Testing quantum mechanics with cosmology?

Patrick Peter

Institut d'Astrophysique de Paris GRECO Cargèse - 22 Sept. 2014

Quantum mechanics of closed systems

Physical system = Hilbert space of configurations State vectors Observables = self-adjoint operators Measurement = eigenvalue

Evolution = Schrödinger equation (time translat

Born rule
$$\operatorname{Prob}[a_n; t] = |\langle a_n | \psi(t) \rangle|^2$$

Collapse of the wavefunction: $|\psi(t)\rangle$ before measurement, $|a_n\rangle$ after

Schrödinger equation = linear (superposition principle) / unitary evolution

Wavepacket reduction = non linear / stochastic

Cargèse / 22 september 2014

perators

$$A|a_n\rangle = a_n|a_n\rangle$$

tion invariance) $i\hbar \frac{d}{dt}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$
Hamiltonian

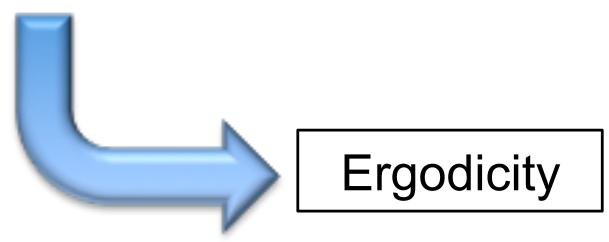
Mutually incompatible

Predictions for quantum theory/cosmology

Calculated by quantum av

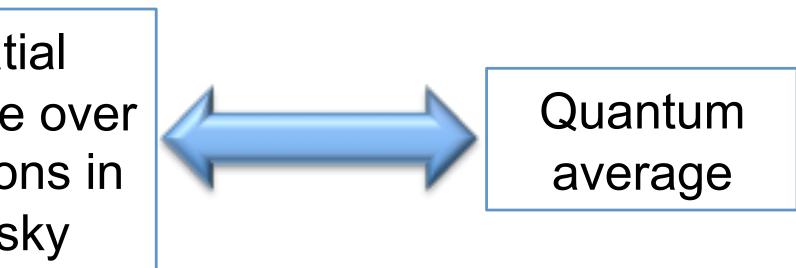
Usually in a lab: repeat the experiment

Here one has a single experiment (a single universe)

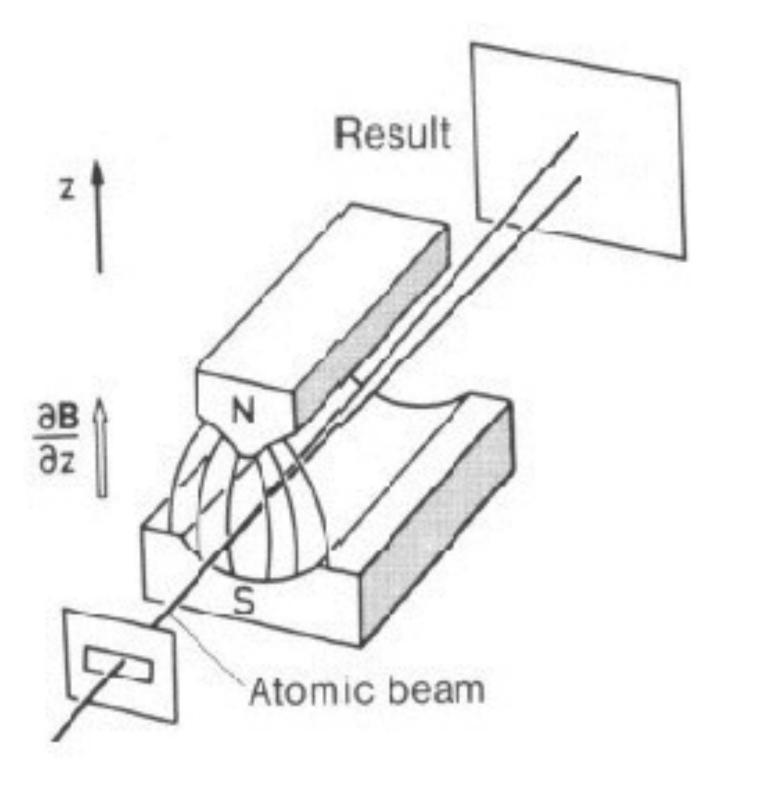


Spatial average over directions in the sky

verage
$$\langle \Psi | \hat{O} | \Psi
angle$$

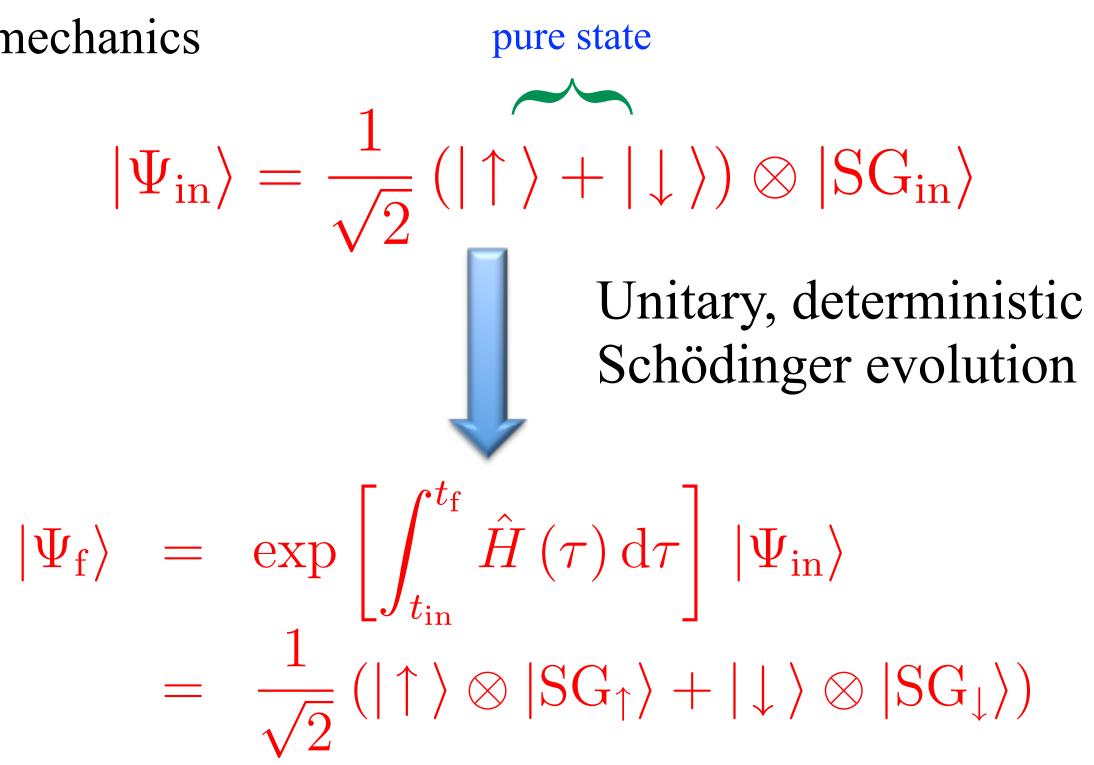


The measurement problem in quantum mechanics

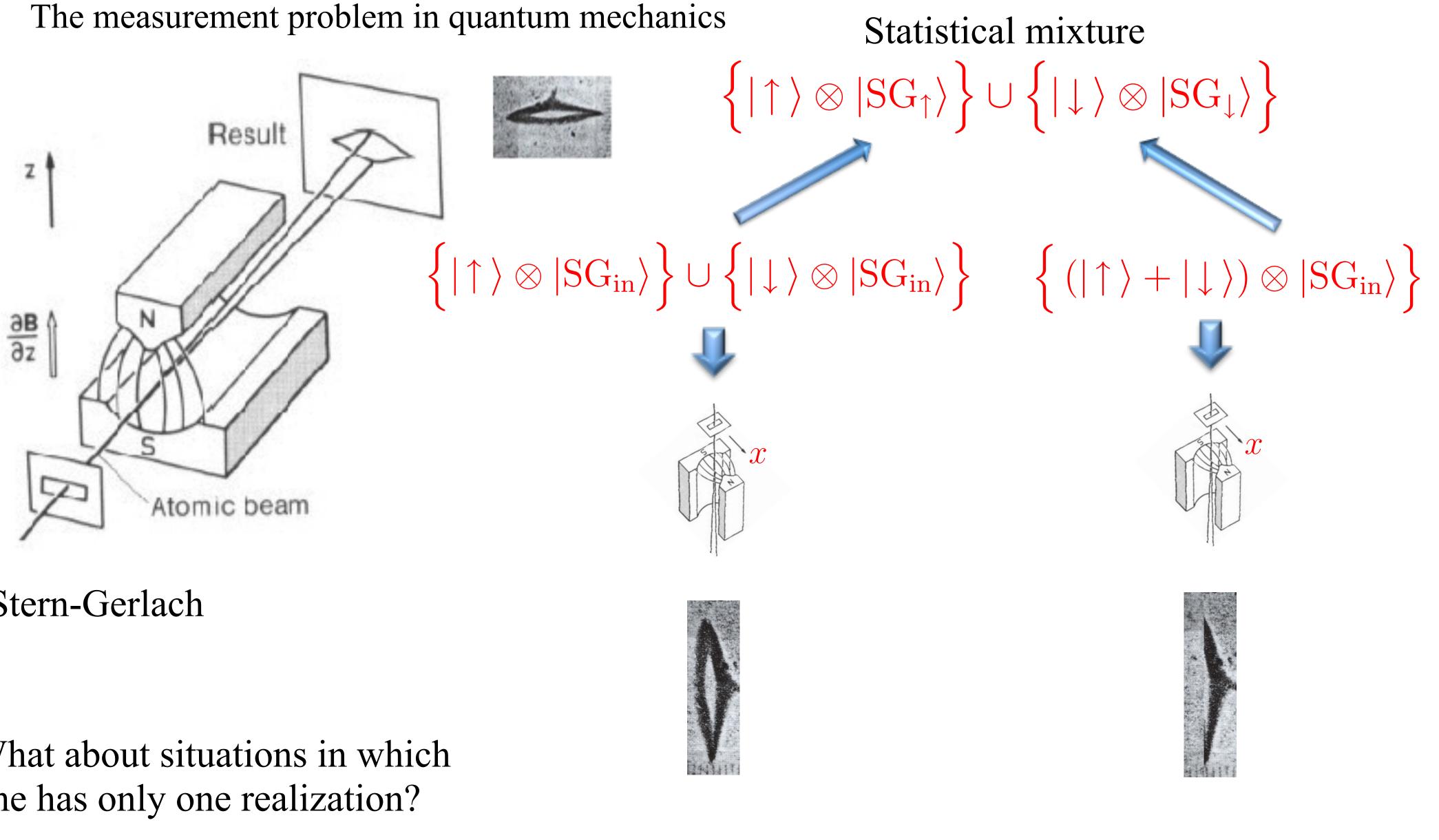


Stern-Gerlach

Cargèse / 22 september 2014



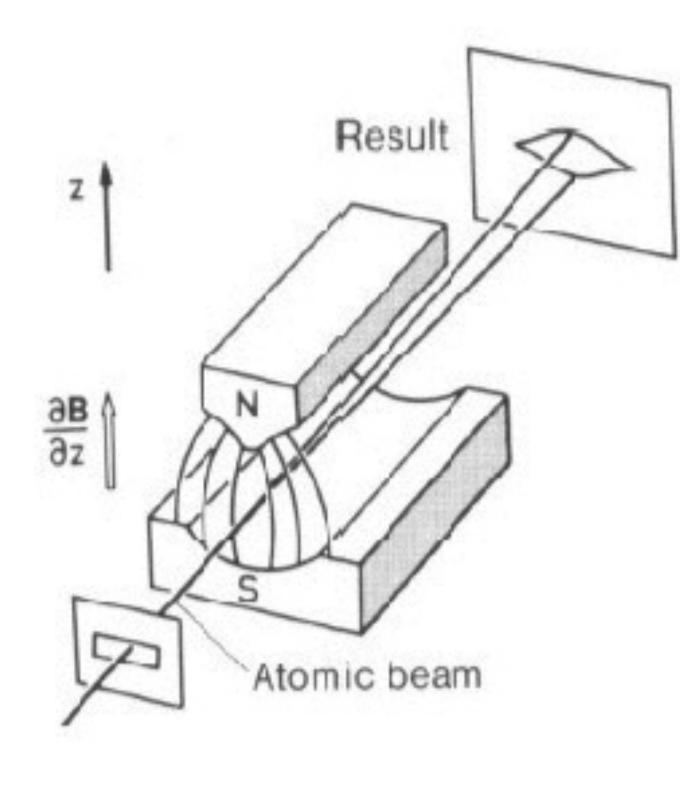
Problem: how to reach the actual measurement $|\uparrow\rangle \otimes |SG_{\uparrow}\rangle$ or $|\downarrow\rangle \otimes |SG_{\downarrow}\rangle$?



Stern-Gerlach

What about situations in which one has only one realization?

The measurement problem in quantum mechanics

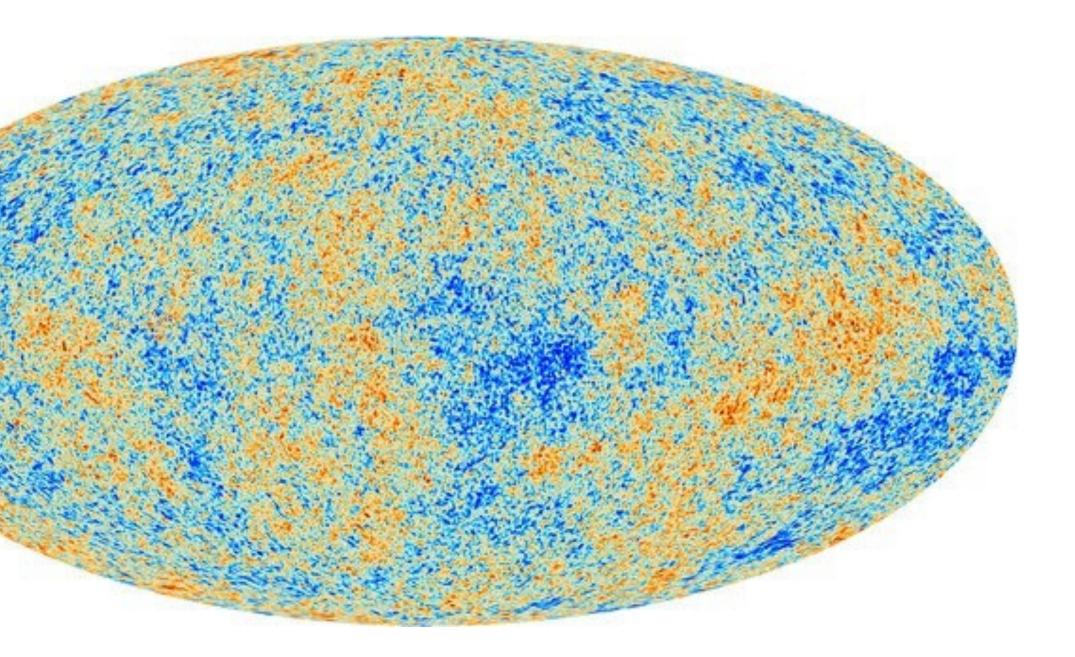


Stern-Gerlach

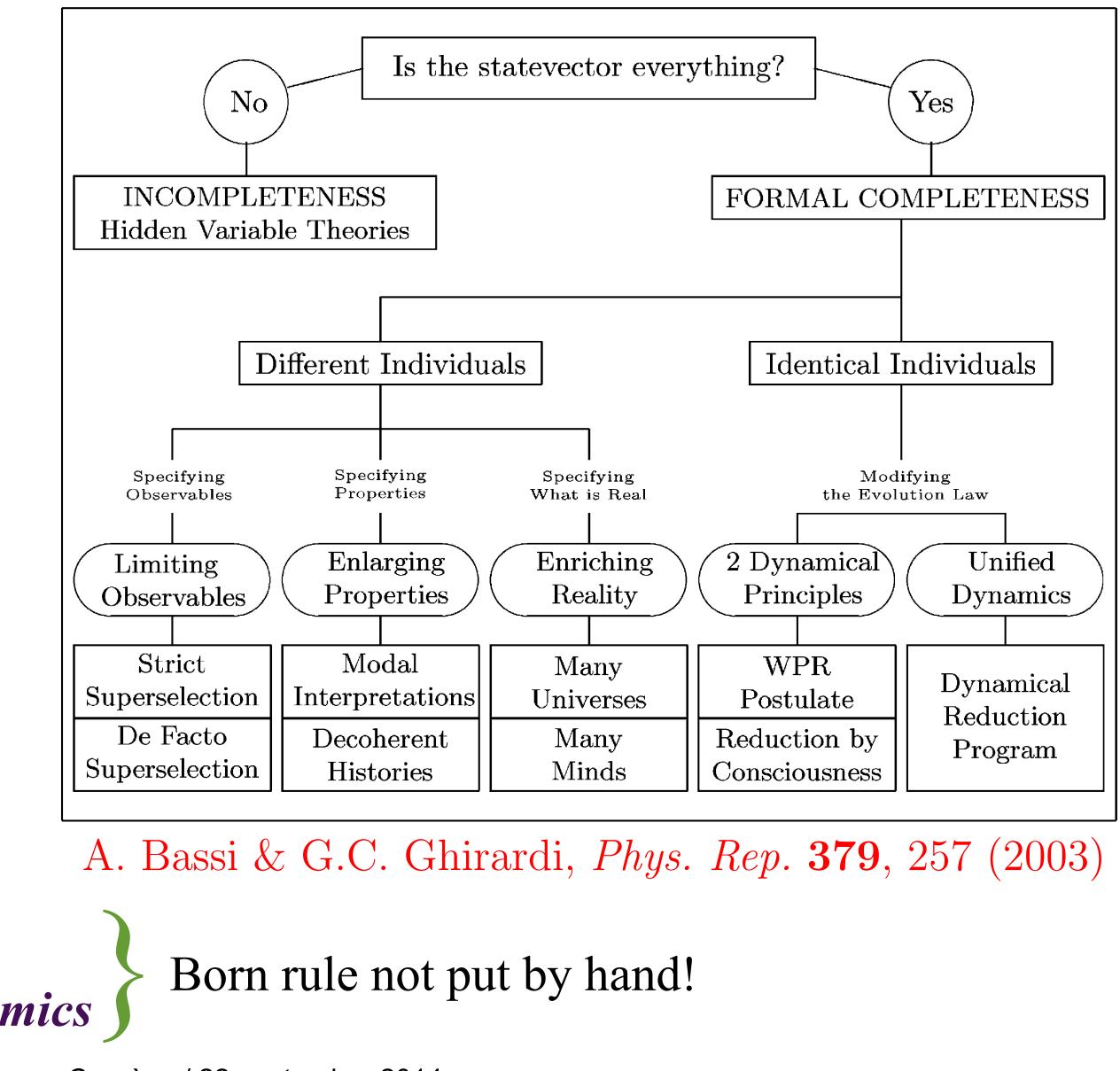
What about situations in which one has only one realization?

Cargèse / 22 september 2014

What about the Universe itself?

