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" Computational harmonic analysis seeks representations of a signal as linear
combinations of basis, frame, dictionary, element :

" Fast calculation of the coefficients ak

" Analyze the signal through the statistical properties of the coefficients

" Approximation theory  uses  the sparsity of the coefficients.

What is a good representation for data?

basis, framecoefficients



What is sparsity ?

In a general framework, a given signal s (n samples) has a unique
decomposition  α  in the orthogonal basis Φ (n × n matrix).

s  is sparse in Φ if most of the entries of α are zeros.

More generally s is sparse in Φ if few entries of α have
significant amplitudes.



Seeking sparse and generic representations

" Sparsity

" Why do we need sparsity?

– data compression

– Feature extraction, detection

– Image restoration

sorted index

few big

many small

Non-linear approximation curve (reconstruction error versus nbr of coeff)



Representing Barbara

Direct Space Curvelet Space



Candidate analyzing functions for piecewise smooth
signals
" Windowed fourier transform or Gaborlets :

" Wavelets :
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Looking for adapted representations

Local DCT

Wavelet transform

Curvelet transform Piecewise smooth,
edge

Piecewise smooth

Isotropic structures

Stationary textures

Locally oscillatory



Critical Sampling                            Redundant Transforms

           Pyramidal decomposition (Burt and Adelson)
   (bi-) Orthogonal WT                               Undecimated Wavelet Transform
   Lifting scheme construction                      Isotropic Undecimated Wavelet Transform
   Wavelet Packets                                       Complex Wavelet Transform
    Mirror Basis                                             Steerable Wavelet Transform
                                                                     Dyadic Wavelet Transform
                                                                     Nonlinear Pyramidal decomposition (Median)

 2D Multiscale Transforms

New Multiscale Construction
Contourlet                                               Ridgelet
Bandelet                                                  Curvelet (Several implementations)
Finite Ridgelet Transform                       Wave Atoms
Platelet
(W-)Edgelet
Adaptive Wavelet



The Orthogonal Wavelet Transform (OWT)
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Reconstruction: 

Transformation
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ISOTROPIC UNDECIMATED WAVELET TRANSFORM



Isotropic Undecimated Wavelet Transform
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Undecimated bi-orthogonal Wavelet Transform



Undecimated
  Wavelet 
Transform







Undecimated
  Wavelet 
Transform:
h=1/16[1,4,6,4,1]
g= Id-h
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Undecimated   WT (astro filters)

Undecimated  WT (7/9 filters)

Coarsest scale
 (astro filters)

Coarsest scale
 (7/9 filters)



Undecimated WT: h=16[1,4,6,4,1], g=Id-h Isotropic WT
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J.-L. Starck, J. Fadili and F. Murtagh, "The Undecimated Wavelet Decomposition and its Reconstruction", 
IEEE Transaction on Image Processing, in press.
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MODIFIED  ISOTROPIC UNDECIMATED WT

h = h1d#h1d,  g =Id-h*h  
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RECONSTRUCTION
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Problems related to the WT

_ 1) Edges representation:
  if the WT performs better than the FFT to 
  represent edges in an image, it is still not optimal.

_2) There is only a fixed number of directional elements
  independent of scales.

_ 3) Limitation of existing scale concepts: 
  there is no highly anisotropic elements. 



SNR = 0.1





Undecimated Wavelet Filtering (3 sigma)



Ridgelet Filtering (5sigma)



Wavelet

Curvelet

Width = Length^2

The Curvelet Transform



Continuous Ridgelet Transform

Ridgelet function:

 The function is constant along lines. Transverse to these ridges, it is a wavelet. 

Ridgelet Transform (Candes, 1998):
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" Ridgelet transform: Radon + 1D Wavelet

d0

    Ridgelet DenoisingRidgelet Denoising

_

d
_0

image Radon domain

_0

1D UWT
Rad. Tr.

1.     Rad. Tr.
2.     For each line, apply the same denoising

    scheme  as before
3.     Rad. Tr.-1

d0
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The ridgelet coefficients of an object f are given by analysis 

of the Radon transform via:

€ 

Rf (a,b,θ) = Rf (θ,t)ψ( t − b
a∫ )dt



Local Ridgelet Transform

The ridgelet transform is optimal to find only lines of the size of the image.
To detect line segments, a partitioning must be introduced. The image is
decomposed into blocks, and the ridgelet transform is applied on each block.

Image

Partitioning

Ridgelet 
transform



Line detection by the ridgelet transform



Preliminary Results Preliminary Results –– Line-Like Sources Restoration Line-Like Sources Restoration
(MS-VST + (MS-VST + RidgeletRidgelet))

Max Intensity
background = 0.01
vertical bar = 0.03
inclined bar = 0.04

simulated image of counts restored image 
from the left image of counts

underlying intensity image



The Curvelet Transform

The curvelet transform opens us the possibility to analyse an image with 
different block sizes, but with a single transform.

The idea is to first decompose the image into a set of wavelet bands, and
to analyze each band by a ridgelet transform. The block size can be changed
at each scale level.

- à trous wavelet transform
-Partitionning
-ridgelet transform
      . Radon Transform
      . 1D Wavelet transform



PARTITIONING



J.-L. Starck, E. Candes, D.L. Donoho  The Curvelet Transform for Image Denoising,  IEEE Transaction on  Image Processing, 11, 6, 2002.

Width = Length^2 The Curvelet Transform (CUR01)



CONTRAST ENHANCEMENT

Curvelet coefficient

Modified
curvelet 
coefficient
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Gray and Color Image Contrast Enhancement by the  Curvelet Transform,
 IEEE Transaction on Image Processing, 12, 6, pp 706--717, 2003.



Contrast Enhancement
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The Fast Curvelet Transform, Candes et al, 2005

  CUR03 - Fast Curvelet Transform using the USFFT
  CUR04 - Fast Curvelet Transform using the Wrapping and 2DFFT
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Detection of non-Gaussian Cosmological Signatures





Multiscale Analysis of the CMB

€ 

K
CMB−SZ

i, j[ ]⇒ K 
CMB−SZ

[ j] =
mean(K

CMB−SZ
1:100, j[ ]) −mean(K

CMB
1:100, j[ ])

sigma(K
CMB
1:100, j[ ])

We have applied the following multiscale transforms

• Isotropic wavelet transform
• Bi-orthogonal wavelet  transform
• Ridgelets (block size of 16 pixels)
• Ridgelets (block size of 32 pixels)
• Curvelets

On

1) 100 CMB + KSZ  + 100 Gaussian realizations with the same power spectrum.

2) 100 CMB + CS    + 100 Gaussian realizations with the same power spectrum

3) 100 CMB + KSZ + CS + 100 Gaussian realizations with the same power spectrum

 We compare the normalized kurtosis  for the three data set.



Results
• Curvelets are NOT sensitive to KSZ but are sensitive
to cosmic strings
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0.1

165.1040.CMB+CS+KSZ

198.1813.CMB+CS

10.121106.CMB+KSZ

 Detecting cosmological non-Gaussian signatures by multi-scale methods, Astron. and Astrophys., 416, 9--17, 2004 .
 Cosmological Non-Gaussian Signatures Detection: Comparison of Statistical Tests,  Eurasip  Journal on Applied

Signal Processing, 15 pp 2470-2485, 2005.

Bi-orthogonal WT Ridgelet Curvelet



WMAP

Data on the Sphere


