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The Brans-Dicke cosmology

The action for the Brans-Dicke theory in so-called Jordan frame is in the
following form

S =

∫
d
4x
√
−g

{
φR − ωBD

φ
∇αφ∇αφ− 2V (φ)

}
+ 16πSm (1)

where the barotropic matter is described by

Sm =

∫
d
4x
√
−gLm , (2)

and ωBD is a dimensionless parameter of the theory.
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Field Equations

Variation of the total action (1) with respect to the metric tensor
δS/δgµν = 0 gives the field equations for the theory

φ

(
Rµν −

1

2
gµνR

)
− ωBD

φ

(
∇µφ∇νφ− 1

2
gµν ∇αφ∇αφ

)
+

+ gµνV (φ) + (gµν�φ−∇µ∇νφ) = 8πT (m)
µν ,

(3)

where the energy momentum tensor for the matter content is

T (m)
µν = − 2√−g

δ

δgµν

(√
−gLm

)
. (4)
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FRW metric

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

(5)

the energy conservation condition

3H2 =
ωBD

2

φ̇2

φ2
+

V (φ)

φ
− 3H

φ̇

φ
+

8π

φ
ρm (6)

the acceleration equation

Ḣ = −ωBD

2

φ̇2

φ2
− 1

3 + 2ωBD

2V (φ) − φV ′(φ)

φ
+2H

φ̇

φ
−8π

φ
ρm

2 + ωBD(1 + wm)

3 + 2ωBD

(7)
the dynamical equation for the BD scalar

φ̈ + 3Hφ̇ = 2
2V (φ) − φV ′(φ)

3 + 2ωBD

+ 8πρm
1 − 3wm

3 + 2ωBD

(8)
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Dynamical variables

In what follows we introduce following energy phase space variables

x ≡ φ̇

Hφ
, y ≡

√
V (φ)

3φ

1

H
, λ ≡ −φ

V ′(φ)

V (φ)

the energy conservation condition (6) can be presented as

Ωm =
8πρm
3H2φ

= 1 + x − ωBD

6
x2 − y2 , (9)

and the acceleration equation (7)

Ḣ

H2
= 2x − ωBD

2
x2 − 3

3 + 2ωBD

y2(2 + λ)

− 3
(

1 + x − ωBD

6
x2 − y2

) 2 + ωBD(1 + wm)

3 + 2ωBD

,

(10)
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Dynamical system

x ′ = −3x − x2 − x
Ḣ

H2
+

6

3 + 2ωBD

y2(2 + λ)+

+ 3
(

1 + x − ωBD

6
x2 − y2

) 1 − 3wm

3 + 2ωBD

,

y ′ = −y

(
1

2
x(1 + λ) +

Ḣ

H2

)
, (11)

λ′ = xλ
(

1 − λ(Γ − 1)
)
,

where ()′ = d

d ln a and

Γ =
V ′′(φ)V (φ)

V ′(φ)2
.

From now on we will assume that Γ = Γ(λ). The critical points of the
system (11) depend on the explicit form of the Γ(λ) function. One can
notice that the single critical point (x∗ = 0 , y∗ = ±1 , λ∗ = −2) do not
depend on the assumed Γ(λ). Additionally, the acceleration equation (10)
calculated at this point vanishes, giving rise to the deSitter expansion.
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Invariant manifolds

For an arbitrary power-law potential functions of the type V (φ) = V0 φ
n

system reduces to a 2-dimensional one, i.e. the power-law potentials are
invariant submanifolds of the system.

λ = −n = const. , Γ(λ) = 1 − 1

n
(12)

Simple inspection of the acceleration equation (10) and the system (11)
for the power-law potential λ = −n confirms that the de Sitter expansion
is possible only for the quadratic n = 2 or the linear n = 1 potential
function. In the Einstein frame one has

m̃2 =
32π

(3 + 2ωBD)G
V0(n − 2)2 φn−2 , (13)

while in the Jordan frame

m2 =
2

3 + 2ωBD

V0 n(n − 2)φn−1 . (14)

For the linear potential function the scalar field φ has a finite range in the
Einstein frame and is tachyonic in the Jordan frame. Only the quadratic
potential function with n = 2 leads to the BD field φ which has an
infinite range in both frames.
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A quadratic potential function