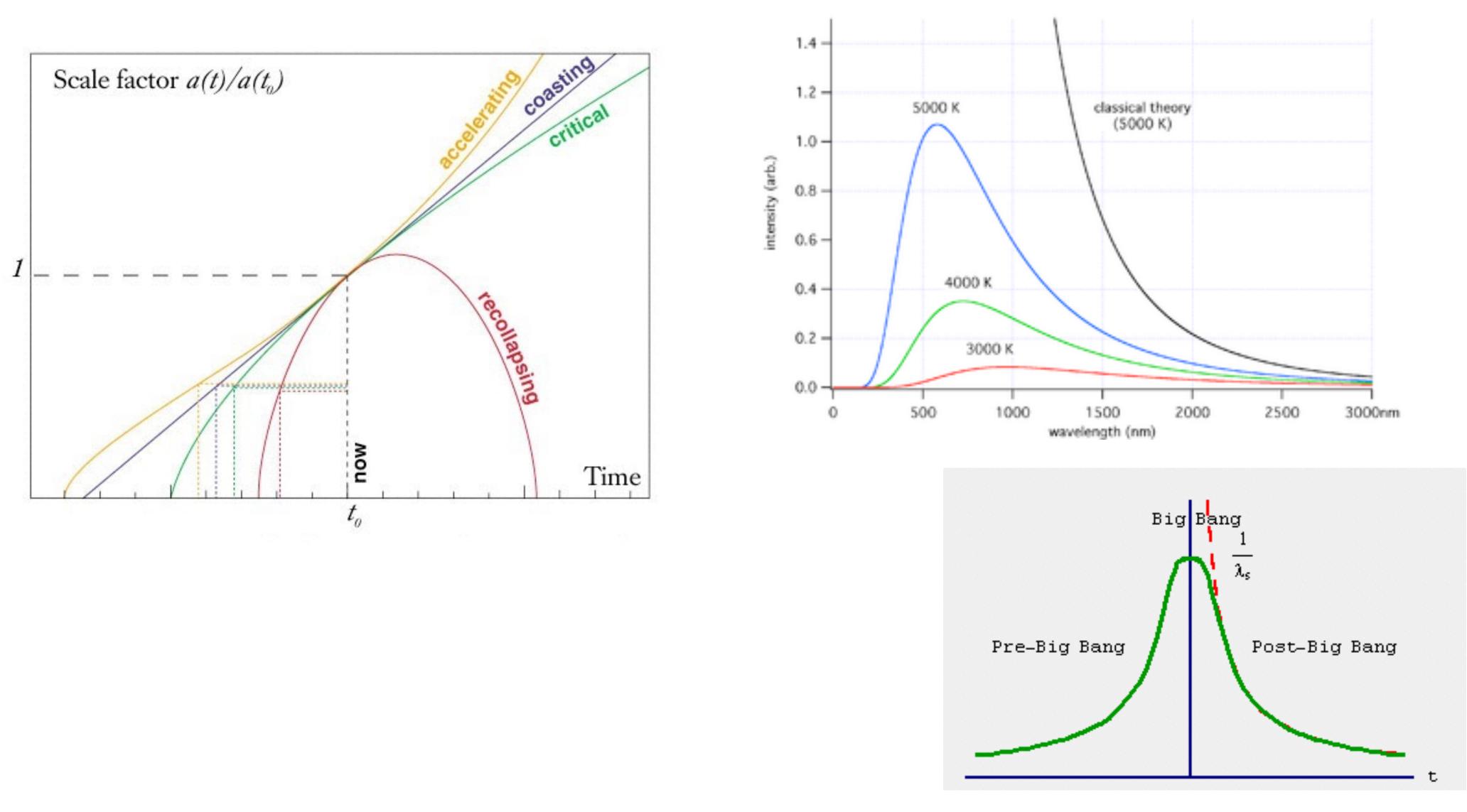


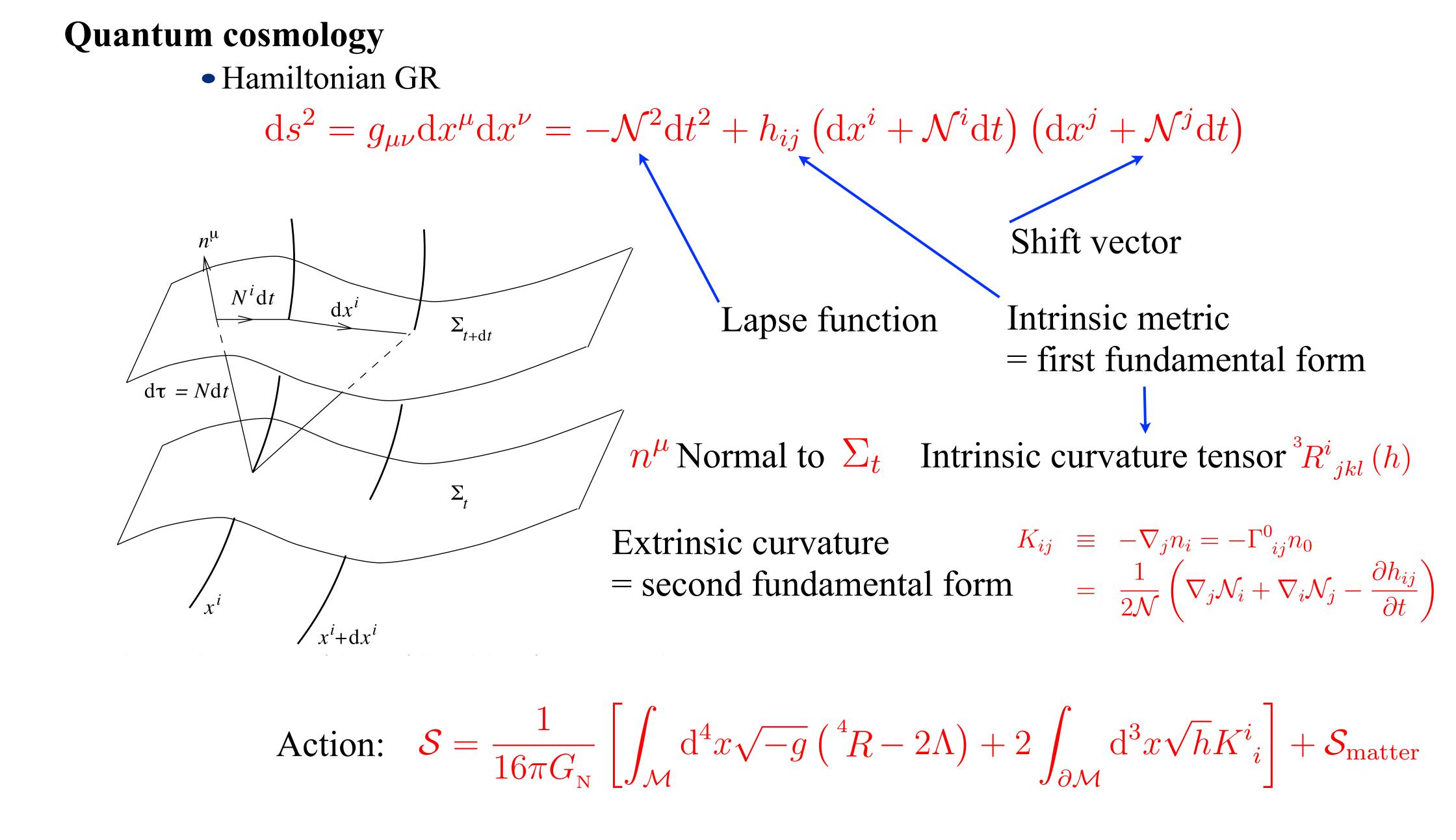
• Possible solutions and a criterion: the Born rule



- Superselection rules
- Modal interpretation
- **Consistent histories**
- Many worlds / many minds
- ▲ Hidden variables
- ▲ Modified Schrödinger dynamics

Singularity problem Purely classical effect?





In 3+1 expansion:
$$\mathcal{S} \equiv \int \mathrm{d}t L = \frac{1}{16\pi G_{\mathrm{N}}} \int \mathrm{d}t \mathrm{d}^3 x \, \mathcal{N}\sqrt{h} \left(K_{ij}K^{ij} - K^2 + {}^3R - 2\Lambda \right) + \mathcal{S}_{\mathrm{matter}}$$

Canonical momenta

$$\pi^{ij} \equiv \frac{\delta L}{\delta \dot{h}_{ij}} = -\frac{\sqrt{h}}{16\pi G_{N}} \left(K^{ij} - M^{ij}\right)$$

$$\pi_{\Phi} \equiv \frac{\delta L}{\delta \dot{\Phi}} = \frac{\sqrt{h}}{N} \left(\dot{\Phi} - M^{i}\frac{\partial \Phi}{\partial x^{i}}\right)$$

$$\pi^{0} \equiv \frac{\delta L}{\delta \dot{N}_{i}} = 0$$

$$\pi^{i} \equiv \frac{\delta L}{\delta \dot{N}_{i}} = 0$$
Primary co

Hamiltonian $H \equiv \int d^3x \left(\pi^0 \dot{\mathcal{N}} + \pi^i \dot{\mathcal{N}}_i + \pi^{ij} \dot{h}_{ij} + \pi_i \dot{\mathcal{N}}_i \right)$

Variation wrt lapse $\mathcal{H} = 0$ Hamiltonian constraint Variation wrt shift $\mathcal{H}^i = 0$ momentum constraint

Classical description

Cargèse / 22 september 2014

 $h^{ij}K$)

onstraints

$$\left(\Phi \dot{\Phi} \right) - L = \int \mathrm{d}^3 x \, \left(\pi^0 \dot{\mathcal{N}} + \pi^i \dot{\mathcal{N}}_i + \mathcal{N} \mathcal{H} + \mathcal{N}_i \mathcal{H}^i \right)$$

• Superspace & canonical quantisation

Relevant configuration space?

 $\operatorname{Riem}(\Sigma) \equiv \Big\{ h_i \Big\}$

 $GR \implies$ invariance / diffeomorphisms \implies

Wave functional $\Psi[h_{ij}(x), \Phi(x)]$

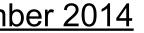
Dirac canonical quantisation

$$\pi^{ij} \to -i \frac{\delta}{\delta h_{ij}} \qquad \qquad \pi_{\Phi} \to -i \frac{\delta}{\delta \Phi}$$

$$\Rightarrow \operatorname{Conf} = \frac{\operatorname{Riem}(\Sigma)}{\operatorname{Diff}_{0}(\Sigma)} \quad \text{matter fields}$$

 $\pi^0 \to -i \frac{\delta}{\delta \mathcal{N}}$

 $\pi^i o -i rac{\delta}{\delta \mathcal{N}_i}$



Primary constraints

$$\hat{\pi}\Psi = -i\frac{\delta\Psi}{\delta\mathcal{N}} = 0$$
$$\hat{\pi}^{i}\Psi = -i\frac{\delta\Psi}{\delta\mathcal{N}_{i}} = 0$$

Momentum constraint $\hat{\mathcal{N}}^i \Psi = 0 \implies i \nabla_i^{(h)}$

 $\implies \Psi$ is the same for configurations $\{h_{ij}(x), \Phi(x)\}$ related by a coordinate transformation

Hamiltonian constraint

$$\hat{\mathcal{H}}\Psi = \begin{bmatrix} -16\pi G_{N}\mathcal{G}_{ijkl}\frac{\delta^{2}}{\delta h_{ij}\delta h_{kl}} + \frac{\sqrt{h}}{16\pi G_{N}}\left(-{}^{^{3}}R + 2\Lambda + 16\pi G_{N}\hat{T}^{00}\right) \end{bmatrix}\Psi = 0$$

$$Wheeler - De Witt equation$$

$$\mathcal{G}_{ijkl} = \frac{1}{2}h^{-1/2}\left(h_{ik}h_{jl} + h_{il}h_{jk} - h_{ij}h_{kl}\right)$$
DeWitt metric...

$$\left(\frac{\delta\Psi}{\delta h_{ij}}\right) = 8\pi G_{\rm N} \hat{T}^{0i} \Psi$$

• Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space *= mini-superspace*

$$h_{ij} \mathrm{d}x^i \mathrm{d}x^j = a^2(t) \left[\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2 \right) \right] \qquad \Phi(x) = \phi(t)$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

Conceptual and technical problems:

Infinite number of dof \rightarrow a few: mathematical consistency? Freeze momenta? Heisenberg uncertainties? QM = minisuperspace of QFT

• Minisuperspace

Restrict attention from an infinite dimensional configuration space to 2 dimensional space *= mini-superspace*

$$h_{ij} \mathrm{d}x^i \mathrm{d}x^j = a^2(t) \left[\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\varphi^2 \right) \right] \qquad \Phi(x) = \phi(t)$$

WDW equation becomes Schrödinger-like for $\Psi[a(t), \phi(t)]$

However, one can actually make calculations!

Exemple : Quantum cosmology of a perfect fluid

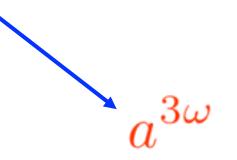
$$ds^{2} = N^{2}(\tau)d\tau - a^{2}(\tau)\gamma_{ij}dx^{i}dx^{j}$$

rmalism ('70)
$$p = p_{0}\left[\frac{\dot{\varphi} + \theta \dot{s}}{N(1+\omega)}\right]^{\frac{1+\omega}{\omega}}$$
$$(\varphi, \theta, s) = \text{Velocity potentials}$$

Perfect fluid: Schutz for

canonical transformation: $T = -p_s e^{-s/s_0} p_{\varphi}^{-(1+\omega)} s_0 \rho_0^{-\omega} \dots$ + rescaling (volume...) + units...: simple Hamiltonian: $H = \left(-\frac{p_a^2}{2} - \mathcal{K}_a + \frac{p_T}{2}\right)N$

$$H = \left(-\frac{p_a}{4a} - \mathcal{K}a + \frac{p_T}{a^{3\omega}}\right)N$$



Wheeler-De Witt

$$\mathcal{K} = 0 \Longrightarrow \chi \equiv \frac{2a^{3(1-\omega)/2}}{3(1-\omega)} \Longrightarrow \left\{ i\frac{\partial\Psi}{\partial T} = \frac{1}{4}\frac{\partial^2\Psi}{\partial\chi^2} \right\}$$

space defined by $\chi > 0 \longrightarrow constants$

Gaussian wave packet $\Psi = \left[\frac{8T_0}{\pi \left(T_0^2 + T^2\right)^2}\right]^{\frac{1}{4}} \exp \left[\frac{\pi \left(T_0^2 + T^2\right)^2}{T_0^2 + T^2}\right]^{\frac{1}{4}} \exp \left[\frac{T\chi^2}{T_0^2 + T^2}\right]^{\frac{1}{4}} \exp \left[\frac{\pi \chi^2}{T_0^2 + T^2$

Cargèse / 22 september 2014

 $H\Psi=0$

straint
$$\bar{\Psi} \frac{\partial \Psi}{\partial \chi} = \Psi \frac{\partial \Psi}{\partial \chi}$$

$$p\left(-\frac{T_0\chi^2}{T_0^2+T^2}\right)e^{-iS(\chi,T)}$$
$$-\frac{1}{2}\arctan\frac{T_0}{T}-\frac{\pi}{4}$$

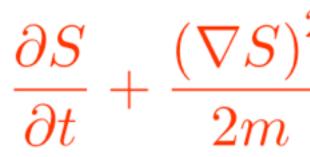
What do we do with the wave function of the Universe???

Hidden Variable Theories

Schrödinger
$$i\frac{\partial\Psi}{\partial t} = \left[-\frac{\nabla^2}{2m} + V\right]$$

 Ψ Polar form of the wave function

Hamilton-Jacobi



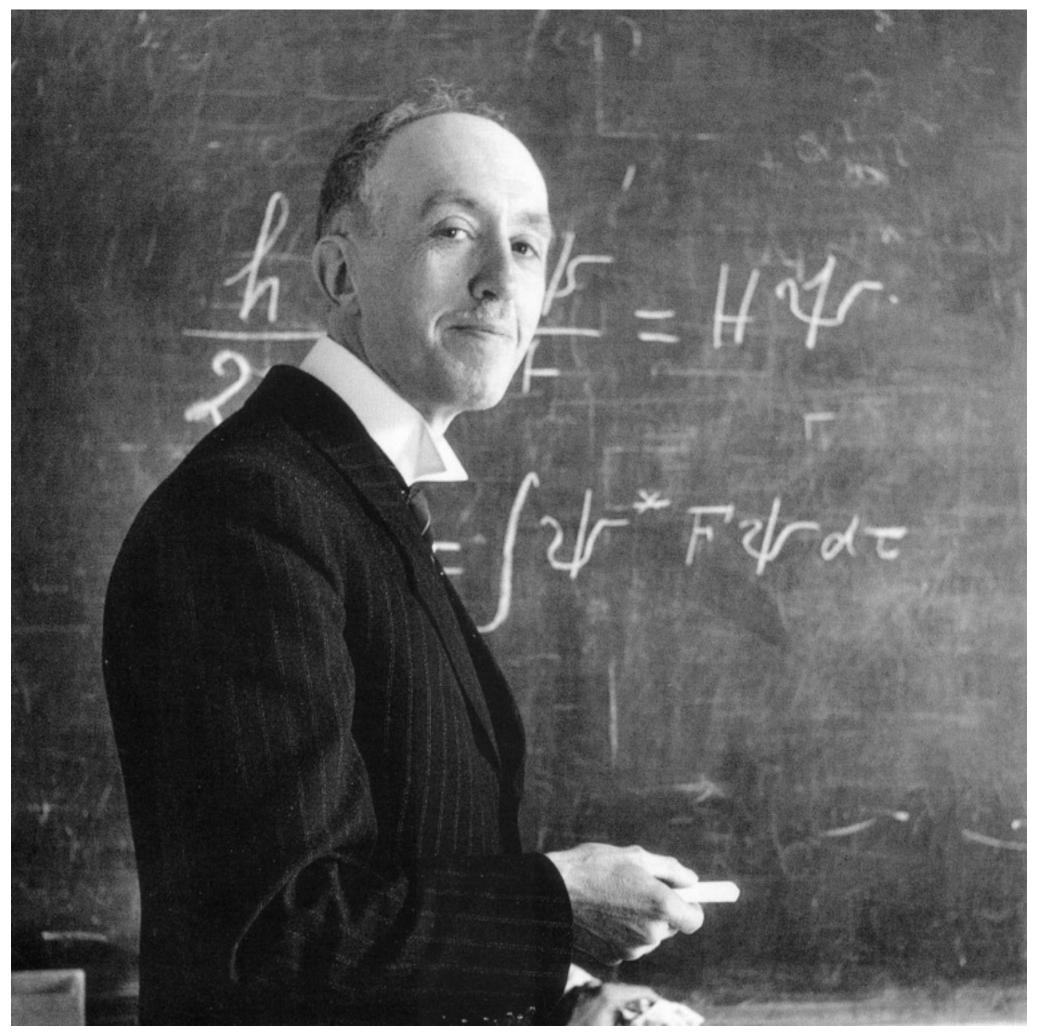
 $\frac{\partial S}{\partial t} + \frac{\left(\nabla S\right)^2}{2m} + V(\mathbf{r}) + Q(\mathbf{r}, t) = 0$ $\begin{array}{c|c} \textbf{quantum} \\ \textbf{potential} \\ \equiv -\frac{1}{2m} \frac{\nabla^2 A}{A} \end{array}$

Cargèse / 22 september 2014

 $(\boldsymbol{r}) \mid \Psi$

$$= A\left(\boldsymbol{r}, t\right) \mathrm{e}^{iS(\boldsymbol{r}, t)}$$

Ontological *formulation* (dBB)



Louis de Broglie (Prince, duke ...)

1927 Solvay meeting and von Neuman mistake ... 'In 1952, I saw the impossible done' (J. Bell)

David Bohm (Communist)

Ontological *formulation* (dBB)

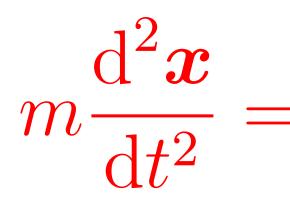
Cargèse / 22 september 2014

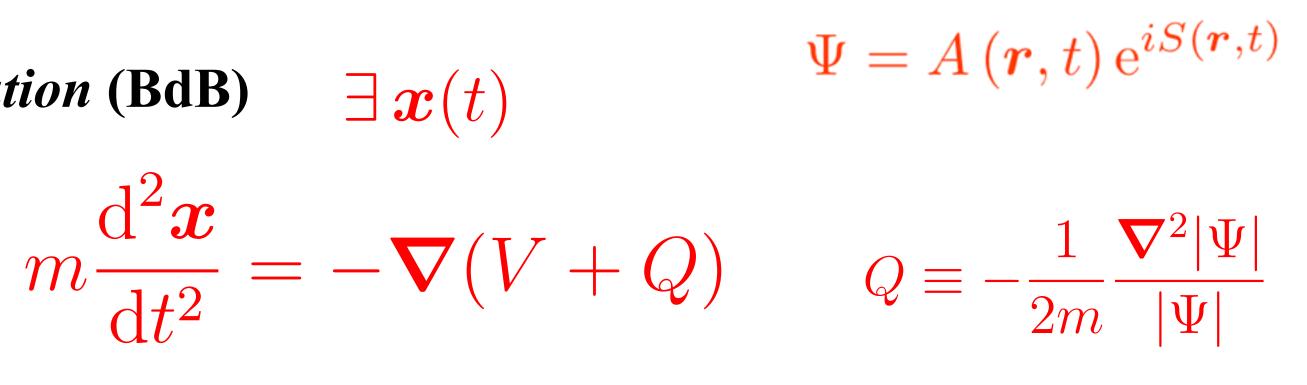
 $\Psi = A\left(\boldsymbol{r}, t\right) e^{iS(\boldsymbol{r}, t)}$

Trajectories satisfy (de Broglie) $m \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \Im m \frac{\Psi^* \nabla \Psi}{|\Psi(\boldsymbol{x}, t)|^2} = -\nabla S$

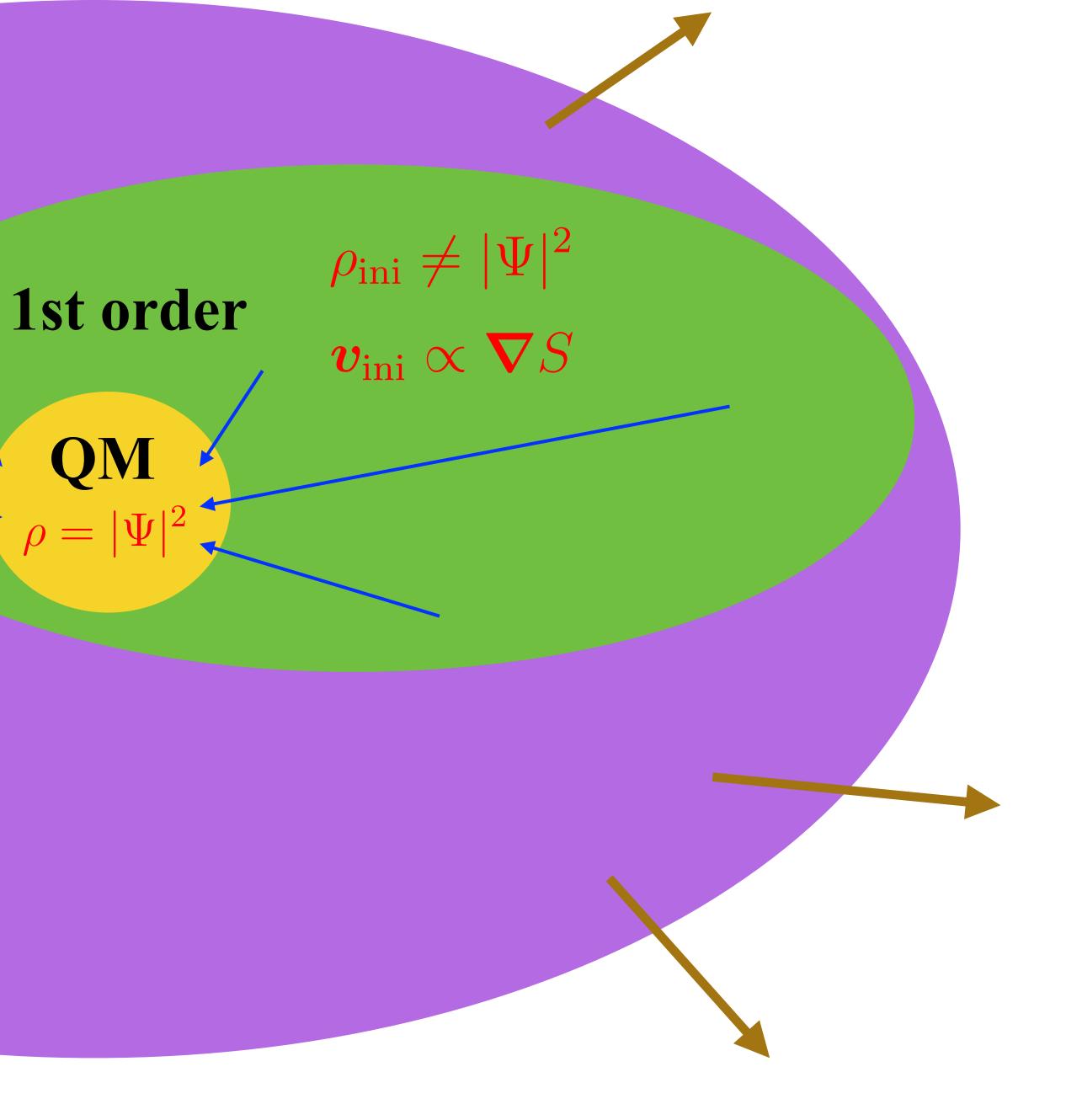
Ontological *formulation* (BdB)

Trajectories satisfy (Bohm)





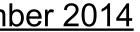
2nd order $ho_{ m ini} eq |\Psi|^2$ $m{v}_{ m ini} eq abla \ \mathbf{\nabla} S$



1st order: can be tested

2nd order: has been tested...

and is ruled out!



