X

`mn

 `mn(⌘)Q`mn(�, ✓,') with Q`mn(�, ✓,') = R`n(�)Y`m(✓,'), (2.15)

with R`n(�) defined in Appendix C.

2.3 Stochastic initial conditions

In order to specify the set of initial conditions for the first order perturbation  (1) prior to the bounce, let us consider
some spatial hypersurface M at some initial time ⌘� before the bounce. On M, let us assume that the initial conditions
can be written as two classical gaussian random fields, one for  and one for its time derivative at ⌘�:



 (1) (k, ⌘�)
 

0
(1) (k, ⌘�)

�

⌘


x̂1 (k)

x̂2 (k)

�

. (2.16)

In this work, we shall treat the set {x̂i} as the initial conditions and shall make use of their two-point correlations
which we define as (see Appendix B)

⌦

x̂i (k) x̂j
�

k

0�↵ ⌘ �k,k0
Pij (k) with �k,k0 ⌘ �nn0

�``0�mm0 (2.17)

– 5 –

2

initial conditions can be set. In contrast with what hap-
pens in inflation, for which modes cross the potential only
once (e.g. k

3

in Fig. 1), in a bouncing cosmology, modes
may cross the potential three or more times (e.g. k

1

or
k

2

in Fig. 1). The primordial spectrum is therefore mod-
ified for wavenumbers k

1

, k
2

, with possible superimposed
oscillations [15, 16] and, as will be shown below, the am-
plitude of the three-point function of cosmological per-
turbations generated by the bounce is large [12].

We concentrate here on the calculation of the amount
of non-Gaussianity produced by the bouncing phase only.
It is thus su�cient for our purpose to expand the scale
factor around the bounce in powers of conformal time ⌘,

a

a

0

= 1+
1

2

✓

⌘

⌘

c

◆

2

+�

3

✓

⌘

⌘

c

◆
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+
5(1 + �

4

)

24

✓

⌘

⌘

c

◆

4

+ · · · ,
(4)

where ⌘

c

is the characteristic timescale of the bounce,
and to compute the production of non-Gaussianity be-
tween an initial spatial hypersurface at time ⌘� satisfying
�⌘

c

. ⌘� < 0 and a final spatial hypersurface at time
⌘

+

satisfying 0 . ⌘

+

< ⌘

c

. In Eq. (4), the two additional
constants �

3

and �

4

parameterize deviations from a de
Sitter bounce at cubic and quartic order in ⌘ respectively
while ⌘

c

is an overall deviation in the bouncing timescale
from the de Sitter bouncing timescale.

FIG. 1: Prototypical potential Vu(⌘) as function of time and
wavenumber squared in a bouncing cosmology (see [14–16]
for explicit examples) with the bounce itself taking place be-
tween times ⌘� and ⌘+. At the level of two-point statistics,
small scale perturbations (e.g. those of wavenumber k4) re-
main una↵ected, while long wavelength perturbations (k1, k2
or k3) can be spectrally modified in di↵erent ways. For il-
lustrative purposes, the time evolution of two modes, uk2(⌘)
and uk3(⌘) is also shown. The bounce produces possibly large
non-Gaussianities for any {k1, k2, k3} configuration.

At the level of the background cosmology, introduc-

ing the parameter ⌥ = �

02
B
/2 (the subscript “B” denotes

a quantity evaluated at the time of the bounce), one
may use the Einstein equations to express the bounc-
ing timescale as ⌘

c

= (1 � ⌥)�1/2 � 1. Two additional
parameters "V = (V,�/V )|B and ⌘V = (V,��/V )|

B

can be
related to ⌥, �

3

and �

4

in Eq. (4) through the Einstein
equations, with the de Sitter bounce being recovered in
the limit ⌥ ! 0 [12, 14, 15]. In terms of ⌥, "V and ⌘V ,
the bounce is seen to be controlled by the kinetic energy
of � and the flatness of the potential V (�).

The equation of motion for the i

th order reads

D 
(i) = S ⇥

 
(i�1)

⇤

, (5)

where D = @

2

⌘ + F (⌘) @⌘ + k

2 + W (⌘) (the subscript
“k” on the modes is not written but implicitely assumed
for notational simplicity), with F (⌘) = 2 (H� �

00
/�

0)
and W (⌘) = 2 (H0 �H�

00
/�

0 � 2K) The source term
S ⇥

 
(i�1)

⇤

is vanishing for i = 1; its explicit form is not
essential for our discussion and can be found in [12].