We present a detailed dynamical analysis of the system (11) with a
quadratic potential function V (φ) ∝ φ2. Within this assumption we have
λ = −2 and dynamics reduces to a 2D dynamical system. The
acceleration equation is :

Ḣ

H2
= −ωBD

2
x2 + 2x − 3

(
1 + x − ωBD

6
x2 − y2

) 2 + ωBD(1 + wm)

3 + 2ωBD

, (15)

and the effective equation of state parameter is :

weff = −1 − 2

3

Ḣ

H2
. (16)
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Dynamical system for V (φ) ∝ φ2

x ′ = −3x

{
1 + x − ωBD

6
x2 −

−
(

1 + x − ωBD

6
x2 − y2

)
2 + ωBD(1 + wm)

3 + 2ωBD

}

+3

(
1 + x − ωBD

6
x2 − y2

)
1 − 3wm

3 + 2ωBD

, (17)

y ′ = 3y

{
− 1

2
x +

ωBD

6
x2 +

+

(
1 + x − ωBD

6
x2 − y2

)
2 + ωBD(1 + wm)

3 + 2ωBD

}
.
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Critical point x∗2 = 1−3wm

1+ωBD(1−wm)
, y∗

2 = 0 with effective equation of state
parameter

weff

∣∣∗
2

= wm +
1

3

1 − 3wm

1 + ωBD(1 − wm)
.

Using the linearized solutions in the vicinity of this critical point

x2(a) = x∗2 + ∆x

(
a

a
(i)
2

)λ1

, (18a)

y2(a) = ∆y

(
a

a
(i)
2

)λ2

, (18b)

where the eigenvalues of the linearization matrix are

λ1 = −3

2
(1 − wm) − 1

2
x∗2 , λ2 =

3

2
(1 + wm) + x∗2

and ∆x = x
(i)
2 − x∗2 , ∆y = y

(i)
2 − y∗

2 are the initial conditions, and a
(i)
2 is

the initial value of the scale factor near the critical point.
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One can easy obtain corresponding formula for the Hubble function. The
equation (15) up to linear terms in initial conditions reduces to

d lnH2

dτ
≈ −3(1 + wm) − x∗2

and after integration and up to linear terms in initial conditions we obtain

(
H(a)

H(a
(i)
2 )

)
≈
(

a

a
(i)
2

)
−3(1+wm)(

a

a
(i)
2

)
−x∗2

(19)

where x∗2 = 1−3wm

1+ωBD(1−wm)
is the coordinate of the critical point.
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Critical point: x∗3 = 0, y∗

3 = ±1 with effective equation of state
parameter

weff

∣∣∗
3

= −1

linearized solutions are

x3(a) =
1

wm

1 + 2ωBDwm

3 + 2ωBD

[
∆x − 2y∗

3

1 − 3wm

1 + 2ωBDwm

∆y

](
a

a
(i)
3

)λ1

−

− 1

wm

1 − 3wm

3 + 2ωBD

[
∆x − 2y∗∆y

](
a

a
(i)
3

)λ2

,

y3(a) = y∗

3 +
1

2y∗

3wm

1 + 2ωBDwm

3 + 2ωBD

{[
∆x − 2y∗

3

1 − 3wm

1 + 2ωBDwm

∆y

](
a

a
(i)
3

)λ1

−

−
[

∆x − 2y∗∆y

](
a

a
(i)
3

)λ2
}

where λ1 = −3 and λ2 = −3(1 + wm) are the eigenvalues of the

linearization matrix and ∆x = x
(i)
3 − x∗3 , ∆y = y

(i)
3 − y∗

3 are the initial
conditions.
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Using the linearized solutions we obtain the following form of the Hubble
function in the vicinity of the critical point under considerations

(
H(a)

H(a0)

)2

≈ 1−ΩDM,0−ΩM,0 + ΩDM,0

(
a

a0

)
−3

+ ΩM,0

(
a

a0

)
−3(1+wm)