Ontological formulation (dBB) $\exists x(t)$

Properties:

 $m\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \Im m \frac{\Psi^* \boldsymbol{\nabla} \Psi}{|\Psi(\boldsymbol{x},t)|^2} = -\boldsymbol{\nabla} S$ Trajectories satisfy (de Broglie)

- ••
- ••
- state dependent ...
- intrinsic reality
 - non local ...
- ••

$$\Psi = A\left(\boldsymbol{r}, t\right) e^{iS(\boldsymbol{r}, t)}$$

strictly equivalent to Copenhagen QM probability distribution (attractor) $\exists t_0; \rho(\boldsymbol{x}, t_0) = |\Psi(\boldsymbol{x}, t_0)|^2$

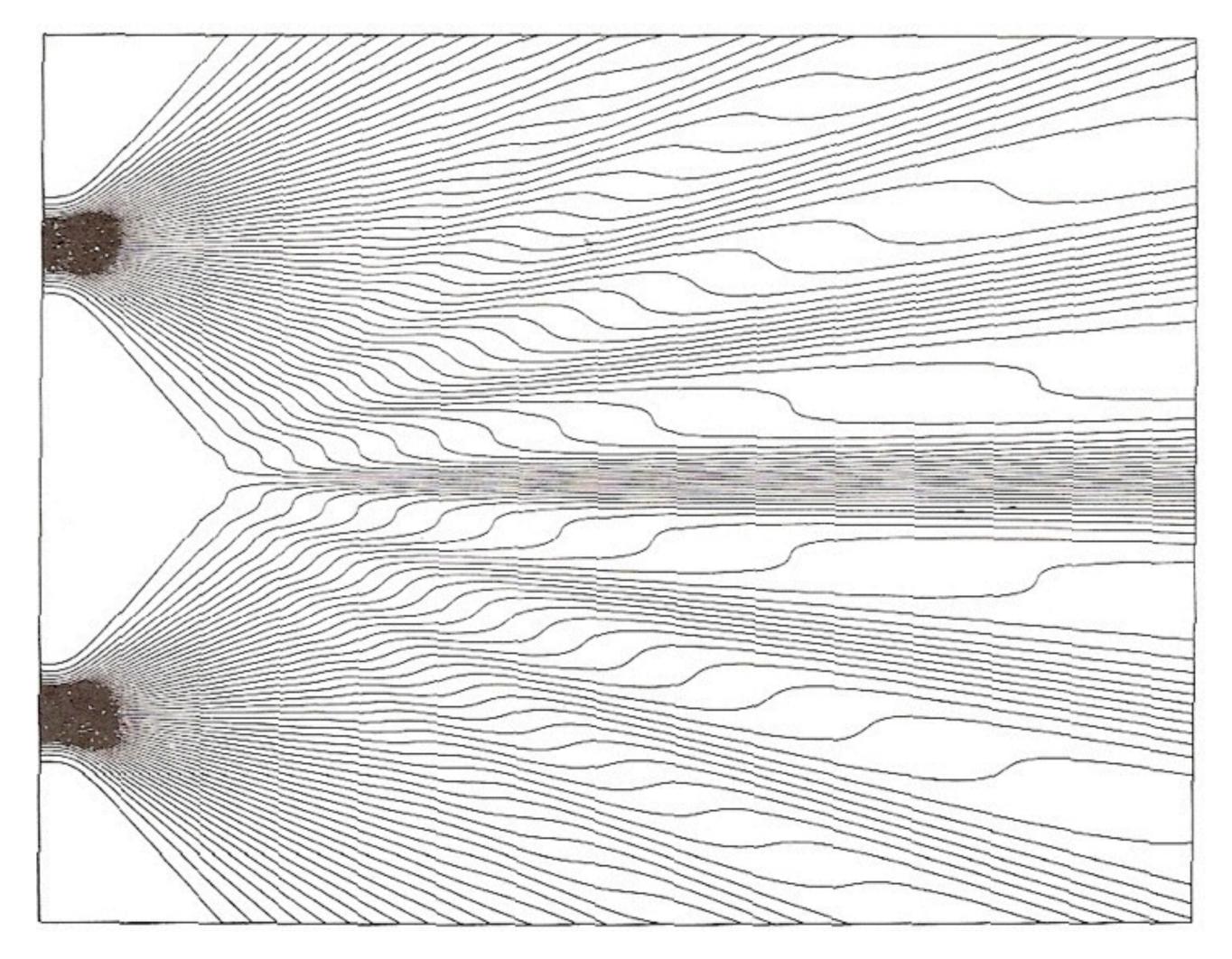
classical limit well defined $Q \longrightarrow 0$

no need for external classical domain/observer!

The two-slit experiment:

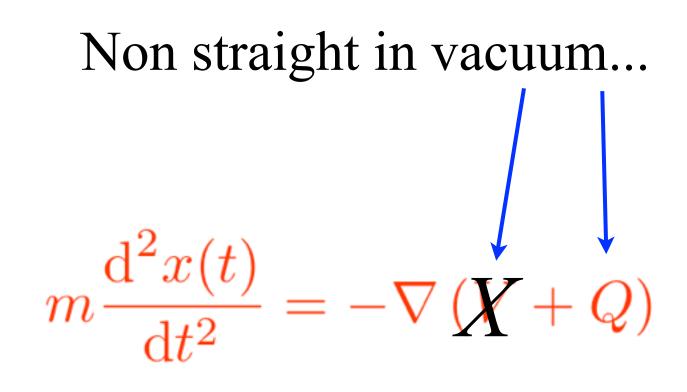


The two-slit experiment:

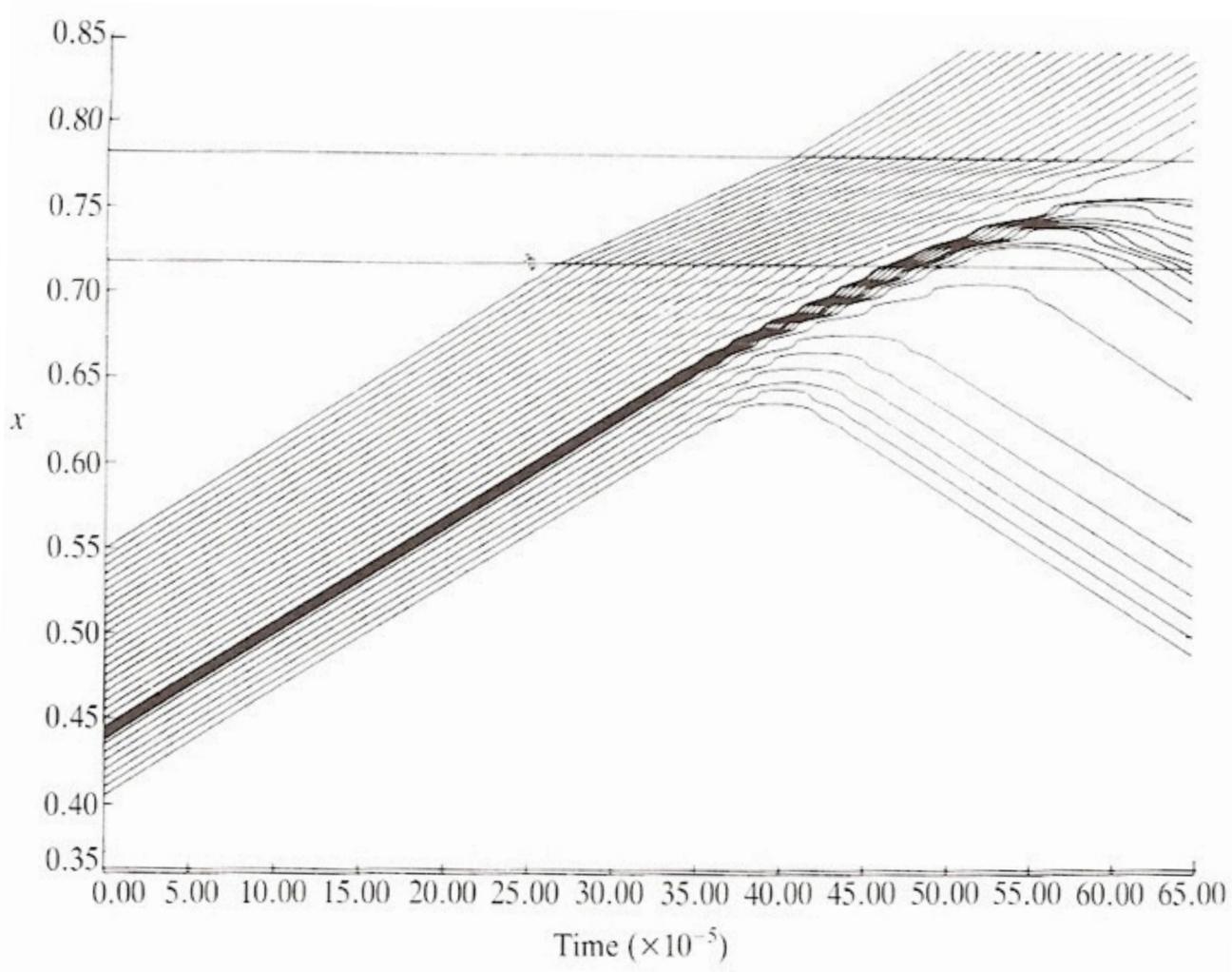


... a phenomenon which is impossible, *absolutely* impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. <u>Cargèse / 22 september 2014</u>
R. P. Feynman (1961)

Surrealistic trajectories?

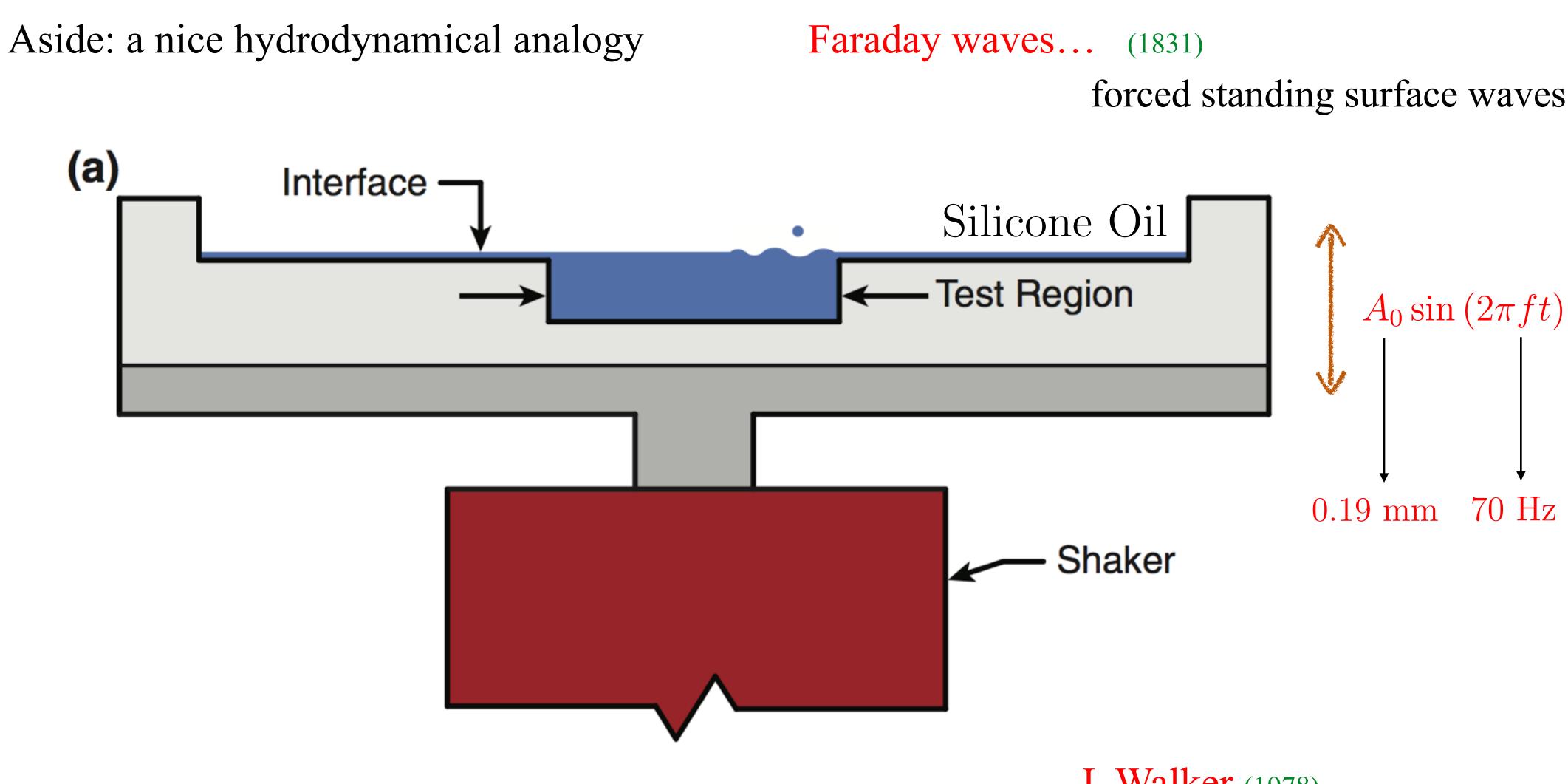


Diffraction by a potential



January 23rd 2014

simple understanding of tunnelling ...

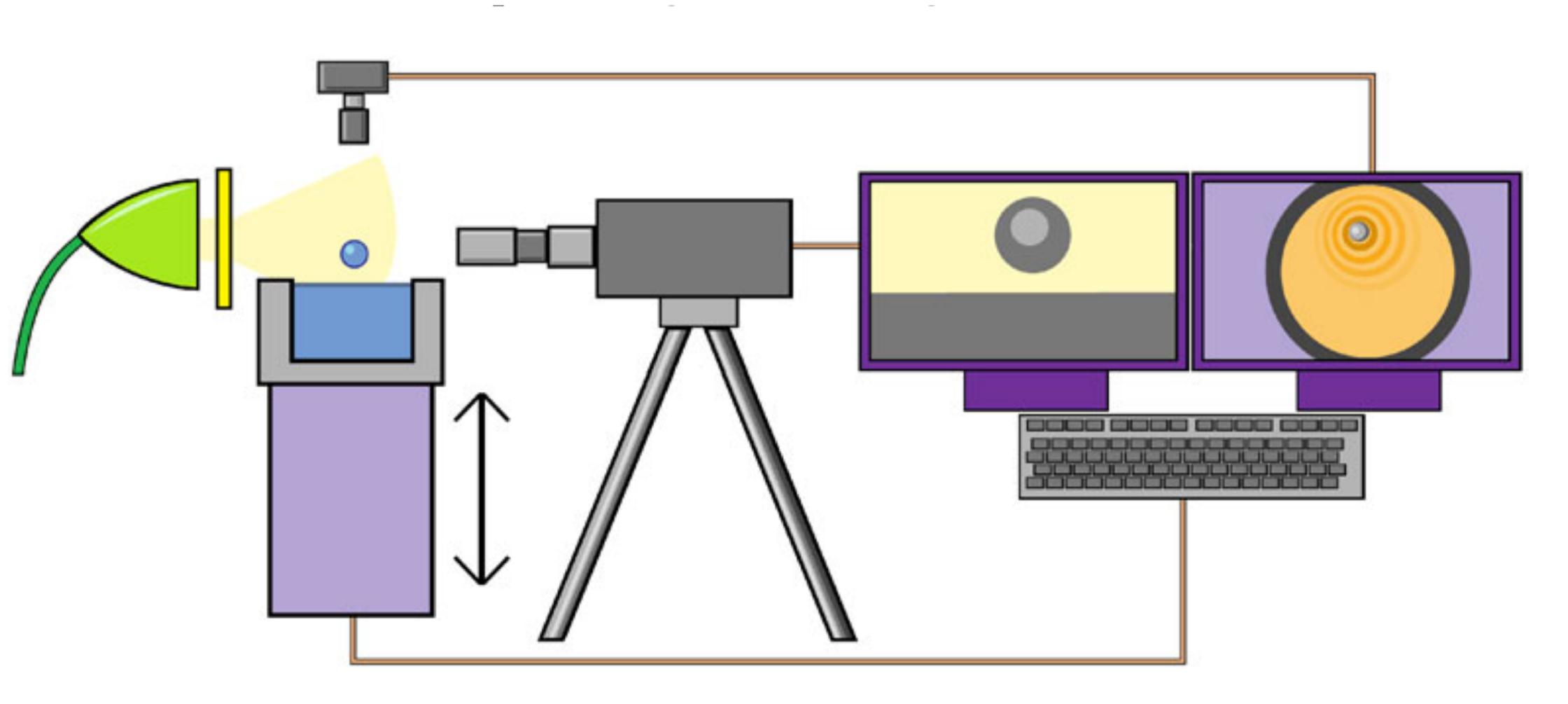


Just above Faraday wave threshold

Cargèse / 22 september 2014

forced standing surface waves

J. Walker (1978) Y. Couder et al. (>2006)



Typical values for the experiment

R_0	Drop radius
ρ	Silicone oil density
ρ_a	Air density
σ	Drop surface tension
8	Gravitational acceleration
V_{in}	Drop incoming speed
Vout	Drop outgoing speed
μ	Drop dynamic viscosity
$\dot{\mu}_a$	Air dynamic viscosity
ν	Drop kinematic viscosity
v_a	Air kinematic viscosity
T_C	Contact time
C_R	$= V_{in}/V_{out}$ Coefficient of 1
f	Bath shaking frequency
γ	Peak bath acceleration
ω	$=2\pi f$ Bath angular frequence
ω_D	$= (\sigma / \rho R_0^3)^{1/2}$ Characterist
	frequency
We	$= \rho R_0 V_{in}^2 / \sigma$ Weber number
Bo	$= \rho g R_0^2 / \sigma$ Bond number
Oh	$= \mu (\sigma \rho R_0)^{-1/2}$ Drop Ohn
Oh_a	$=\mu_a(\sigma\rho R_0)^{-1/2}$ Air Ohne
${\it \Omega}$	$=2\pi f \sqrt{\rho R_0^3/\sigma}$ Vibration
Γ	$= \gamma / g$ Peak non-dimensio

Cargèse / 22 september 2014

restitution

ency tic drop oscillation

er

nesorge number esorge number number onal bath acceleration

```
0.07–0.8 mm
949–960 kg m<sup>-3</sup>
1.2 \text{ kg m}^{-3}
20-21 \text{ mN m}^{-1}
9.81 \text{ m s}^{-2}
0.1-1 \text{ m s}^{-1}
0.01-1 \text{ m s}^{-1}
10^{-3} - 10^{-1} \text{ kg m}^{-1} \text{ s}^{-1}
1.84 \times 10^{-5} \text{ kg m}^{-1} \text{ s}^{-1}
10–100 cSt
15 cSt
1–20 ms
0–0.4
40–200 Hz
0-70 \text{ m s}^{-2}
250–1250 rad s<sup>-1</sup>
300-5000 \text{ s}^{-1}
```

```
\begin{array}{c} 0.01 - 1 \\ 10^{-3} - 0.4 \\ 0.004 - 2 \\ 10^{-4} - 10^{-3} \\ 0 - 1.4 \\ 0 - 7 \end{array}
```

Bouncing droplet...