The series solution of Eq. (5) for  
(1)

up to ⌘

2 can
be written in terms of two modes functions v

1

(k, ⌘) and
v

2

(k, ⌘) normalized such that v
1

(k, ⌘�) = 1, v0
1

(k, ⌘�) =
0, v

2

(k, ⌘�) = 0 and v

0
2

(k, ⌘�) = 1 [12]. In this basis, the
initial conditions are given in terms of a set of random

variables x̂a ⌘
n

 
(1)

(⌘�), 
0
(1)

(⌘�)
o

providing the ini-

tial conditions of the first order perturbation and its time
derivative on the initial spatial hypersurface. As we are
interested in the amount of non-Gaussianity produced in
the bouncing phase, we shall assume that the variables x̂a

follow Gaussian statistics. The x̂a in turn define a spec-
tral matrix P at ⌘� by hx̂a (k1

) x̂b (k2

)i = �k1k2Pab (k).
It is important to note that, in general, and in contrast
to the more usual inflationary case, all four entries in P
are necessary to calculate the amount of non-Gaussianity
produced by the bouncing phase. Note also that the
background spacetime being of constant positive curva-
ture, all calculations are performed on the three-sphere
S3 and the wave vectors consist in three integer numbers,
n > 1, giving the amplitude k

2 = n(n + 2), ` > 0, and
m 2 [�`, `], while �k1k2 is the product of three Kronecker
delta functions �n1n2 , �`1`2 , and �m1m2 .

The bispectrum B
 

at ⌘
+

is defined through the three-
point function of the perturbation  evaluated at ⌘

+

[12],

h k1 k2 k3i =
1

2
Gk1k2k3B (k

1

, k

2

, k

3

) , (6)

where Gk1k2k3 is a geometrical form factor generalizing
the flat case � (k

1

+ k
2

+ k
3

) to S3; it is given by an inte-
gral over the product of three hyperspherical harmonics.
The bispectrum is also used to define the non-linearity
parameter fNL , obtained by expressing the non-Gaussian
signal in terms of the sum of squares of the two-point
functions for wavenumbers k

1

, k
2

and k

3

through
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2nd order

In this work, we focus on the behaviour of perturbations around the bouncing point and thus solve for v1 and v2

up to quadratic order in the neighborhood of ⌘ = 0. We find that

vi(⌘) = ci,0 + ci,1⌘ +

1

2

ci,2⌘
2
, i = 1, 2, (2.27)

where the coefficients ci0, ci1 and ci2 are functions of k. Plugging (2.27) into (2.13) and setting ⌘ = 0 yields
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where we have used the fact that H(⌘ = 0) = 0, and where the subscript “0” denotes quantities evaluated at the
bounce point. Together with the initial conditions (2.26), we immediately get
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In Section 4 , we shall use these expressions to compute the shapes and amplitudes of non-gaussianities induced by
the bouncing phase.

3 Nonlinear evolution of perturbations through the bounce

The equation of motion for  (2) in real space reads
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with
F (X) =
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¯r2
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+ 3K ¯r2
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¯ri
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. (3.3)

The reader is referred to Appendix A for the details of the calculation. In k-space, S(2) can be written in the compact
form

S(2) (k, ⌘) =

X

p1,p2

Gk,p1,p2
˜

⌃ij (k, p1, p2; ⌘) âi (p1) âj (p2) , (3.4)

where Gk,p1,p2 is a geometrical form factor defined in Appendix C (recall that we are working in an FLRW background
with positvely curved spatial hypersurfaces, so that the usual flat-space Fourier integrals are replaced by discrete sums
over hyperspherical harmonics, see Appendix B), and where

˜

⌃ij (k, p1, p2; ⌘) = C1 (k, p1, p2; ⌘) i (p1, ⌘) j (p2, ⌘) +

C2 (k, p1, p2; ⌘) i (p1, ⌘) 
0
j (p2, ⌘) + C3 (k, p1, p2; ⌘) 0

i (p1, ⌘) 
0
j (p2, ⌘) . (3.5)

with the coefficients C1, C2 and C3 as given in Appendix D. As already pointed out, it is more convenient to rewrite
the source term in terms of the Gaussian variables x̂i(k) and mode functions v(k, ⌘) defined in (2.23). This yields
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Up to now, the calculation is rather general, and can be applied to the non-linear evolution of up to second order for
an arbitrary cosmological evolution in a spatially closed FLRW background3. We now evaluate the elements of the
matrix ⇧ which is defined in (3.9) and encode the influence of non-linearities on the statistics of  . This requires a
concrete cosmology both at the level of the background and at the level of first order perturbations which we take to
be the ones introduced in Sections 2.1 to 2.3.