,

(21)
where

ΩDM,0 = − 4

3wm

1 + 2ωBDwm

3 + 2ωBD

{
∆x − 2y∗

3

1 − 3wm

1 + 2ωBDwm

∆y

}(
a0

a
(i)
3

)
−3

,

ΩM,0 =
2

3wm(1 + wm)

2 + 3ωBDwm(1 + wm)

3 + 2ωBD

{
∆x − 2y∗

3 ∆y
}( a0

a
(i)
3

)
−3(1+wm)

.
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Figure : The phase plane portrait for system under considerations filled with
the dust matter wm = 0 and : ωBD > 0 (ωBD = 5), −1 < ωBD < 0
(ωBD = −1/2), −4/3 < ωBD < −1 (ωBD = −7/6), ωBD = −4/3.
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Figure : The phase plane portraits for the model filled with the relativistic
matter (wm = 1/3) and ωBD > 0, −3/2 < ωBD < 0, ωBD = −3/2, ωBD < −3/2.

O. Hrycyna Dynamics and observational constraints on BD cosmological model



x

y

H>0

H<0

A1 A2B

C1=D1

C2=D2

x

y

H>0

H<0

A B

C1=D1

C2=D2

x

y

H>0

H<0

A1A2 B

C1=D1

C2=D2

x

y

H>0

H<0

A1A2

C1=D1

C2=D2

Figure : The phase plane diagrams for system (17) filled with the cosmological
constant wm = −1 and ωBD > 0 (top left), ωBD = 0 (top right),
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Figure : Diagrams of the evolutional paths in phase space compactified with
circle at infinity for the model filled with dust matter wm = 0 and : ωBD > 0
(left) , ωBD < −5/3 (right). Diagrams plotted for fixed values (ωBD = 5 and
ωBD = −2), all phase space diagram in given range are topologically equivalent.
The circle at infinity consists of bounces during the evolution of the universe.
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Figure : Cosmological time evolution of the Hubble function H, the scale factor
a, the barotropic matter density ρ̃m = 8πρm and the scalar field φ for sample
evolutional trajectory with a bounce and the model parameters ωBD = −2 and
wm = 0. The initial conditions taken at the bounce are : φ(i) = 1/2, a(i) = 1,

H(i) = 0 and φ̇(i) = 1/2.
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Figure : Diagrams of the evolutional paths in phase space compactified with
circle at infinity for the model filled with dust matter wm = 0 and :
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consists of bounces during the evolution of the universe. For clarity of the
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Note the coexistence of the bounces and the singularity in the second case.
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with circle at infinity for the model filled with dust matter wm = 0 and :
ωBD = 0 (left) , ωBD = −1 (right). In both cases we have two critical points at
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What is the value of ωBD ?

f (R) theories of gravity

S =

∫
d
4x
√
−gf (R) → S =

∫
d
4x
{
φR−2V (φ)

}
ωBD = 0

low-energy limit of the bosonic string theory

S =

∫
d
4x
√
−ge−2Φ

{
R + 4∇αΦ∇αΦ − Λ

}
→

S =

∫
d
4x
√
−g
{
φR +

1

φ
∇αφ∇αφ− Λφ

}
ωBD = −1

O. Hrycyna Dynamics and observational constraints on BD cosmological model



An arbitrary potential function

The critical point (x∗ = 0, y∗ = 1, λ∗ = −2) corresponds to the de
Sitter expansion.
The eigenvalues of the linearization matrix are

l1 = −3(1 + wm) ,

l2,3 = −3

2

(
1 ±

√
3 + 2ωBD + δ

3 + 2ωBD

)
,

(22)

where δ parameter is defined as

δ =
8

3
λ∗
(
1 − λ∗(Γ(λ∗) − 1))

)
=

16

3

(
1 − 2 Γ∗

)
, (23)

and depends on the second derivative of the potential function at the de
Sitter state.
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Model 1

The first case, characterized by the purely real eigenvalues, we make the
following substitution

δ

3 + 2ωBD

=
4

9
n(n − 3) . (24)

The Hubble function is

(
H(a)

H(a0)