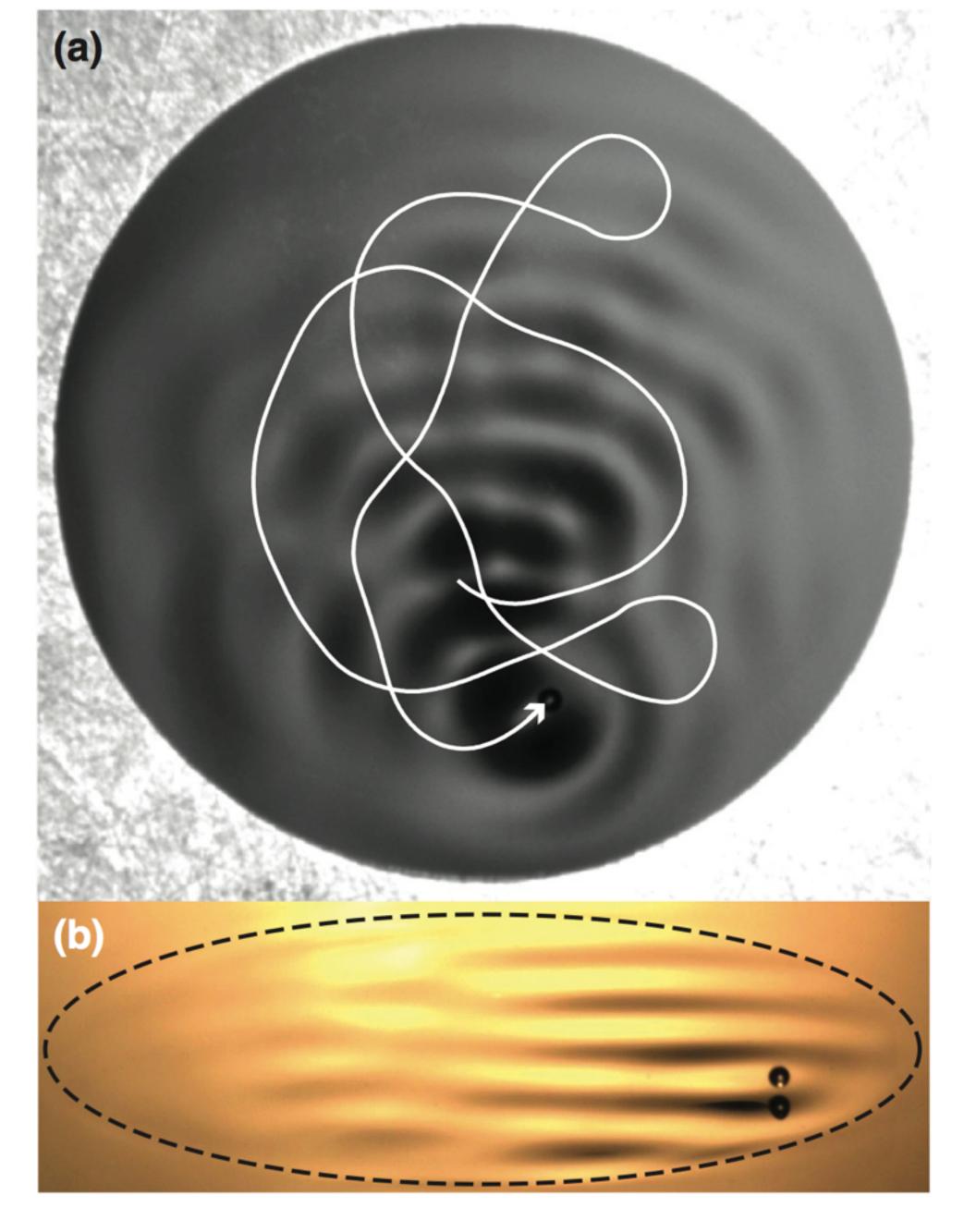
or bouncing droplets...

+ subharmonic modulation (larger forcing amplitude) => instability => motion!!!

Cargèse / 22 september 2014

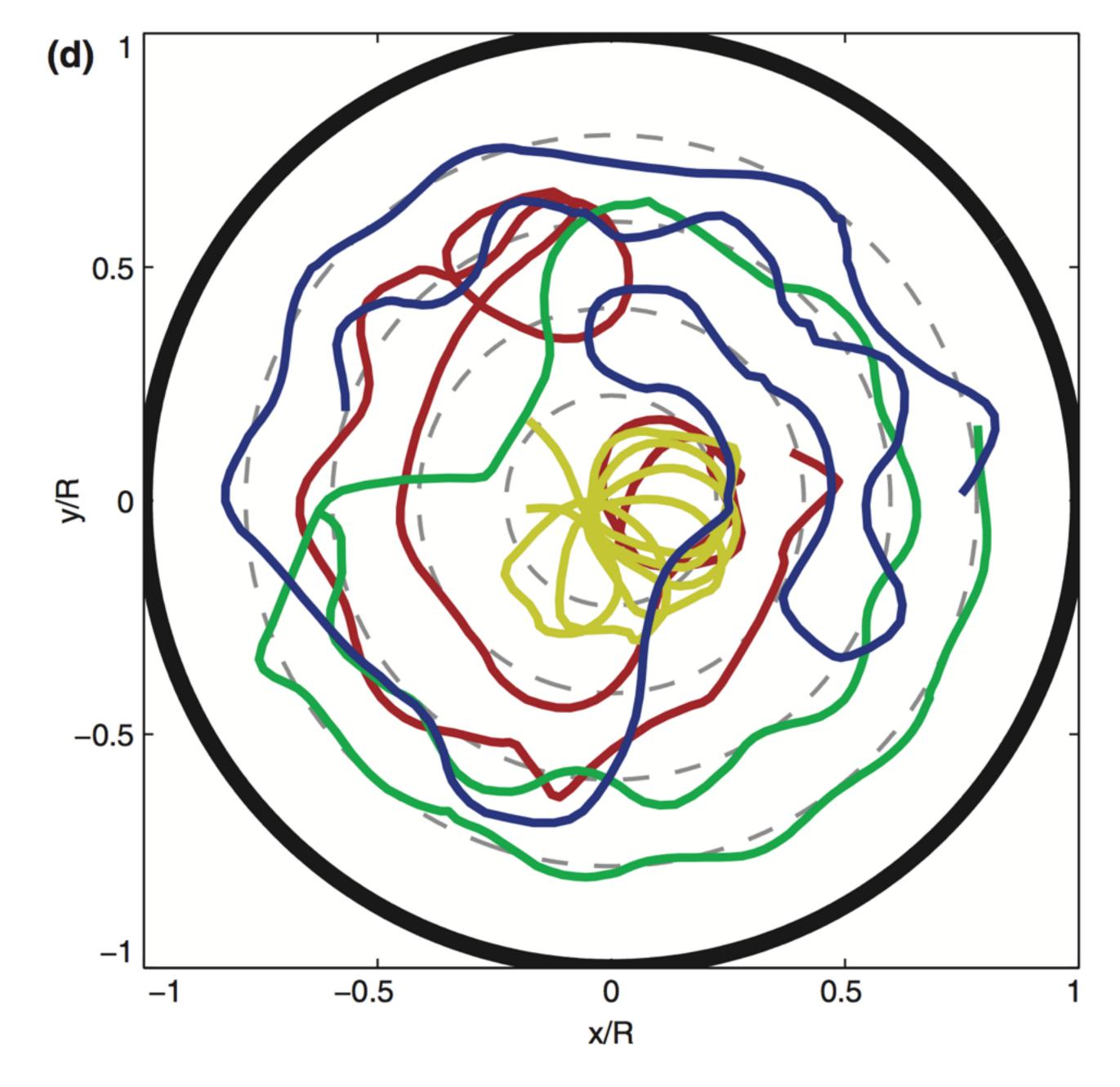
droplets become walkers...

one image per bounce => suppress vertical motion => horizontal mode only



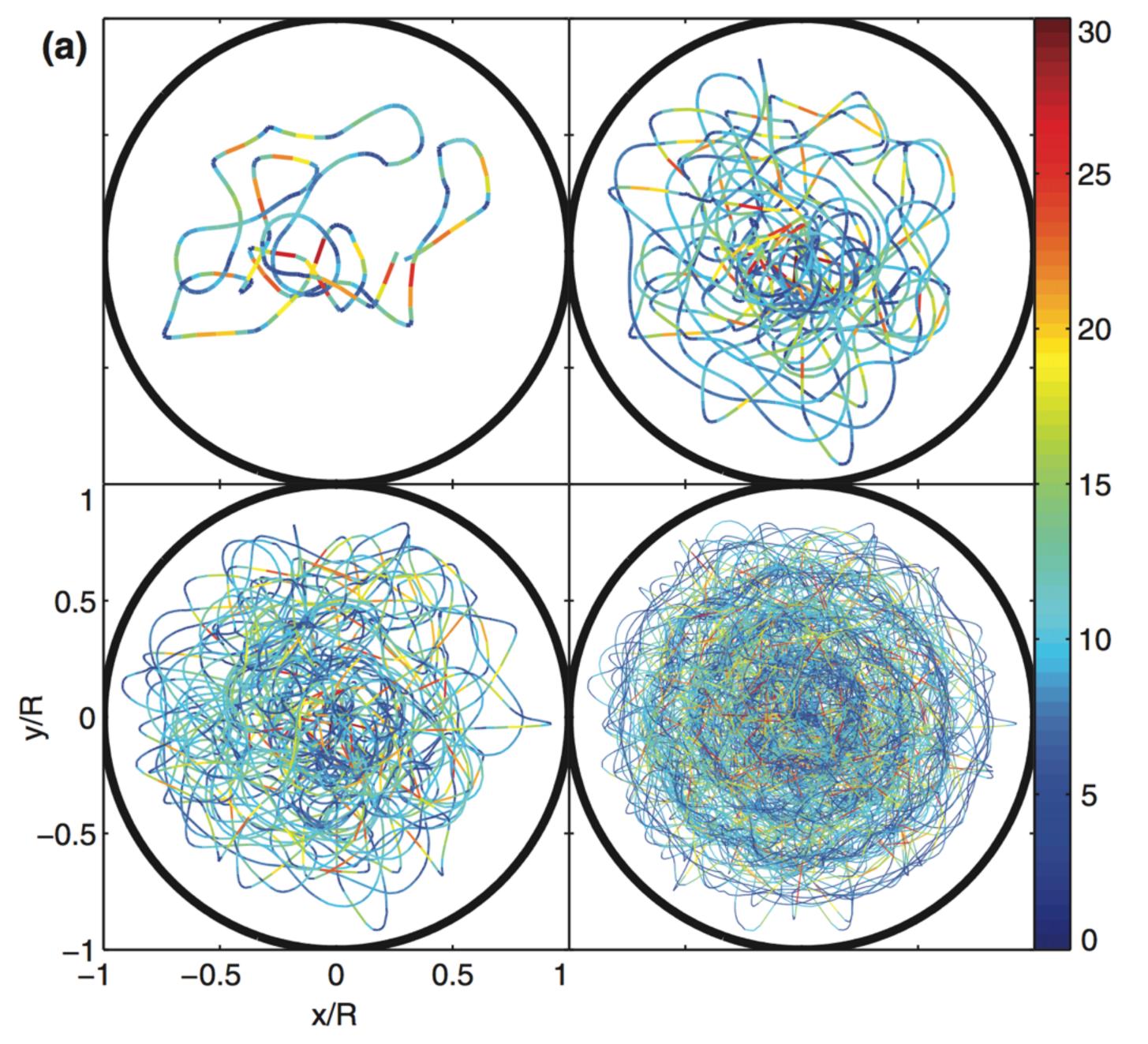
Cargèse / 22 september 2014

apparent randomness of the motion...

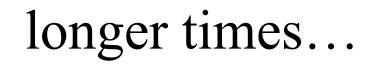


Cargèse / 22 september 2014

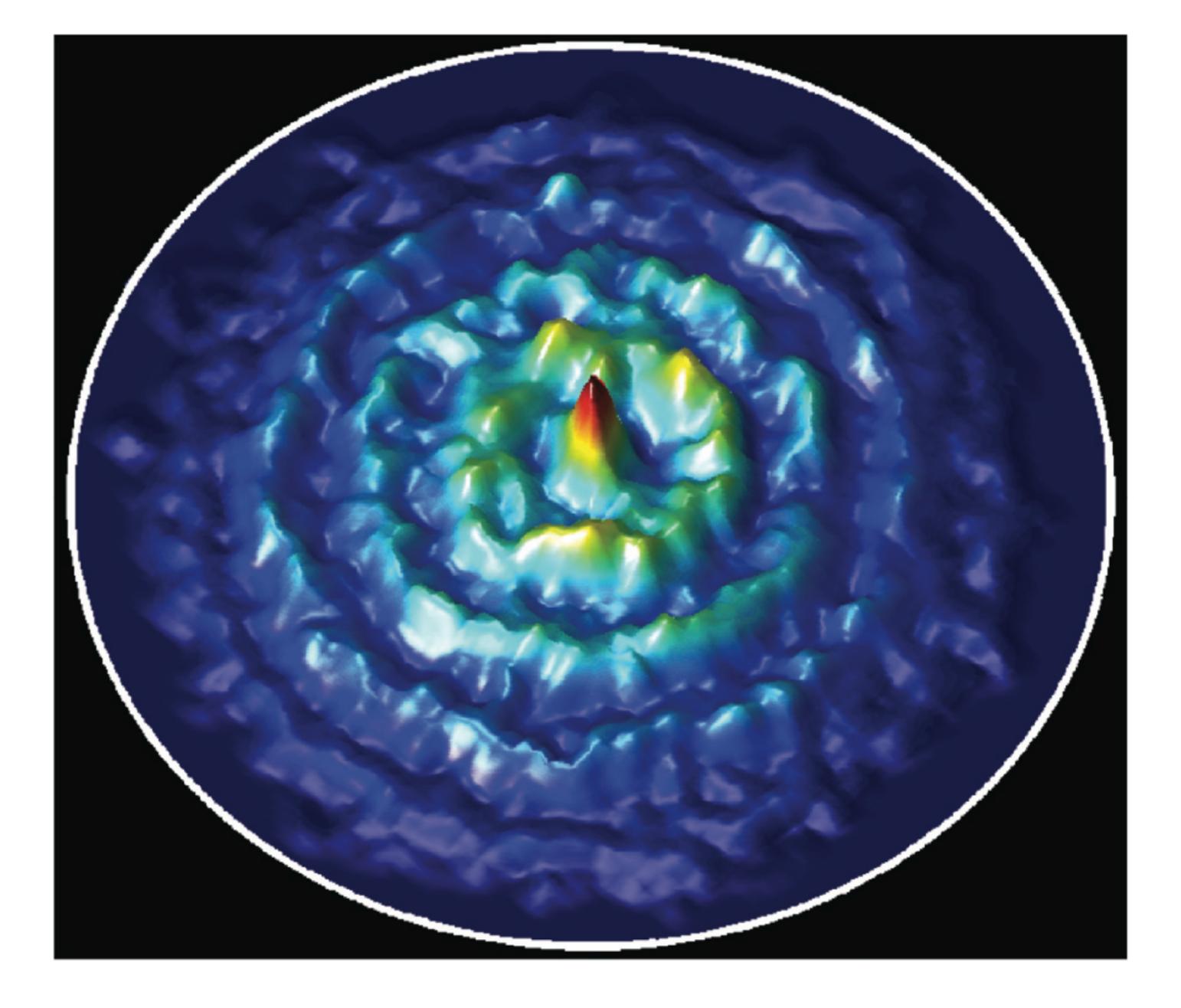
integrate over time...



Cargèse / 22 september 2014

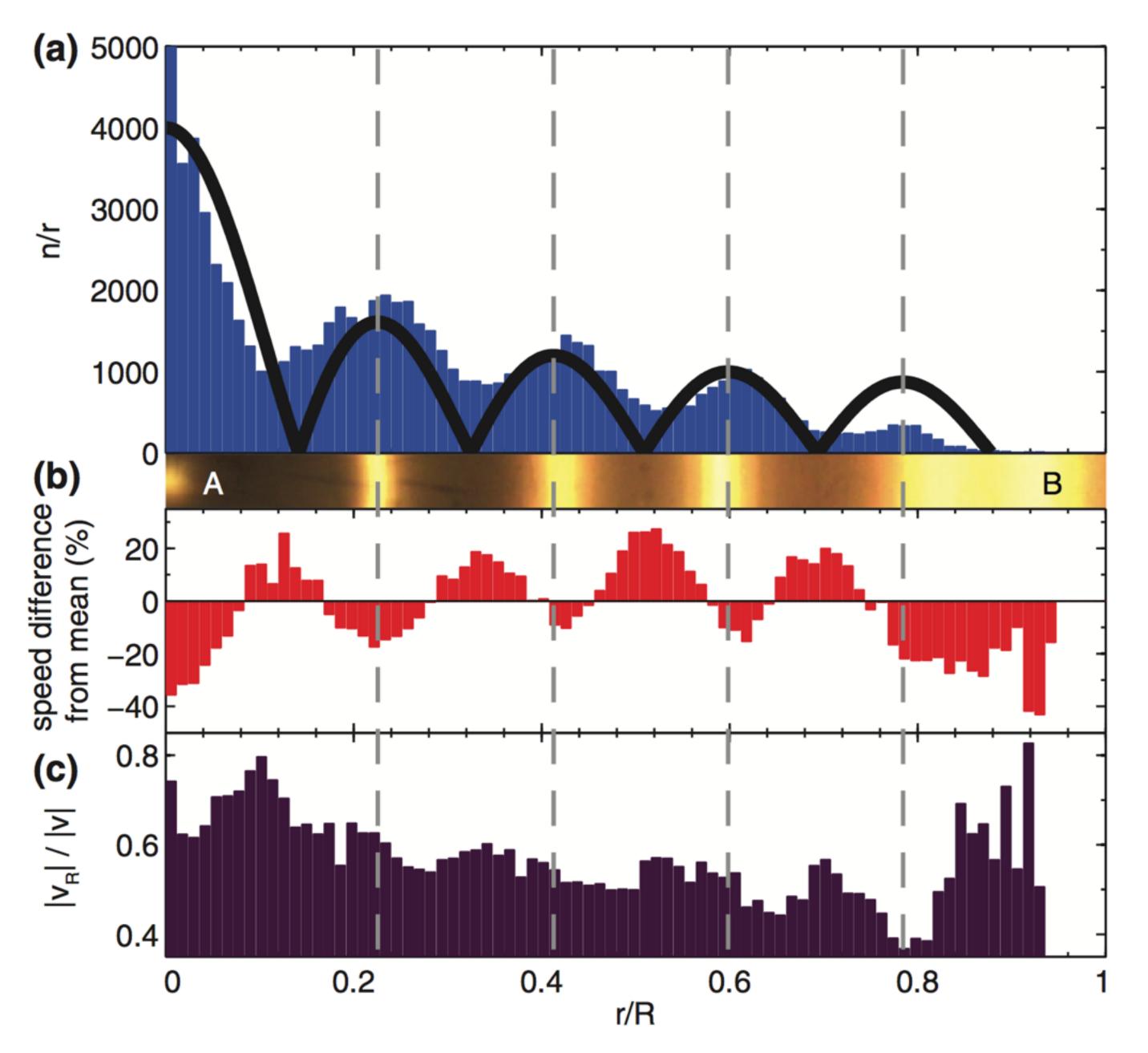


and reconstruct the standing wave pattern!