3Note that the same techniques have been applied earlier to compute the non-linear transfer of the gravitational potential into the temperature
anisotropies on large scales [17, 35–38]. It was found that the non-linearities of gravitation would only contribute O(1) non-gaussianities during
the standard big-bang evolution, although these can be amplified in a modified theory of gravity [34]. Our work demonstrates that bouncing
cosmologies provide another possibility to enhance nonlinearities.
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Up to now, the calculation is rather general, and can be applied to the non-linear evolution of up to second order for
an arbitrary cosmological evolution in a spatially closed FLRW background3. We now evaluate the elements of the
matrix ⇧ which is defined in (3.9) and encode the influence of non-linearities on the statistics of  . This requires a
concrete cosmology both at the level of the background and at the level of first order perturbations which we take to
be the ones introduced in Sections 2.1 to 2.3.

3Note that the same techniques have been applied earlier to compute the non-linear transfer of the gravitational potential into the temperature
anisotropies on large scales [17, 35–38]. It was found that the non-linearities of gravitation would only contribute O(1) non-gaussianities during
the standard big-bang evolution, although these can be amplified in a modified theory of gravity [34]. Our work demonstrates that bouncing
cosmologies provide another possibility to enhance nonlinearities.
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Up to now, the calculation is rather general, and can be applied to the non-linear evolution of up to second order for
an arbitrary cosmological evolution in a spatially closed FLRW background3. We now evaluate the elements of the
matrix ⇧ which is defined in (3.9) and encode the influence of non-linearities on the statistics of  . This requires a
concrete cosmology both at the level of the background and at the level of first order perturbations which we take to
be the ones introduced in Sections 2.1 to 2.3.

3Note that the same techniques have been applied earlier to compute the non-linear transfer of the gravitational potential into the temperature
anisotropies on large scales [17, 35–38]. It was found that the non-linearities of gravitation would only contribute O(1) non-gaussianities during
the standard big-bang evolution, although these can be amplified in a modified theory of gravity [34]. Our work demonstrates that bouncing
cosmologies provide another possibility to enhance nonlinearities.
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Bispectrum

4 Bispectrum formula, non-gaussian shapes and amplitudes

4.1 The general form of the bispectrum and parameter fNL

Let us define the bispectrum B (k1, k2, k3; ⌘) in terms of the three-point function through the relation

h (k1, ⌘) (k2, ⌘) (k3, ⌘)i ⌘
1

2

Gk1k2k3B (k1, k2, k3; ⌘) (4.1)

where Gk1k2k3 is the geometric form factor introduced before and where we have included a factor 1/2 for conve-
nience. Given that the perturbation  is expanded according to (2.12), the leading (second order) contribution to the
three-point function is given by

h (k1, ⌘) (k2, ⌘) (k3, ⌘)i =
1

2

⌦

 (1) (k1, ⌘) (1) (k2, ⌘) (2) (k3, ⌘)
↵

+ 2 perms. (4.2)

Let us focus our attention on the production of second order perturbations during the bouncing phase. To that end we
neglect  (0)

(2) and write (2.16) and (3.8) in vector form as

 (1)(k, ⌘) = v(k)

T
ˆ

x(k) =

ˆ

x(k)

T
v(k),  (2) (k, ⌘) =

X

p1,p2

Gk3,p1,p2
ˆ

x(p1)
T⇧(k3, p1, p2)ˆx(p2). (4.3)

As made clear in Section 2.3, the statistics of  (1) are assumed Gaussian. The three-point function then becomes

h (k1, ⌘) (k2, ⌘) (k3, ⌘)i =

1

2

hvT
(k1)ˆx(k1)

X

p1,p2

Gk3,p1,p2
ˆ

x(p1)
T⇧(k3, p1, p2)ˆx(p2)ˆx(k2)

T
v(k2)i+ 2 perms

=

1

2

X

p1,p2

Gk3,p1,p2v
T
(k1) hˆx(k1)ˆx(p1)

T⇧(k3, p1, p2)ˆx(p2)ˆx(k2)
T iv(k2) + 2 perms

=

1

2

Gk3,k1,k2v
T
(k1)P (k1)⇧(k3, k1, k2)P (k2)v(k2) + 5 perms, (4.4)

where we have used Wick theorem and the definition of the spectral matrix P defined in (2.17) in going from the
second to the third line. The leading order contributions to the bispectrum thus take the form