)2

= ΩΛ,0 + ΩM,0

(
a

a0

)
−3

+ Ωn,0

(
a

a0

)
−n

+ Ω3n,0

(
a

a0

)
−3+n

,

(25)
where

ΩM,0 =

(
1 − 16

3δ

)
Ωbm,0 ,

and Ωn,0, Ω3n,0 are functions of the initial conditions ∆x , ∆y , ∆λ and

ΩΛ,0 = 1 − ΩM,0 − Ωn,0 − Ω3n,0 . (26)
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Model 2

For the second type of behavior in the vicinity of the de Sitter state we
make the following substitution

δ

3 + 2ωBD

= −1

9
(9 + 4n2) , (27)

The Hubble function is

(
H(a)

H(a0)

)2

= ΩΛ,0 + ΩM,0

(
a

a0

)
−3

+

(
a

a0

)
−3/2

(
Ωcos,0 cos

(
n ln

(
a

a0

))
+ Ωsin,0 sin

(
n ln

(
a

a0

)))
,

(28)

where

ΩM,0 =

(
1 − 16

3δ

)
Ωbm,0 ,

and Ωcos,0, Ωsin,0 are functions of the initial conditions ∆x , ∆y , ∆λ and

ΩΛ,0 = 1 − ΩM,0 − Ωcos,0 (29)
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ΛCDM nested within

Carefully choosing the initial conditions for the linearized solutions

∆x =
4

δ
Ωbm,i , ∆λ = −1

2
Ωbm,i , (30)

where up to linear terms in initial conditions Ωbm,i = ∆x − 2∆y , then in
(25) we have Ωn,0 = Ω3n,0 = 0 and in (28) we have Ωcos,0 = Ωsin,0 = 0
and the resulting form of the Hubble function is

(
H(a)

H(a0)

)2

≈ 1 − ΩM,0 + ΩM,0

(
a

a0

)
−3

, (31)

where

ΩM,0 =

(
1 − 16

3δ

)
Ωbm,0 . (32)

This Hubble function describes the ΛCDM model with direct
interpretation of the second term in the brackets as proportional to
density parameter of the dark matter in the model

Ωdm,0 = −16

3δ
Ωbm,0 . (33)
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Confidence levels
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Derived quantities

x(a0) =
3

4

(
Ωbm,0 − ΩM,0

)
− n

n + 1
Ωn,0 −

n − 3

n − 4
Ω3n,0 ,

x(a0) =
3

4
(Ωbm,0 − ΩM,0) +

2

4n2 + 25

(
5 Ωcos,0 + 2nΩsin,0

)
− Ωcos,0 .

−1 −0.6 −0.2 0.2 0.6
x(a

0
)

−1 −0.6 −0.2 0.2 0.6
x(a

0
)

−1 −0.6 −0.2 0.2 0.6
x(a

0
)
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Derived quantities

ωBD = −3

2
+

6

n(n − 3)

Ωbm,0

Ωbm,0 − ΩM,0
, ωBD = −3

2
− 24

9 + 4n2
Ωbm,0

Ωbm,0 − ΩM,0
.

−2 −1.5 −1 −0.5 0 0.5 1ω
BD

−10 −8 −6 −4 −2 0 2ω
BD

−2.5 −2 −1.5 −1 −0.5 0ω
BD
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Table : Values of the Brans-Dicke parameter ωBD calculated for the mean of
marginalized posterior PDF with 68% confidence level and the best fit
parameters of the models.

Union2.1+H(z)+AP+BAO

ωBD

mean best fit

model 1a −0.8681+0.1407
−0.0948 −0.9782

model 1b −1.9499+0.0988
−0.6576 −1.7817

model 2 −1.2219+0.1478
−0.0450 −1.0646

O. Hrycyna Dynamics and observational constraints on BD cosmological model



Conclusions

We have translated the geometrical approach to the dark energy and
dark matter problems in to the substantial approach which in order
can be used to test and select the cosmological models by
astronomical data.

In the vicinity of the critical point corresponding to the deSitter
state, for carefully chosen initial conditions, we have obtained the
corresponding form of the Hubble function which is indistinguishable
from the standard cosmological ΛCDM model.

We shown that in the models with the de Sitter state in the form of
a stable node or a sink type critical point vales of the ωBD parameter
close to the value suggested by the low-energy limit of the bosonic
string theory are favored.
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