Cargèse / 22 september 2014

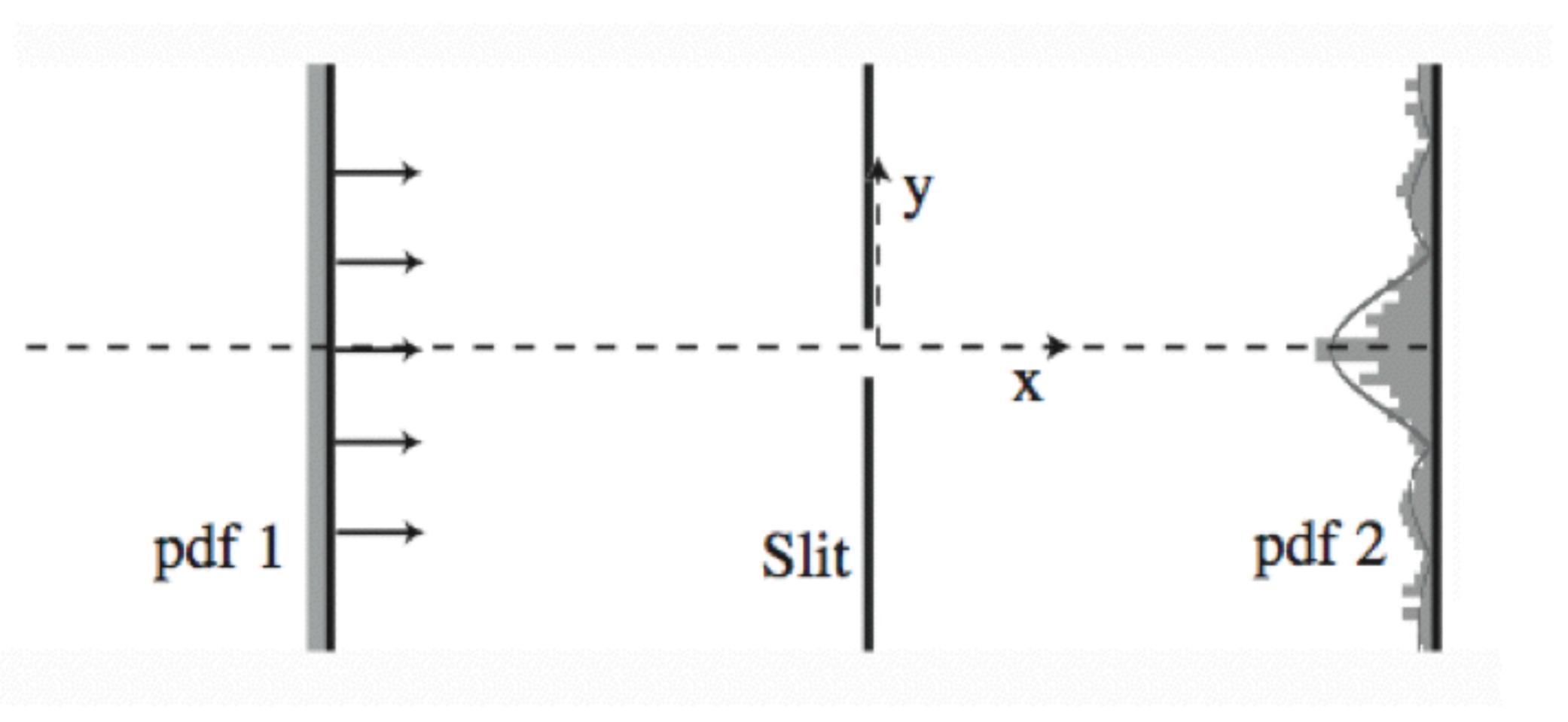
Probability Distribution Function



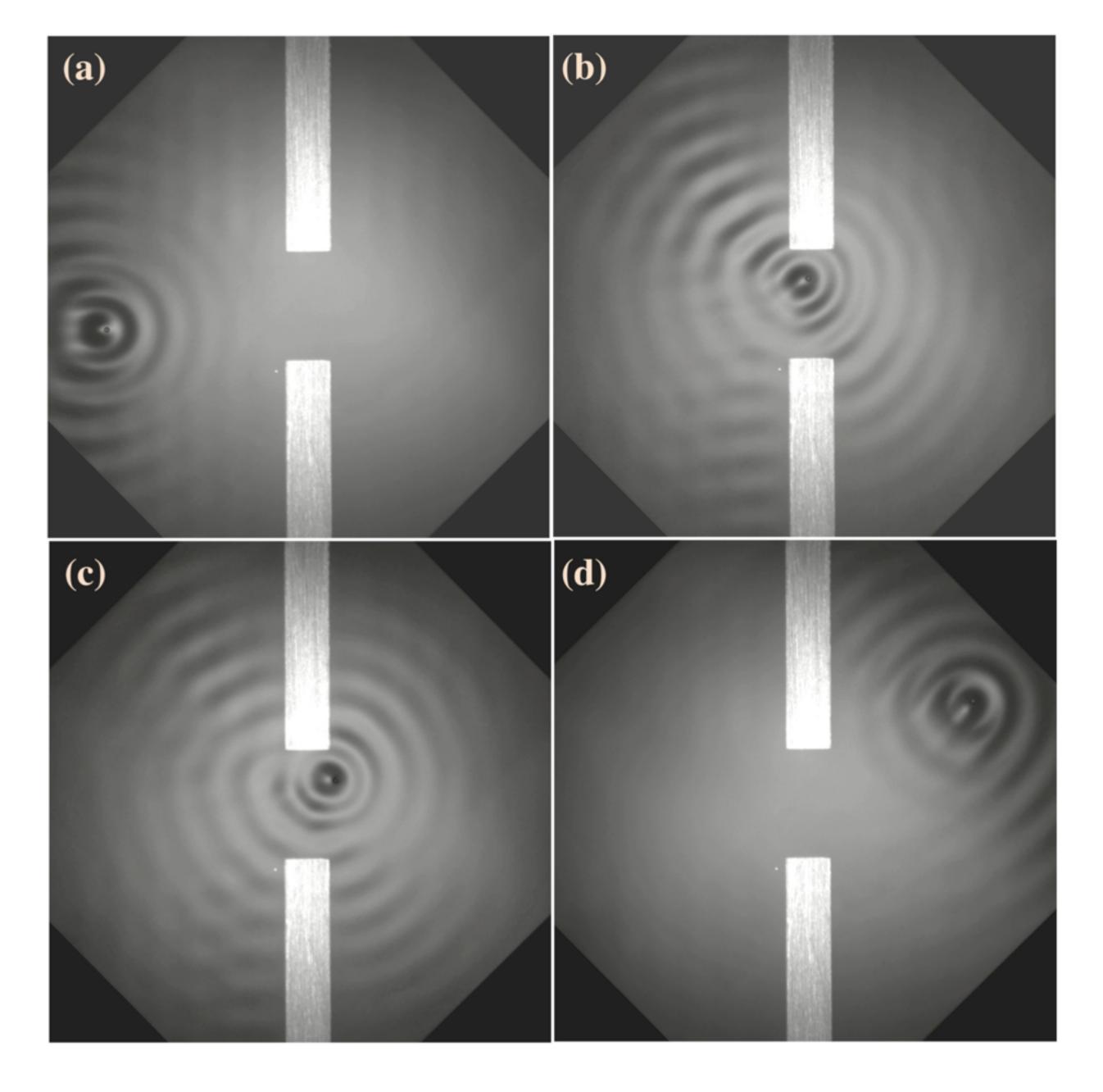
Cargèse / 22 september 2014

Comparison with actual Faraday wave pattern

self-interfering classical particle!

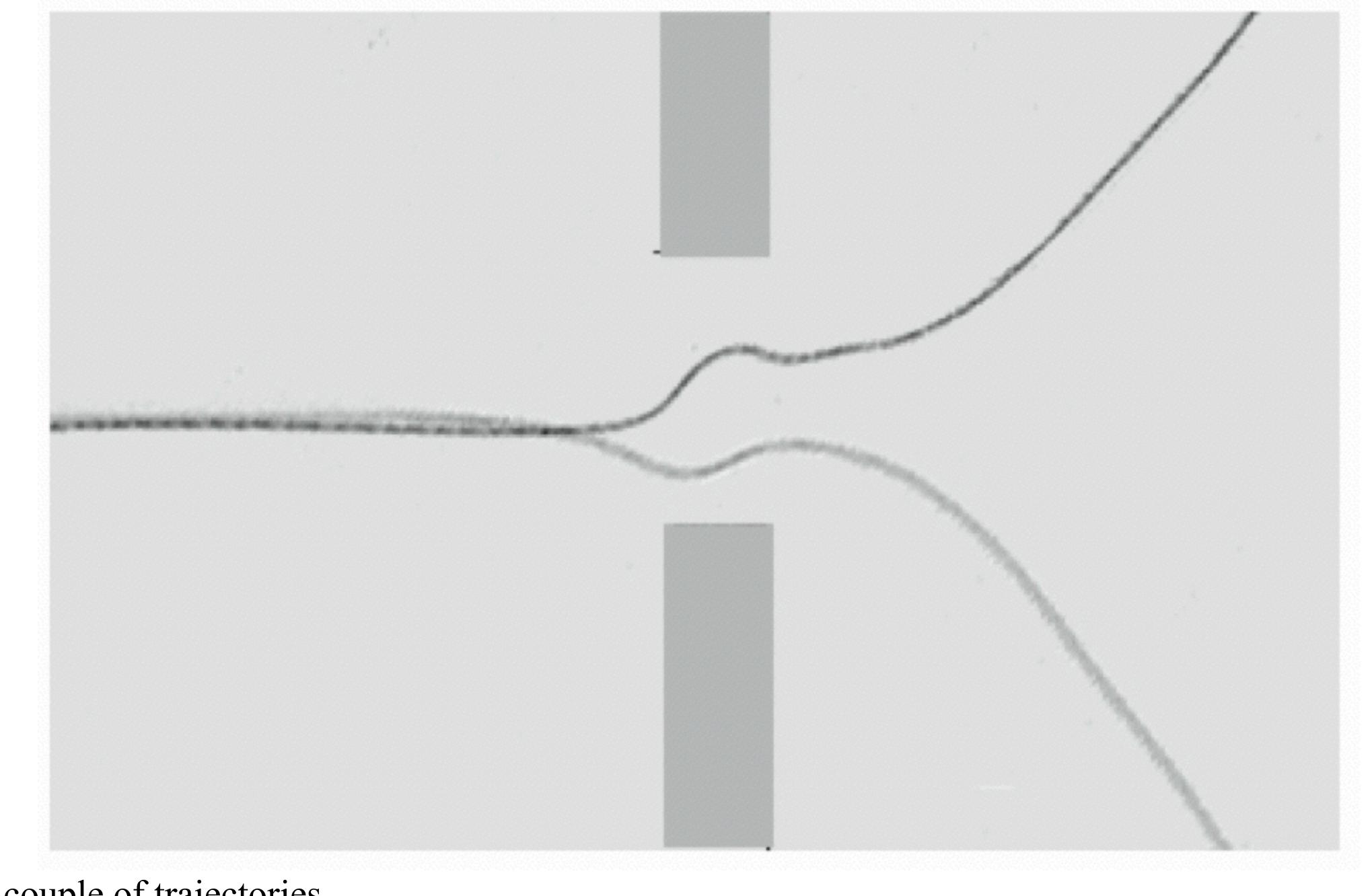


experimental setup

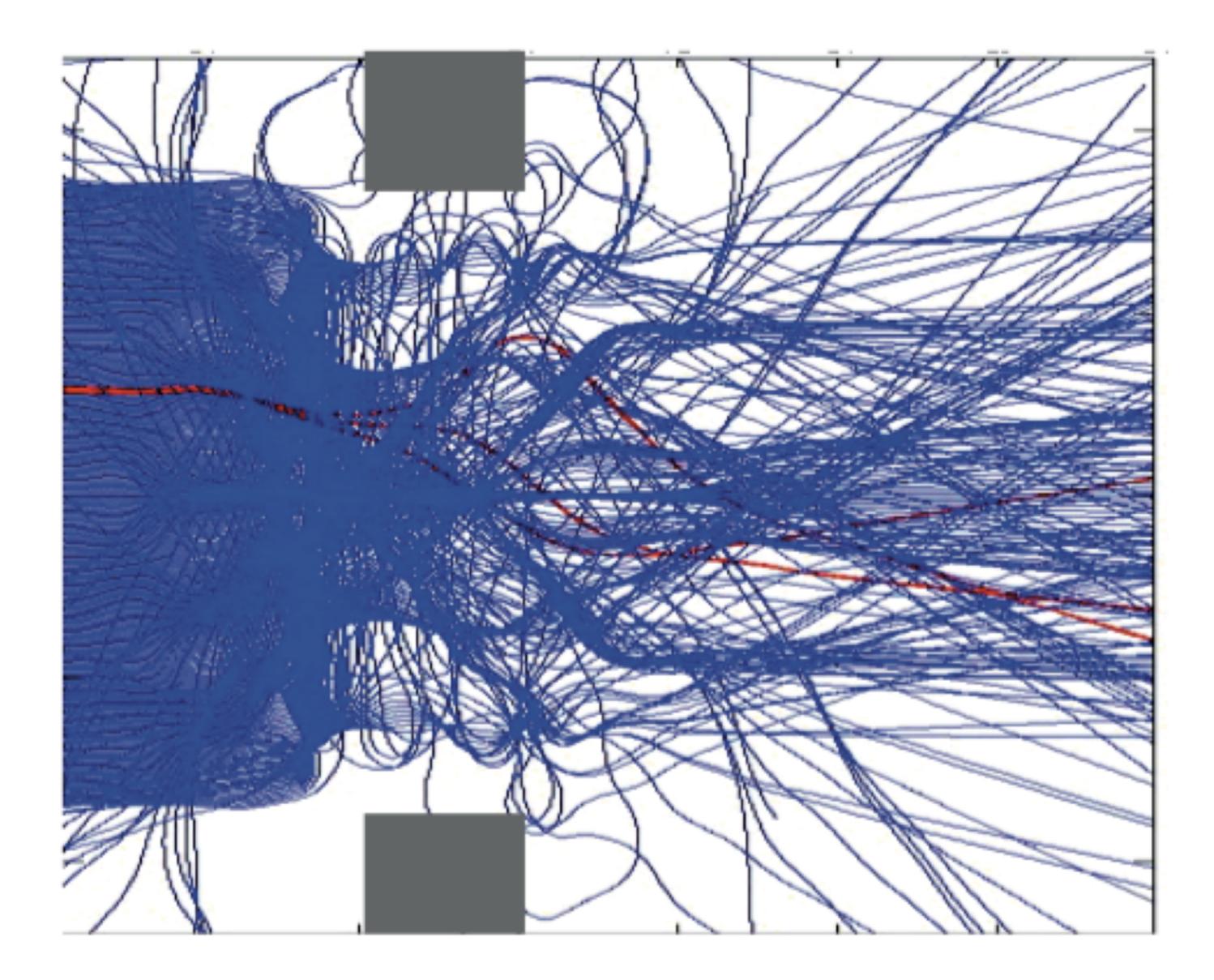


Cargèse / 22 september 2014

actual snapshots



a couple of trajectories...

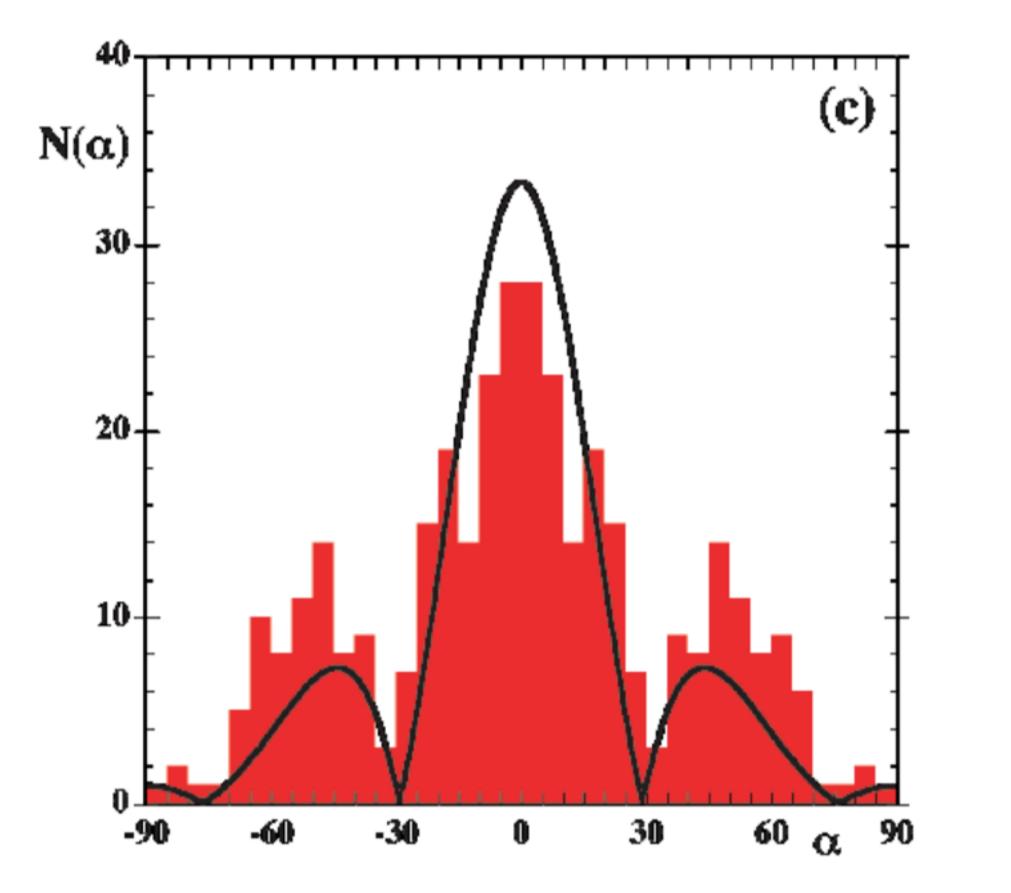


more trajectories!