B (k1, k2, k3; ⌘) = v

T
(k1, ⌘)P (k1)⇧ (k3, k1, k2; ⌘)P (k2) v (k2, ⌘) + 5 perms, (4.5)

where ⇧ is defined in (3.9). The amplitude of the bispectrum is popularly characterized by the so-called dimensionless
nonlinear parameter fNL, defined by [39]

fNL ⌘ 5

6

B (k1, k2, k3; ⌘)
P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)

=

5

6

v

T
(k1, ⌘)P (k1)⇧ (k3, k1, k2; ⌘)P (k2) v (k2, ⌘) + 5 perms

v

T
(k1, ⌘)P (k1) v (k1, ⌘) v

T
(k2, ⌘)P (k2) v (k2, ⌘) + (2 ! 3) + (1 ! 3)

. (4.6)

This is the principal exact result of this work. Before proceeding, it is worth remembering that the spectral matrix P

is not known. Therefore, only the “sourcing” factor of non-gaussianities across the bounce can be computed, that is,
the matrix elements of ⇧.

Although there are a total of six terms in each matrix element of ⇧, it is useful to note that the off-diagonal
elements of the matrix ⇧ are symmetric under the following simultaneous index permutations

⇧12(ki, kj , kl) = ⇧21(ki, kl, kj). (4.7)

This reduces the number of distinct terms in ⇧ to 18. In the equilateral configuration in which all three wavenumbers
are equal, there is just one contribution to each of the three distinct matrix elements in ⇧. In both the folded (ki =
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Using the results obtained in [12], we now proceed by calculating fNL at leading order in ⌥, "V and ⌘V and in the limit
of large wavenumbers k . This latter assumption is justified because the range of observationally accessible physical
wavenumbers today is 103hMpc�1 . k

phys

. 103hMpc�1 and corresponds to a range of comoving wavenumbers
102 . k . 108 for a conservative value ⌦K  10�2 [2]. We find
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where the dots denote sub-leading terms in inverse powers of k and higher order in ⌥, "V and ⌘V . We also defined
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In Eqs. (8) and (10), the sums and products are taken
over all possible permutations of i, j and `: �(i, j, `)
denotes (i, j, `) 2 {(1, 2, 3), (1, 3, 2), (2, 3, 1)}, and �(i, j)
denotes (i, j) 2 {(1, 2), (1, 3), (2, 3)}. In the equilateral
(k

1

= k

2

= k

3

= k) and squeezed (ki = kj = k and
k` = p ⌧ k) configurations and at leading order, Eq. (8)
simplifies to
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so that the non-Gaussianity parameter is of order k2/⌥.
In the folded configuration (k
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= k

3

= 1

2

k

1

), the first
non-vanishing term is given in the second line of Eq. (8)
and simplifies to
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The square of the wavenumber does not appear in the
numerator of Eq. (13) so that the folded configuration is
much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,
is unknown, some information on the dominant shapes
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so that the non-Gaussianity parameter is of order k2/⌥.
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The square of the wavenumber does not appear in the
numerator of Eq. (13) so that the folded configuration is
much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,
is unknown, some information on the dominant shapes
of non-Gaussianities can be extracted from Eq. (8) in
two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial
conditions before the bounce.

Let us first assume that K
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. The plot suggests that
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peak in the equilateral, take intermediate values in the
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Another way to determine the shapes of non-
Gaussianities produced in a bouncing phase in a largely
model-independent way consists in assuming the Bardeen
potential to have reached, at ⌘ = ⌘�, the “frozen” state,
so that one has  0 ⌧  , leading to P
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where ⌘
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is the characteristic timescale of the bounce,
and to compute the production of non-Gaussianity be-
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. In Eq. (4), the two additional
constants �
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parameterize deviations from a de
Sitter bounce at cubic and quartic order in ⌘ respectively
while ⌘

c

is an overall deviation in the bouncing timescale
from the de Sitter bouncing timescale.

FIG. 1: Prototypical potential Vu(⌘) as function of time and
wavenumber squared in a bouncing cosmology (see [14–16]
for explicit examples) with the bounce itself taking place be-
tween times ⌘� and ⌘+. At the level of two-point statistics,
small scale perturbations (e.g. those of wavenumber k4) re-
main una↵ected, while long wavelength perturbations (k1, k2
or k3) can be spectrally modified in di↵erent ways. For il-
lustrative purposes, the time evolution of two modes, uk2(⌘)
and uk3(⌘) is also shown. The bounce produces possibly large
non-Gaussianities for any {k1, k2, k3} configuration.
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of � and the flatness of the potential V (�).
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is vanishing for i = 1; its explicit form is not
essential for our discussion and can be found in [12].
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It is important to note that, in general, and in contrast
to the more usual inflationary case, all four entries in P
are necessary to calculate the amount of non-Gaussianity
produced by the bouncing phase. Note also that the
background spacetime being of constant positive curva-
ture, all calculations are performed on the three-sphere
S3 and the wave vectors consist in three integer numbers,
n > 1, giving the amplitude k
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m 2 [�`, `], while �k1k2 is the product of three Kronecker
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where Gk1k2k3 is a geometrical form factor generalizing
the flat case � (k
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3