Cargèse / 22 september 2014

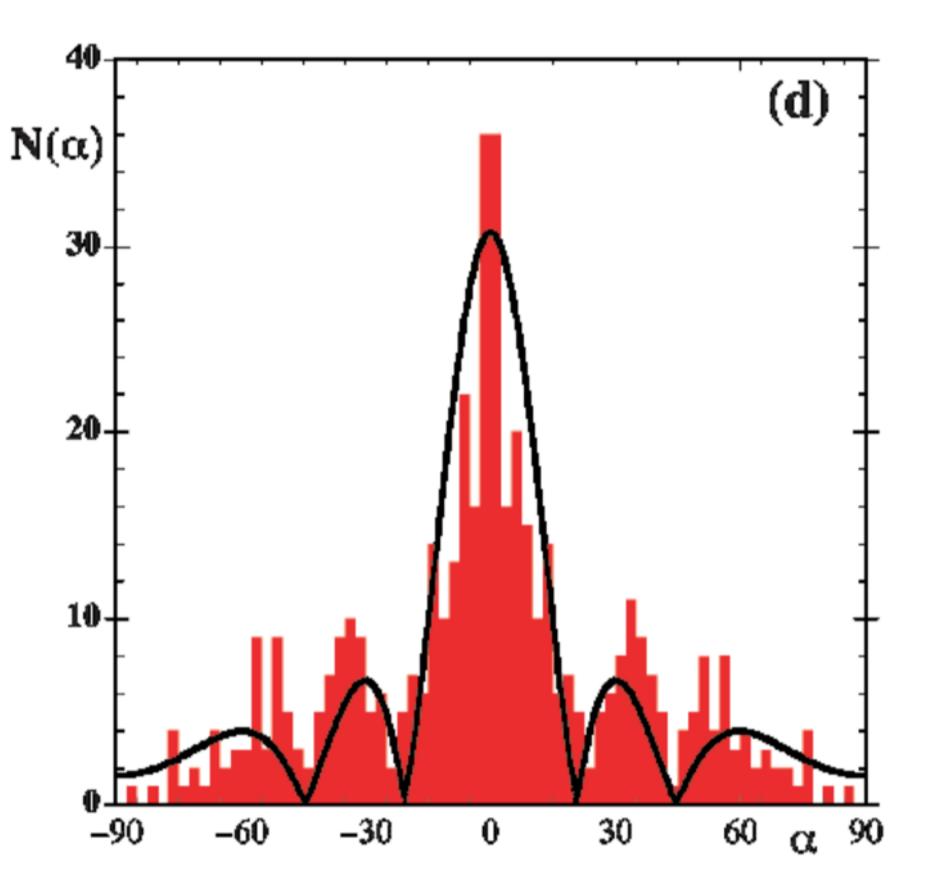
apparently random again

statistical determinacy

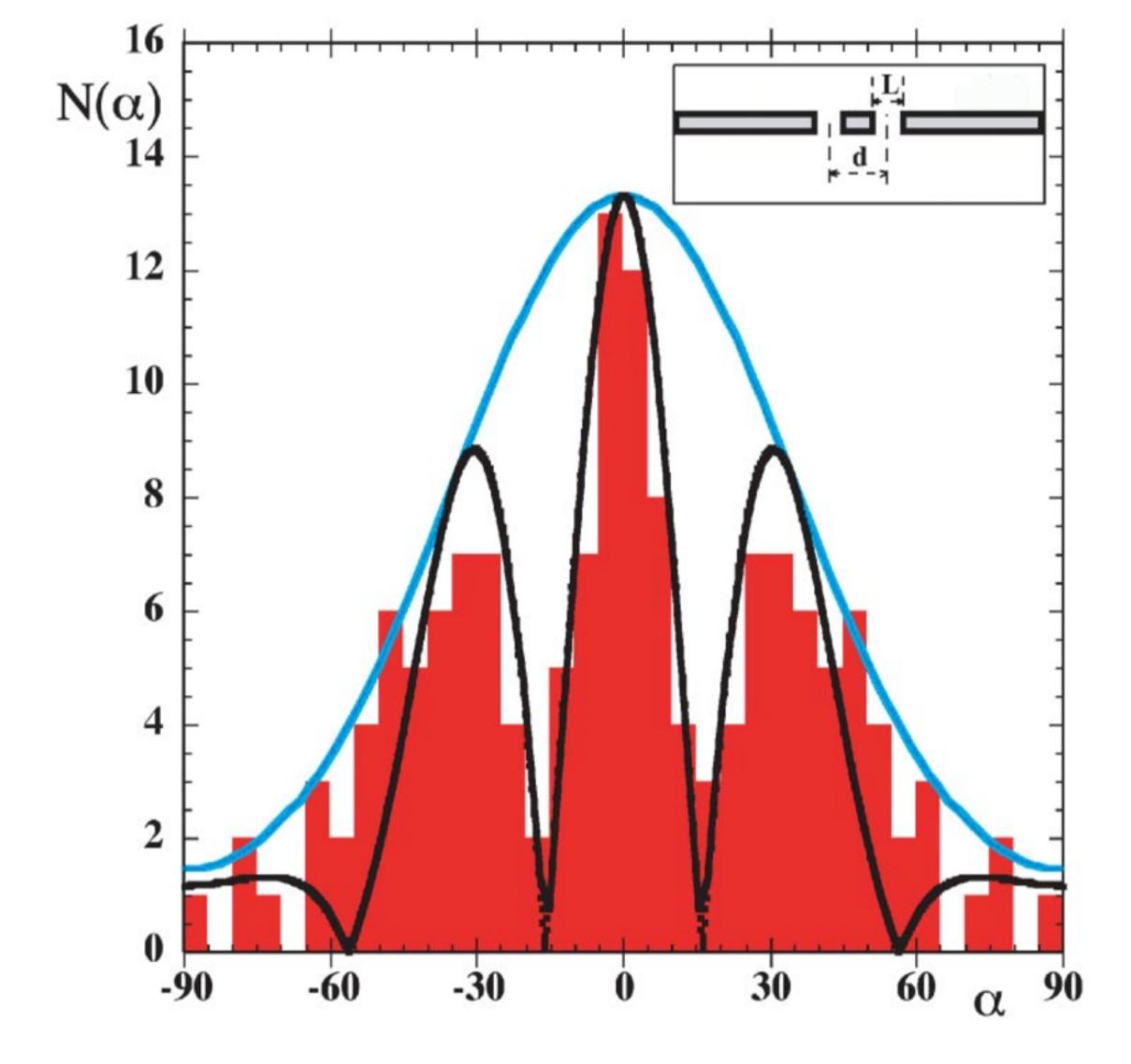


One slit + fit

Cargèse / 22 september 2014



Y. Couder and E. Fort, *Phys. Rev. Lett.* 97, 154101 (2006)

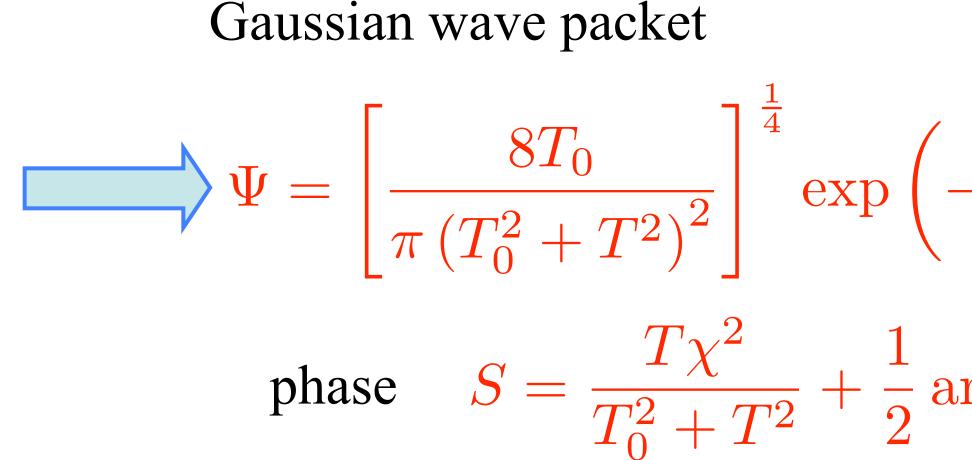


Two slits + fit

... a phenomenon which is impossible, *absolutely* impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. <u>Cargèse / 22 september 2014</u> R. P. Feynman (1961)

Y. Couder and E. Fort, *Phys. Rev. Lett.* 97, 154101 (2006)

Back to the QC wave function

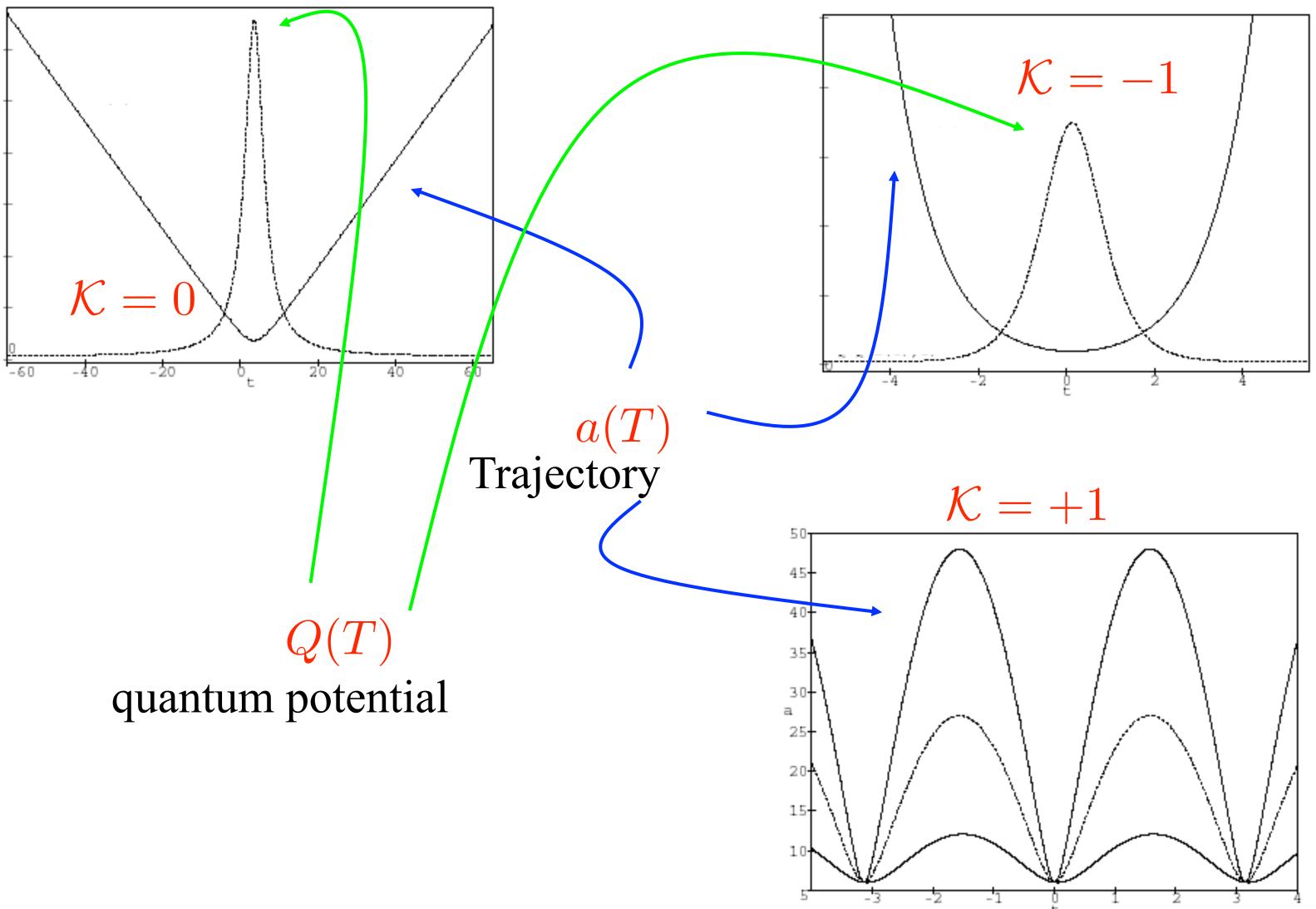


Hidden trajectory

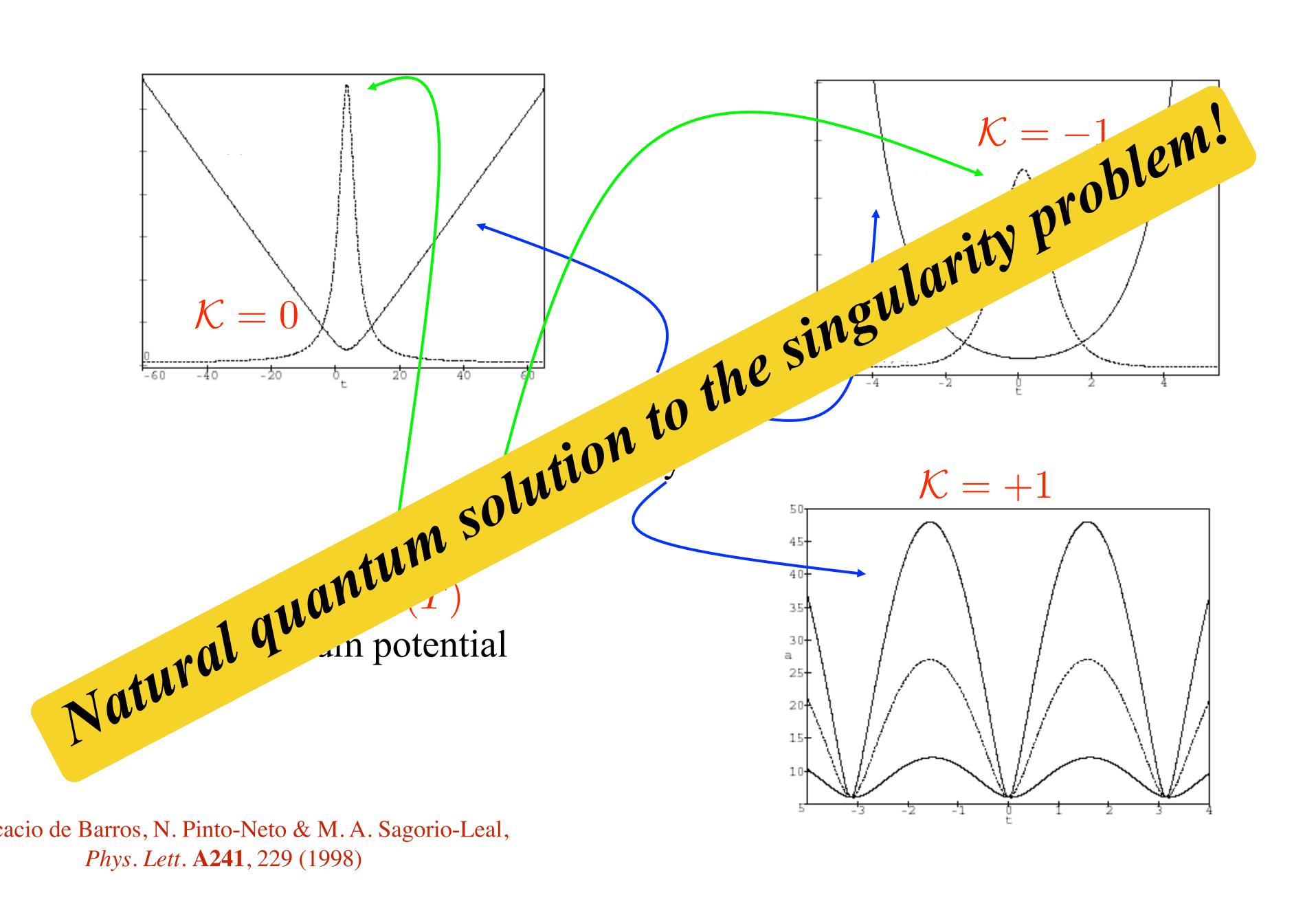
$$\left[-\frac{T_0\chi^2}{T_0^2 + T^2}\right] e^{-iS(\chi,T)}$$

$$\arctan\frac{T_0}{T} - \frac{\pi}{4}$$

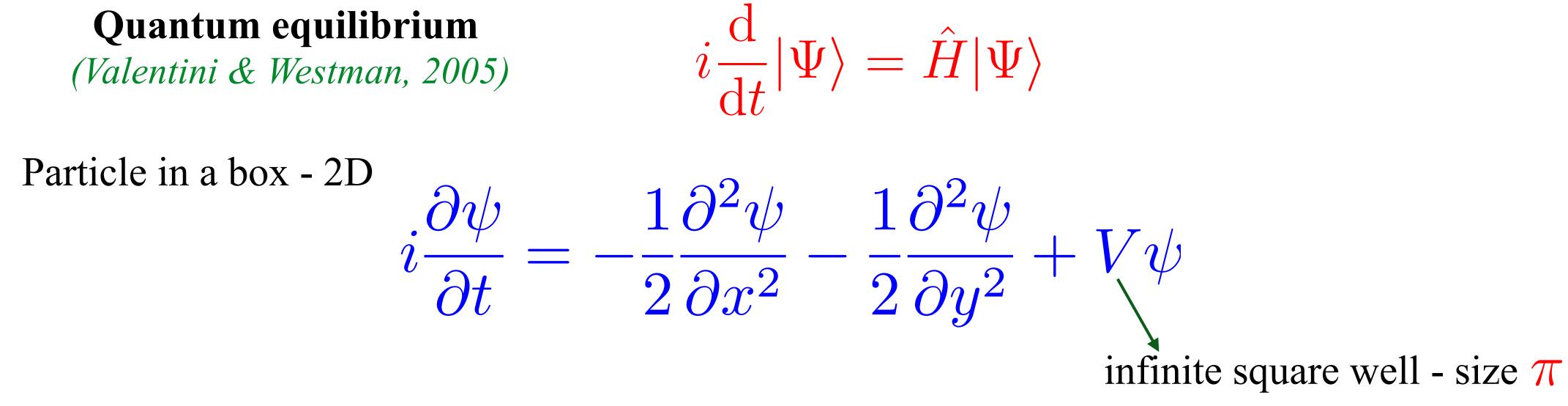
$$a = a_0 \left[1 + \left(\frac{T}{T_0}\right)^2 \right]^{\frac{1}{3(1-\omega)}}$$



J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal, *Phys. Lett.* A241, 229 (1998)



J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal, Phys. Lett. A241, 229 (1998)



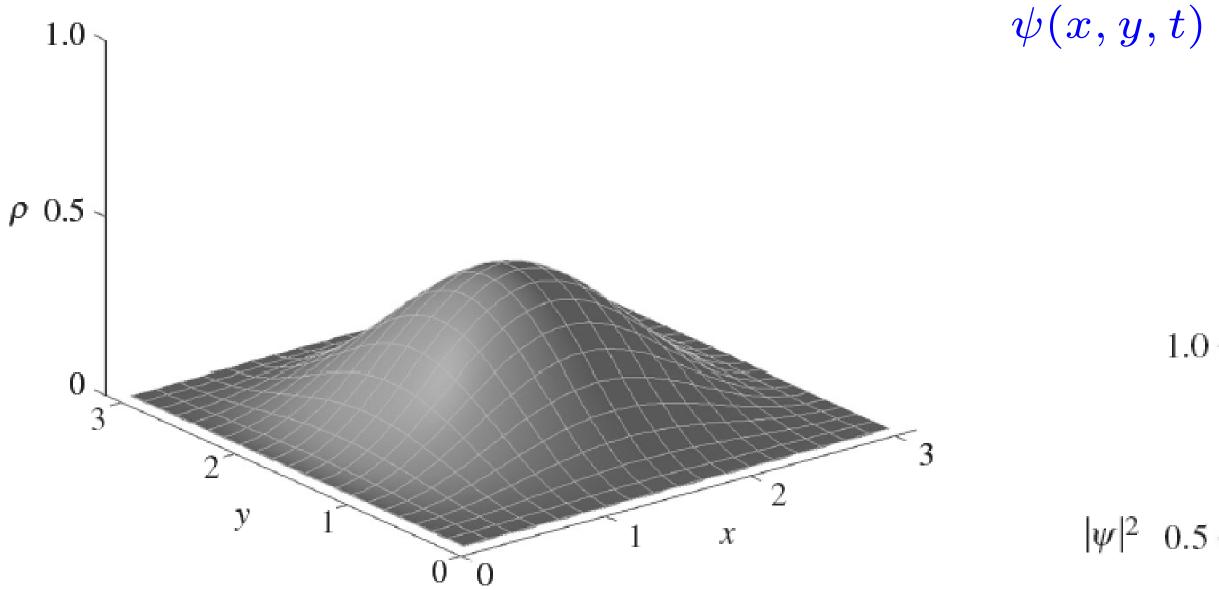
Density of actual configurations

$$\rho(x, y, t) \implies \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho \dot{x}\right)$$

Energy eigenfunctions $\phi_{mn}(x,y) = \frac{2}{\pi} \sin(mx) \sin(ny)$ Energy levels $E_{mn} = \frac{1}{2} (m^2 + n^2)$

 $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho \dot{x}\right) + \frac{\partial}{\partial u} \left(\rho \dot{y}\right) = 0 \qquad \text{continuity equation}$

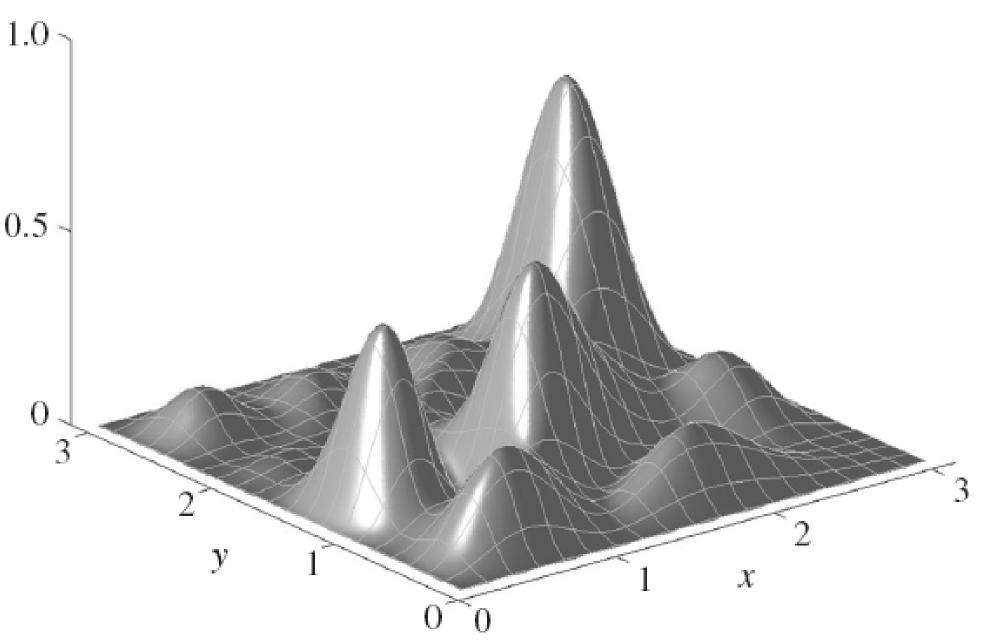
Initial configuration



Cargèse / 22 september 2014

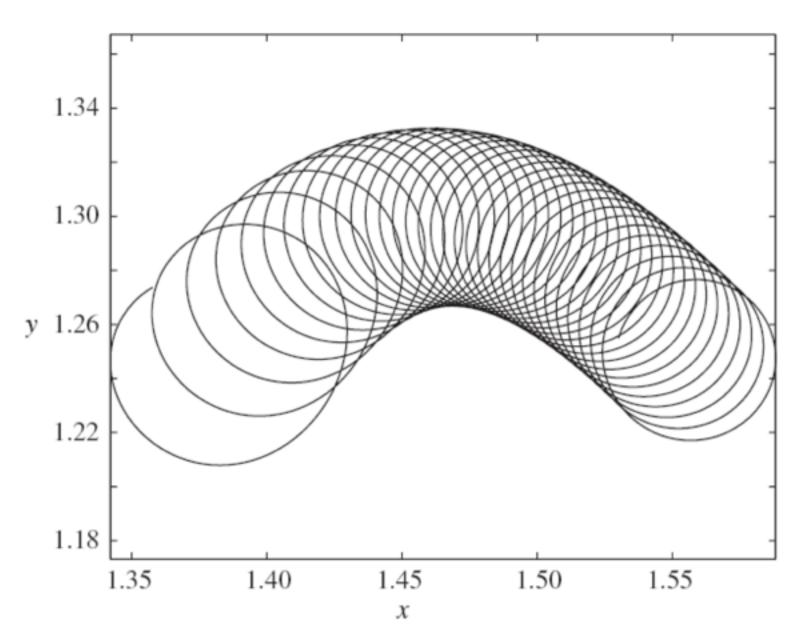
 $\psi(x, y, 0) = \sum_{m, n=1}^{4} \frac{1}{4} \phi_{mn}(x, y) \exp(i\theta_{mn})$

 $\psi(x, y, t) = \sum_{m,n=1}^{4} \frac{1}{4} \phi_{mn}(x, y) \exp i(\theta_{mn} - E_{mn}t)$



Typical quantum trajectory...