) to S3; it is given by an inte-
gral over the product of three hyperspherical harmonics.
The bispectrum is also used to define the non-linearity
parameter fNL , obtained by expressing the non-Gaussian
signal in terms of the sum of squares of the two-point
functions for wavenumbers k
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through
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Using the results obtained in [12], we now proceed by calculating fNL at leading order in ⌥, "V and ⌘V and in the limit
of large wavenumbers k . This latter assumption is justified because the range of observationally accessible physical
wavenumbers today is 103hMpc�1 . k
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where the dots denote sub-leading terms in inverse powers of k and higher order in ⌥, "V and ⌘V . We also defined
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In Eqs. (8) and (10), the sums and products are taken
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denotes (i, j, `) 2 {(1, 2, 3), (1, 3, 2), (2, 3, 1)}, and �(i, j)
denotes (i, j) 2 {(1, 2), (1, 3), (2, 3)}. In the equilateral
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so that the non-Gaussianity parameter is of order k2/⌥.
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The square of the wavenumber does not appear in the
numerator of Eq. (13) so that the folded configuration is
much below the equilateral and squeezed configuration.

Although the matrix P , and hence the functions K’s,
is unknown, some information on the dominant shapes
of non-Gaussianities can be extracted from Eq. (8) in
two obvious ways which also highlight the dependence of

the shapes of non-Gaussianities obtained on the initial
conditions before the bounce.

Let us first assume that K
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Another way to determine the shapes of non-
Gaussianities produced in a bouncing phase in a largely
model-independent way consists in assuming the Bardeen
potential to have reached, at ⌘ = ⌘�, the “frozen” state,
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4

FIG. 2: Shape functions derived from Eq. (8) showing the relative contributions of the various possible non-Gaussian configu-
rations. Left panel: estimate with K1(ki)K1,2(kj) ' K3(k1, k2, k3). Right panel: scale invariant (P  / k

3/2) “frozen” state
approximation. In both panels fNL / (k2

1/⌥) ⇥ S(x2, x3) � 1, x2 = k2/k1 and x3 = k3/k1. The di↵erences in the amplitude
as a function of the configuration {k1, k2, k3} hightlights the dependence of S(x2, x3) on the details of P .

panel of the figure, but with, in this case, the squeezed
configuration slightly exceeding the equilateral one and
an overall amplitude reduced by a fac tor 2 to 3.

To conclude, let us discuss two interesting limiting be-
haviors of the model. The first is the quasi-de-Sitter ap-
proximation which, as mentioned before, is equivalent to
having ⌥ ⌧ 1. In this limit, and contrary to the single
field slow-roll inflationary situation, Eqs. (11-13) show
that large amounts of non-Gaussianities are produced in
all possible shapes, with fNL / ⌥�1 � 1. Thus, although
large non-Gaussianities in inflation often stem from a vi-
olation of slow roll, in the bouncing case, the closer one is
to a de Sitter bounce, the more non-Gaussianities are pro-
duced. The second limiting behavior is perhaps more rel-
evant for comparison with observational data, as it is not
based on any pre-requisite regarding the structure of the
bounce. As seen from Eqs. (11) to (13), the parameter
fNL is scale-dependent, and in particular, is proportional
to k

2 in the equilateral and squeezed configurations. In
a cosmological background with closed spatial sections
and with ⌦K as large as the conservative value 10�2 to-
day, the mode numbers are, as discussed above, in the
range

⇥

102, 108
⇤

, so the expected non-Gaussianities are
predicted to be extremely large right after the bouncing
phase. In both limits, the amount of non-Gaussianity
produced greatly exceeds the current observational lim-
its and the validity of the perturbative expansion may be
brought into question. We conjecture that this is likely
to be a generic and potentially serious problem for non-
singular bouncing cosmologies.
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The square of the wavenumber does not appear in the
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Conclusion

Bouncing cosmology = testbed for new ideas, interesting, potentially useful…

not yet an alternative to inflation
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