Close-up of a trajectory near a node



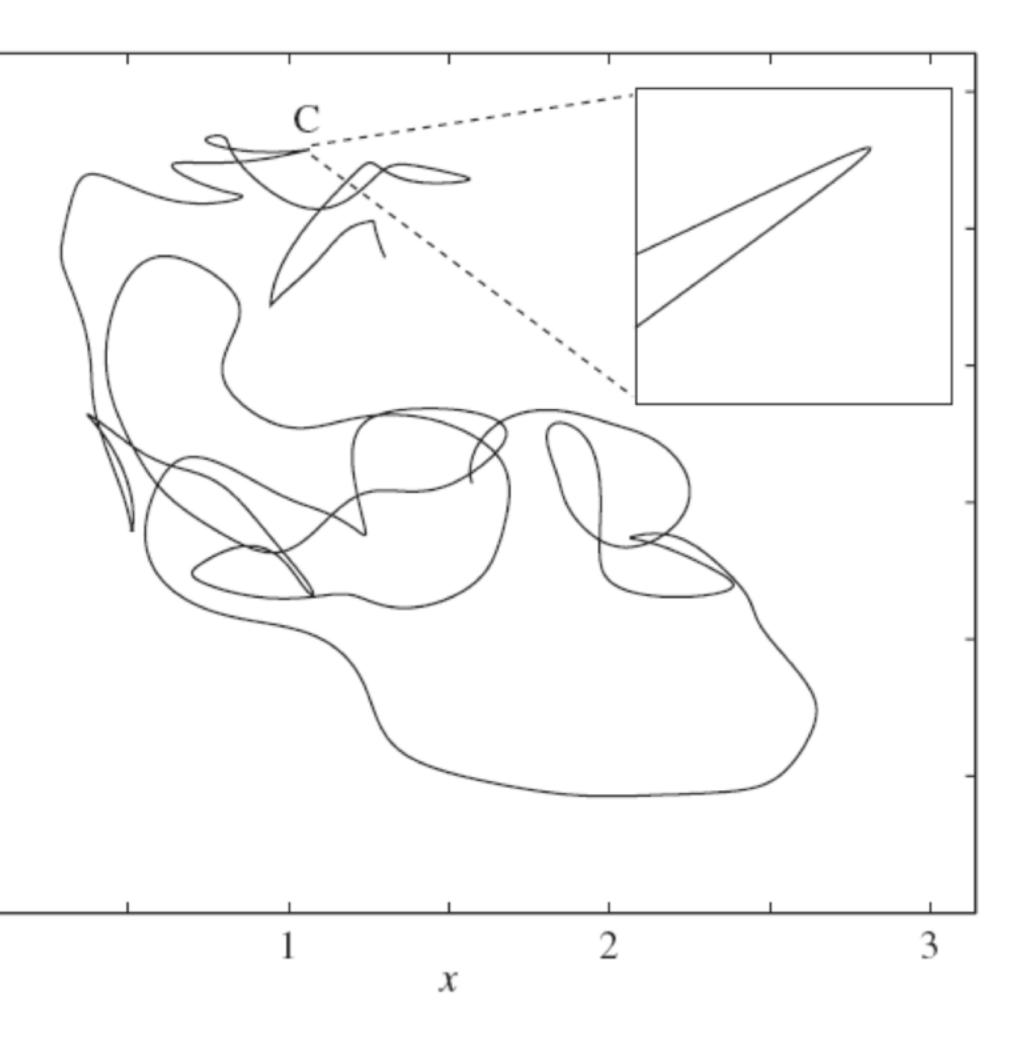
Cargèse / 22 september 2014

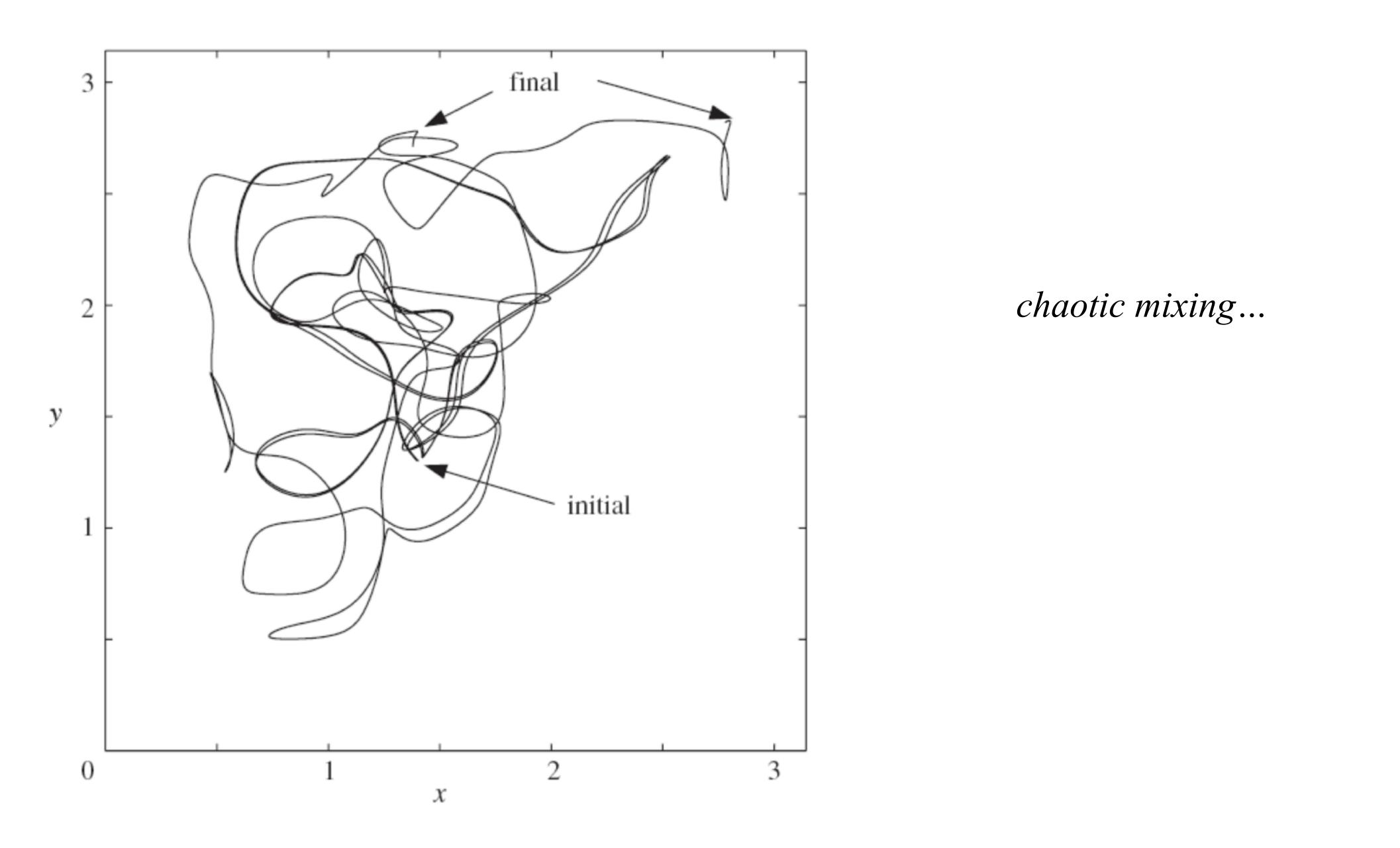
0

3

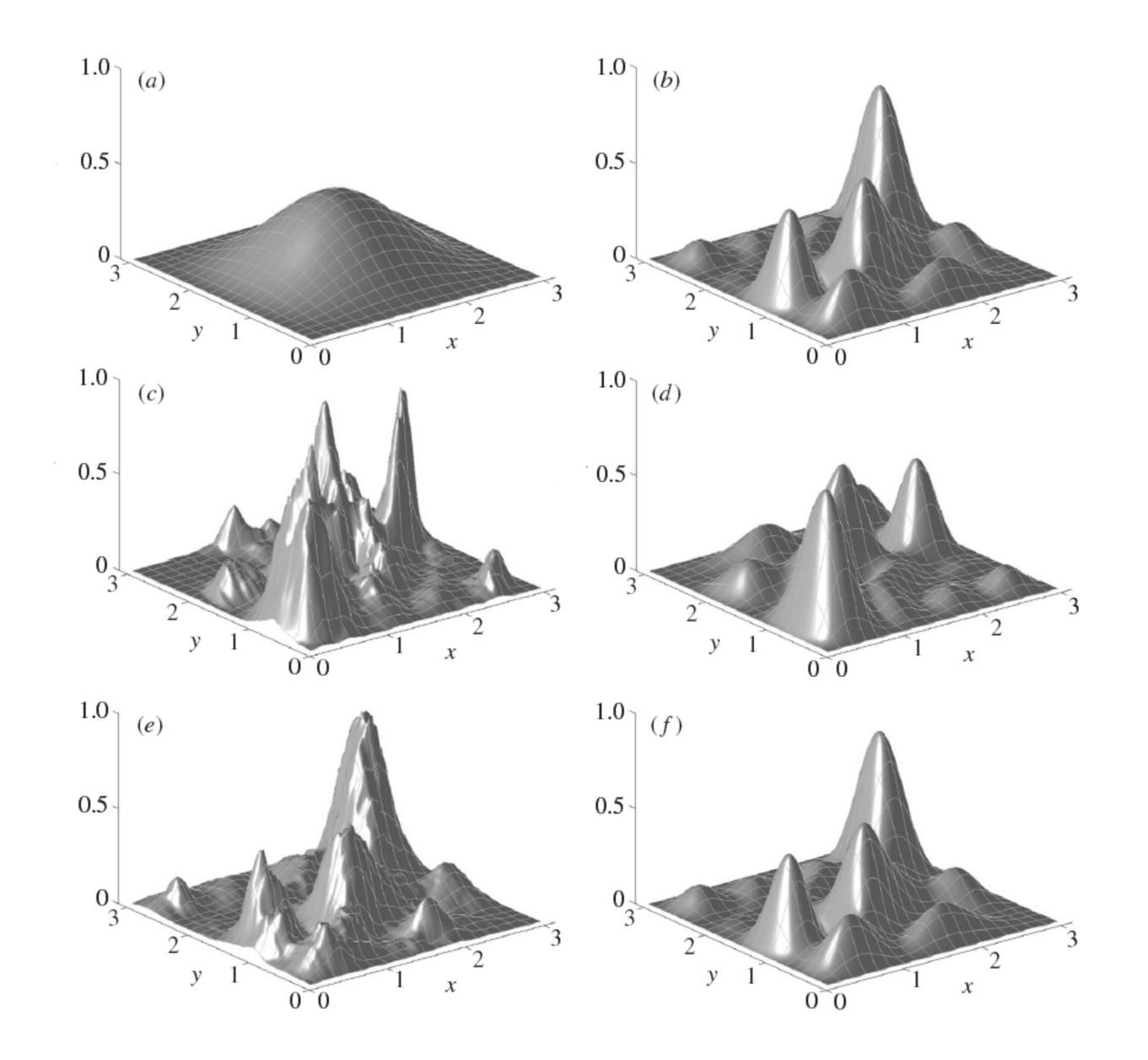
2

у





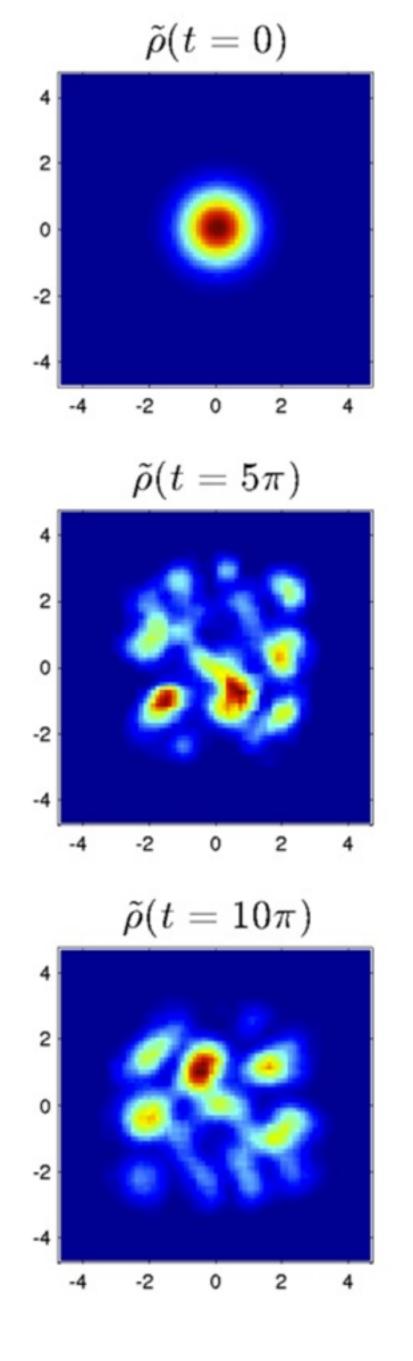
Dynamical evolutions

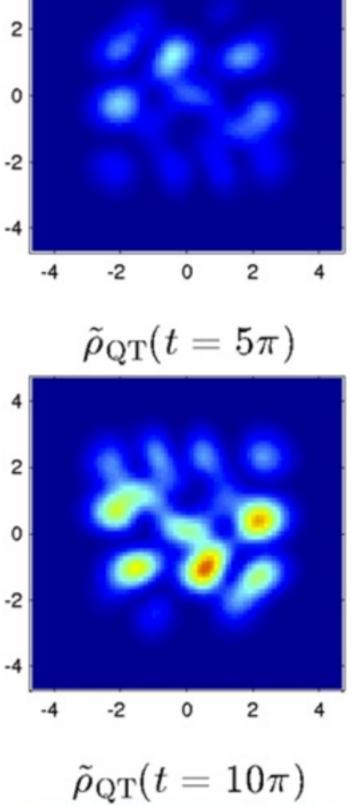


ρ

Cargèse / 22 september 2014

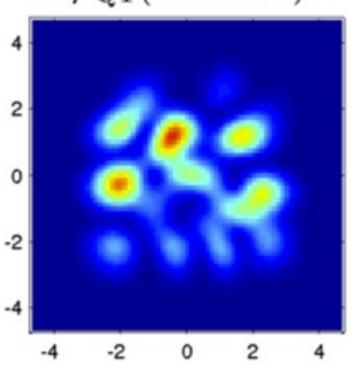
 $|\Psi|^2$





 $ilde{
ho}_{
m QT}(t=0)$

4



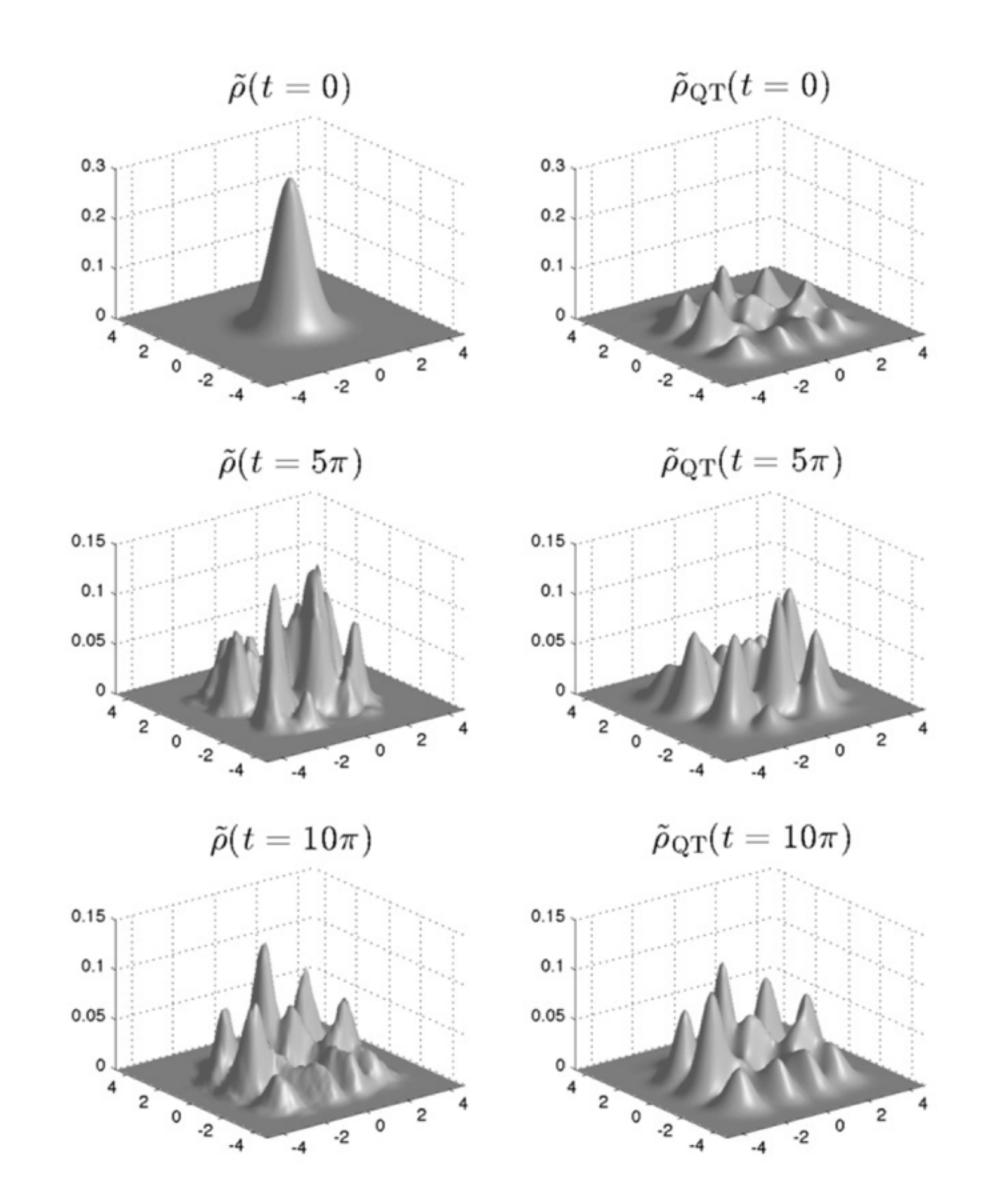
Cargèse / 22 september 2014

chaotic mixing...

relaxation towards equilibrium

just like ordinary thermal equilibrium



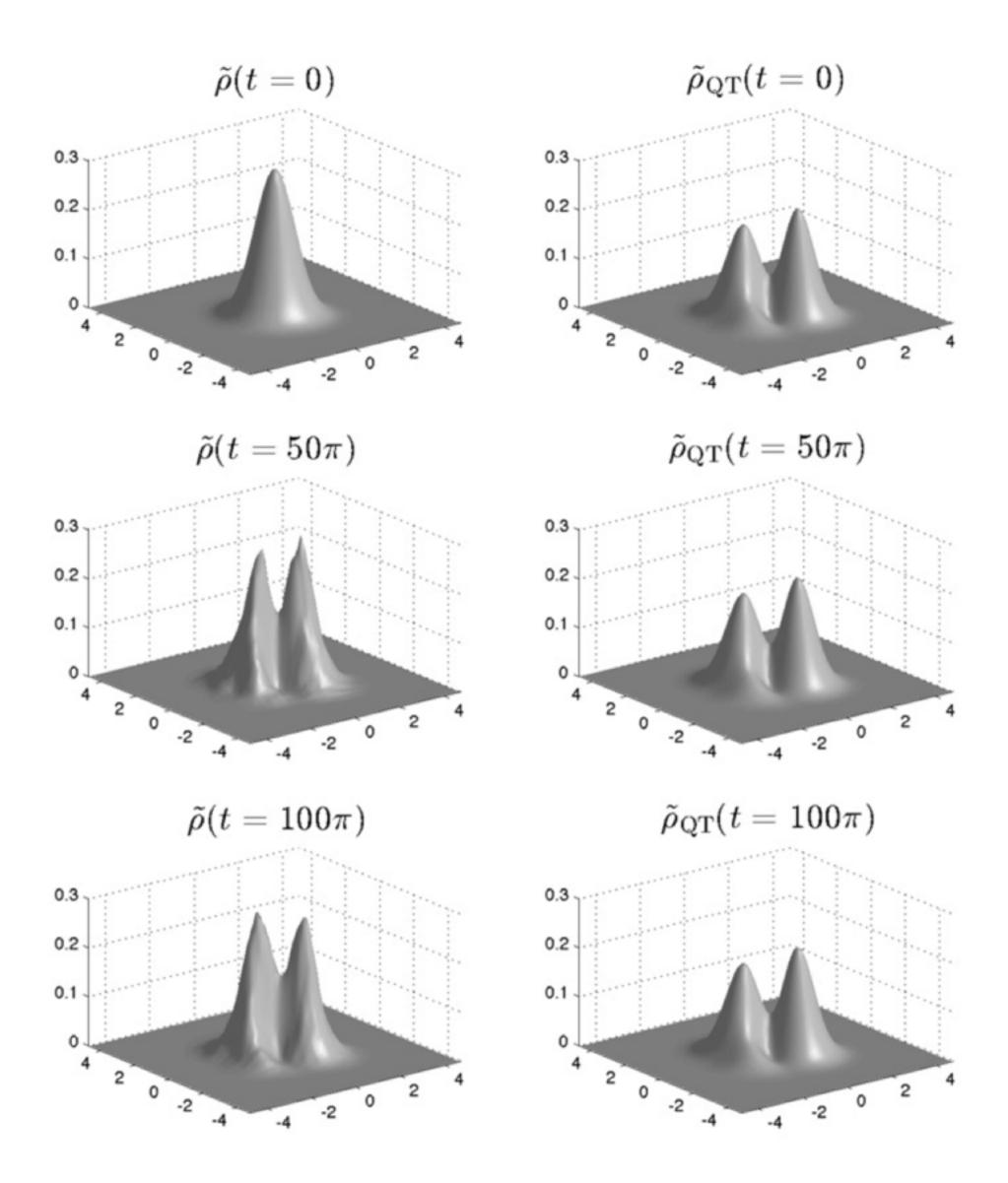


Cargèse / 22 september 2014

chaotic mixing...

relaxation towards equilibrium

just like ordinary thermal equilibrium



possibly slightly smaller width for low number of modes...

Cargèse / 22 september 2014

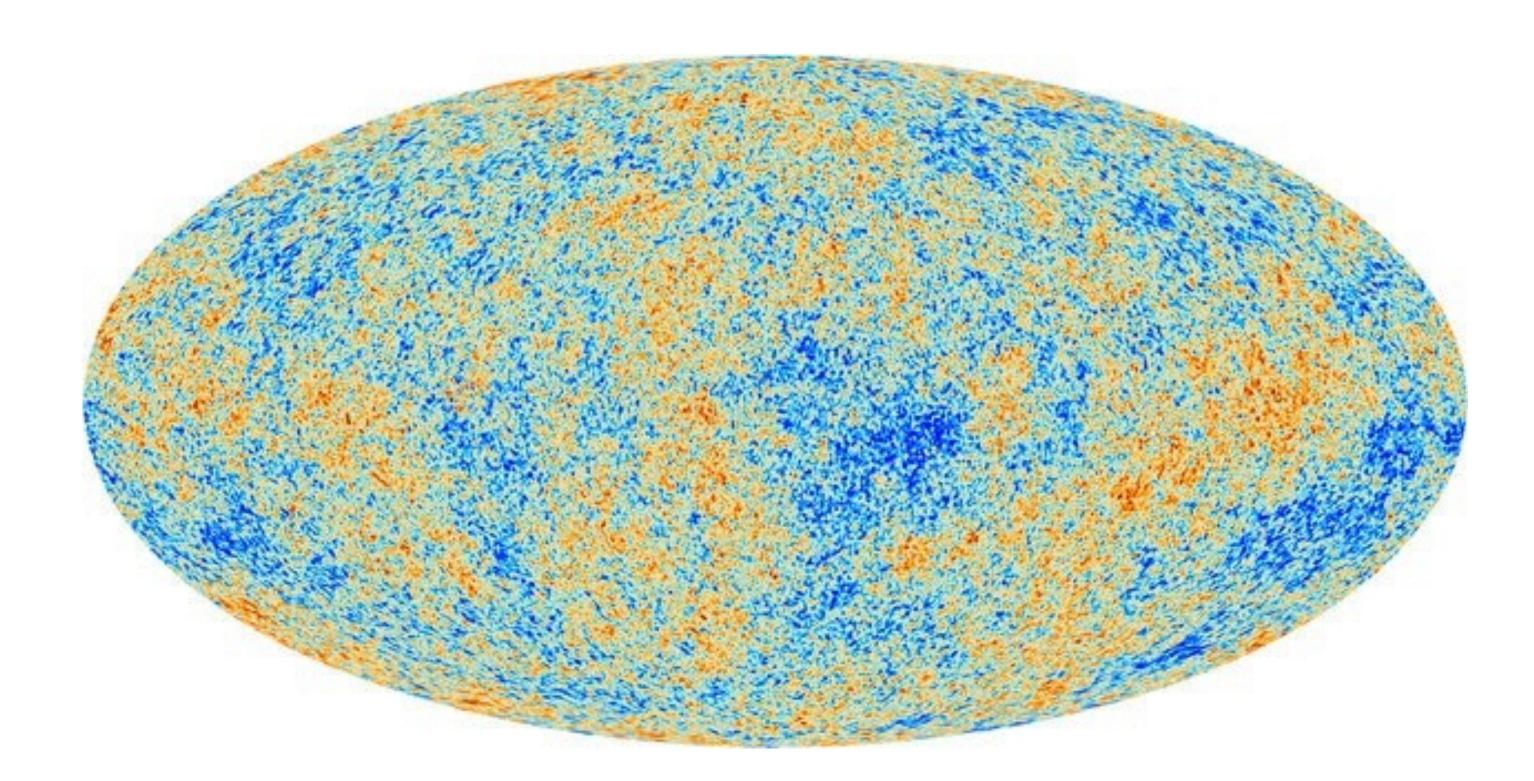
chaotic_mixing...

relaxation towards equilibrium

just like ordinary thermal equilibrium

$ds^{2} = a^{2}(\eta) \left\{ (1+2\Phi) d\eta^{2} - \left[(1-2\Phi) \gamma_{ij} + h_{ij} \right] dx^{i} dx^{j} \right\}$

 $i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$



Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations

 $\frac{\Delta T}{T} \propto v ~\sim \Phi \sim \delta g_{00}$

Inflationary perturbations: quantum fluctuations / expanding background

Classical temperature fluctuations promoted to quantum operators

$$\frac{\widehat{\Delta T}}{T} \propto \hat{v} \sim \Phi \sim \delta g$$

second order perturbed Einstein action $^{(2)}\delta S$ =

variable-mass scalar field in Minkowski spacetime

+ Fourier transform $v(\eta, \boldsymbol{x}) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} d^3 \boldsymbol{k} v_{\boldsymbol{k}} (\boldsymbol{k}) d^3 \boldsymbol{k} v_{\boldsymbol{k}} (\boldsymbol{k})$

$$^{(2)}\delta S = \int \mathrm{d}\eta \int \mathrm{d}^3 \boldsymbol{k} \left\{ v'_{\boldsymbol{k}} v^*_{\boldsymbol{k}} \right\}$$

Lagrangian formulation...

$$= \frac{1}{2} \int d^4x \left[(v')^2 - \delta^{ij} \partial_i v \partial_j v + \frac{\left(a\sqrt{\epsilon_1}\right)''}{a\sqrt{\epsilon_1}} v^2 \right]$$

$$\epsilon_1 = 1 - \mathcal{H}'/\mathcal{H}^2$$

slow-roll parameter

$$(\eta) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{a}}$$

$$+ v_{\boldsymbol{k}} v_{\boldsymbol{k}}^* \left[\frac{\left(a \sqrt{\epsilon_1} \right)''}{a \sqrt{\epsilon_1}} - k^2 \right] \right\}$$

Hamiltonian

$$H = \int \mathrm{d}^{3}\boldsymbol{k} \left\{ p_{\boldsymbol{k}} p_{\boldsymbol{k}}^{*} + v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*} \left[k^{2} \right] \right\}$$

collection of parametric oscillators with time dependent frequency

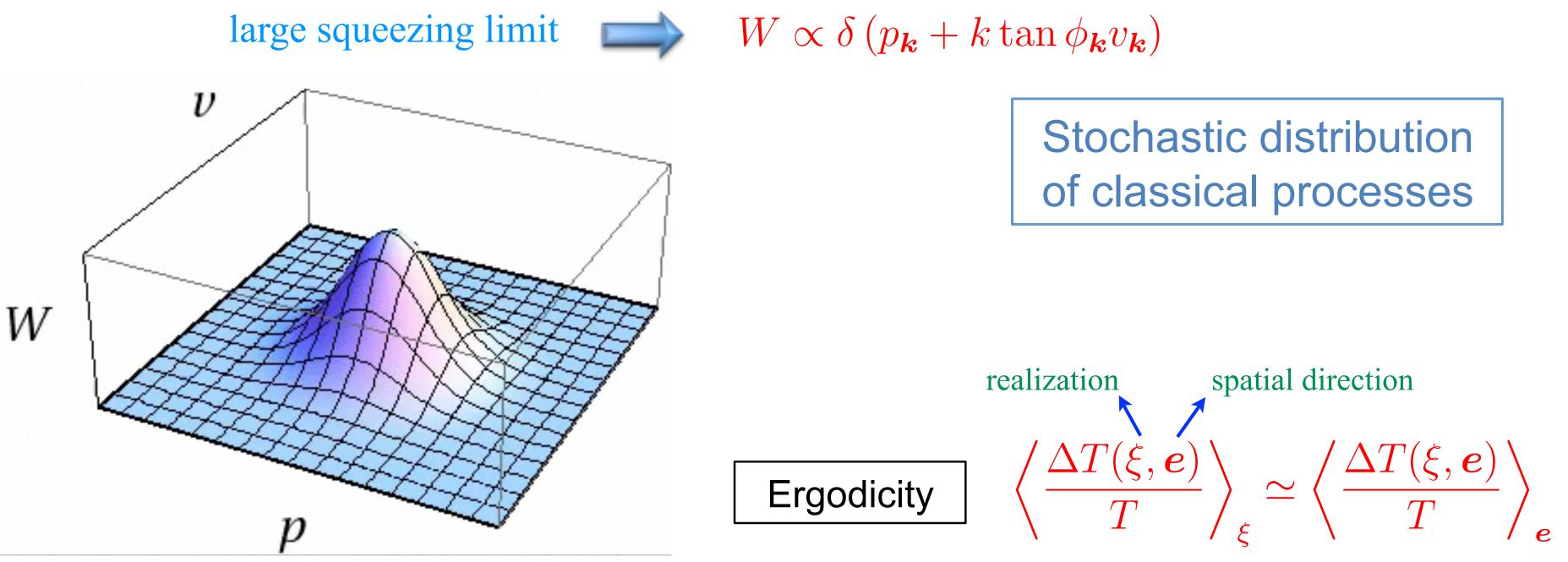
factorization of the full wave function $\Psi \left[v(\eta, \boldsymbol{x}) \right] = \prod \Psi_{\boldsymbol{k}} \left(v_{\boldsymbol{k}}^{\mathrm{R}}, v_{\boldsymbol{k}}^{\mathrm{I}} \right) = \prod \Psi_{\boldsymbol{k}}^{\mathrm{R}} \left(v_{\boldsymbol{k}}^{\mathrm{R}} \right) \Psi_{\boldsymbol{k}}^{\mathrm{I}} \left(v_{\boldsymbol{k}}^{\mathrm{I}} \right)$ $i\frac{\Psi_{\boldsymbol{k}}^{\mathrm{R},\mathrm{I}}}{\partial\eta} = \hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R},\mathrm{I}}\Psi_{\boldsymbol{k}}^{\mathrm{R},\mathrm{I}}$ $\hat{\mathcal{H}}_{\boldsymbol{k}}^{\mathrm{R,I}} = -\frac{1}{2} \frac{\partial^2}{\partial \left(v_{\boldsymbol{k}}^{\mathrm{R,I}}\right)^2} + \frac{1}{2} \omega^2(\eta, \boldsymbol{k}) \left(\hat{v}_{\boldsymbol{k}}^{\mathrm{R,I}}\right)^2$

 $\omega^{2}\left(\eta,oldsymbol{k}
ight)$ $\frac{\left(a\sqrt{\epsilon_1}\right)''}{a\sqrt{\epsilon_1}}$

- real and imaginary parts

Gaussian state solution $\Psi(\eta, v_k) = \left[\frac{2\Re e \,\Omega_k(\eta)}{\pi}\right]^{1/2}$

Wigner function $W(v_{k}, p_{k}) = \int \frac{\mathrm{d}x}{2\pi^{2}} \Psi^{*} \left(v_{k} - \frac{x}{2}\right)$



$$4 e^{-\Omega_{\boldsymbol{k}}(\eta)v_{\boldsymbol{k}}^2}$$

$$\left(\frac{x}{2} \right) e^{-ip_{k}x} \Psi \left(v_{k} + \frac{x}{2} \right)$$

Primordial Power Spectrum Standard case

Quantization in the Schrödinger picture (functional representation)

with
$$\hat{\mathcal{H}}_{\pmb{k}} = \frac{\hat{p}_{\pmb{k}}^2}{2} + \omega^2(\pmb{k},\eta)\hat{v}_{\pmb{k}}^2$$

and
$$\omega^2(\mathbf{k},\eta) = k^2 - \frac{(a\sqrt{\epsilon_1})''}{a\sqrt{\epsilon_1}}$$

$$=k^2 - \frac{\beta(\beta+1)}{\eta^2}$$

Parametric Oscillator System

Cargèse / 22 september 2014

 $i\frac{\mathrm{d}|\Psi_{\boldsymbol{k}}\rangle}{\mathrm{d}\eta} = \hat{\mathcal{H}}_{\boldsymbol{k}}|\Psi_{\boldsymbol{k}}\rangle \quad \text{Power-law inflation example}$ $\hat{v}_{k} = v_{k}$ $\hat{p}_{k} = i \frac{\partial}{\partial v_{k}}$ $a(\eta) = \ell_0 (-\eta)^{1+\beta}$ $\beta \leq -2$ (de Sitter: $\beta = -2$)

Primordial Power Spectrum Standard case

Quantization in the Schrödinger picture (functional representation)

 $\Psi_{\boldsymbol{k}}(\eta, v_{\boldsymbol{k}}) =$

 $i \frac{\mathrm{d} |\Psi_{\pmb{k}}\rangle}{\mathrm{d}\eta} = \hat{\mathcal{H}}_{\pmb{k}} |\Psi_{\pmb{k}}\rangle$ with

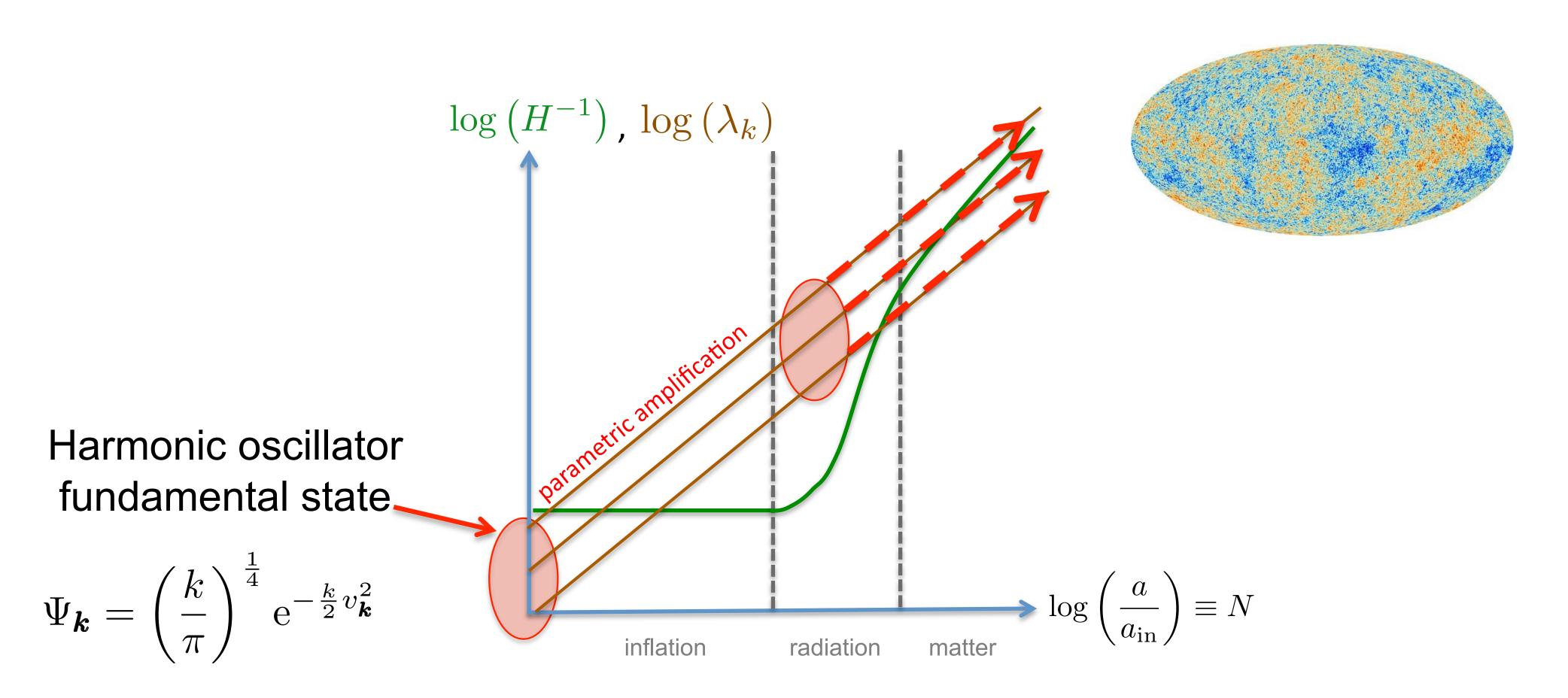
$$\Omega_{\mathbf{k}}' = -2i\Omega_{\mathbf{k}}^{2} + \frac{i}{2}\omega^{2}(\eta, \mathbf{k})$$

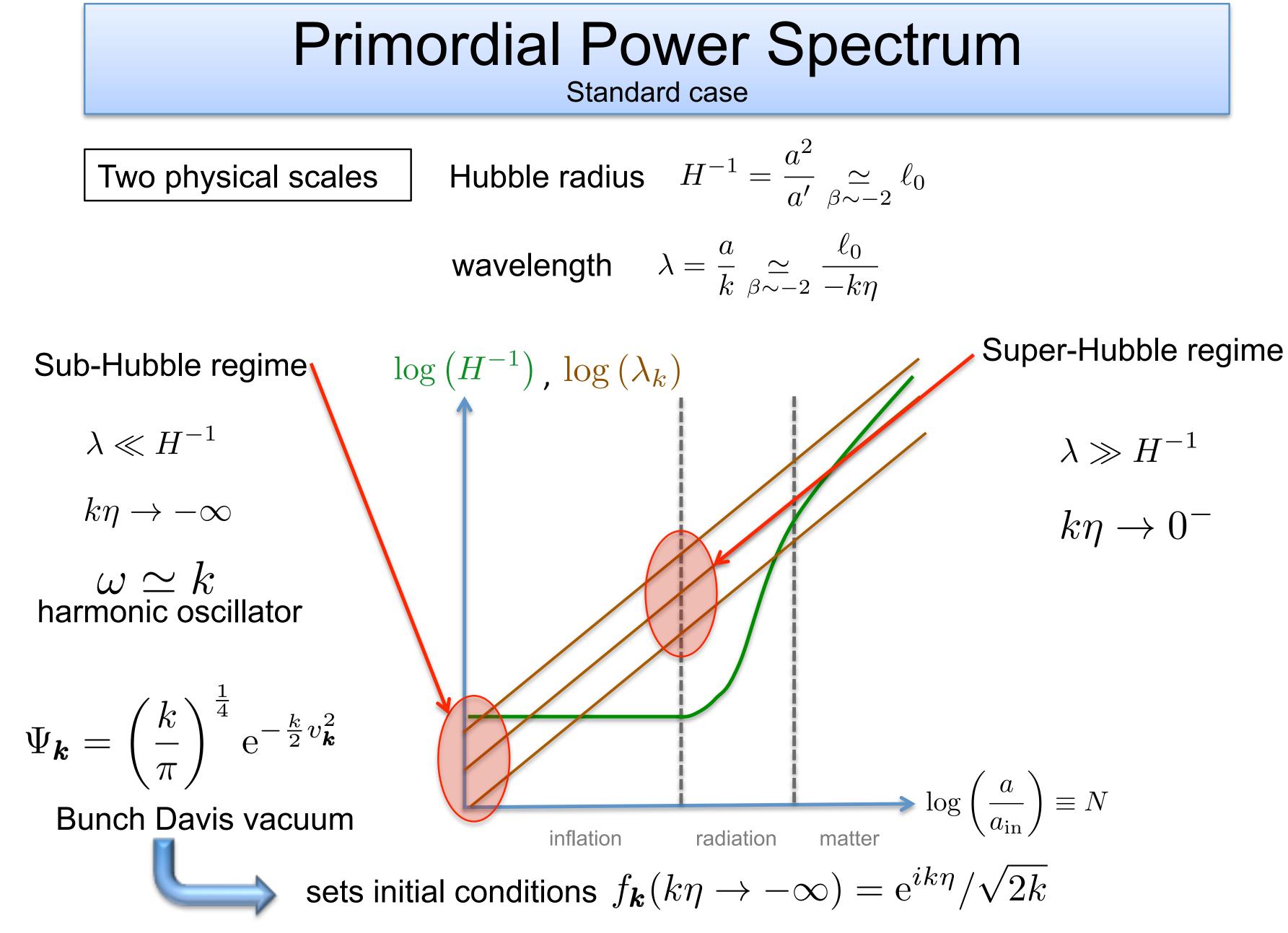
$$\Omega_{\mathbf{k}} = -\frac{i}{2}\frac{f_{\mathbf{k}}'}{f_{\mathbf{k}}}$$

$$f_{\mathbf{k}}'' + \omega^{2}(\mathbf{k}, \eta)f_{\mathbf{k}} = 0$$

$$\left[\frac{2 \Re e \Omega_{\boldsymbol{k}}(\eta)}{\pi}\right]^{1/4} e^{-\Omega_{\boldsymbol{k}}(\eta) v_{\boldsymbol{k}}^2}$$

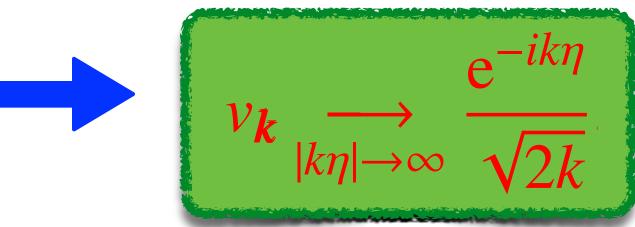
$$\hat{\mathcal{H}}_{\boldsymbol{k}} = \frac{\hat{p}_{\boldsymbol{k}}^2}{2} + \omega^2(\boldsymbol{k},\eta)\hat{v}_{\boldsymbol{k}}^2$$





 $v_{\boldsymbol{k}}'' + \left[\boldsymbol{k}^2 - U(\eta)\right] v_{\boldsymbol{k}} = 0$

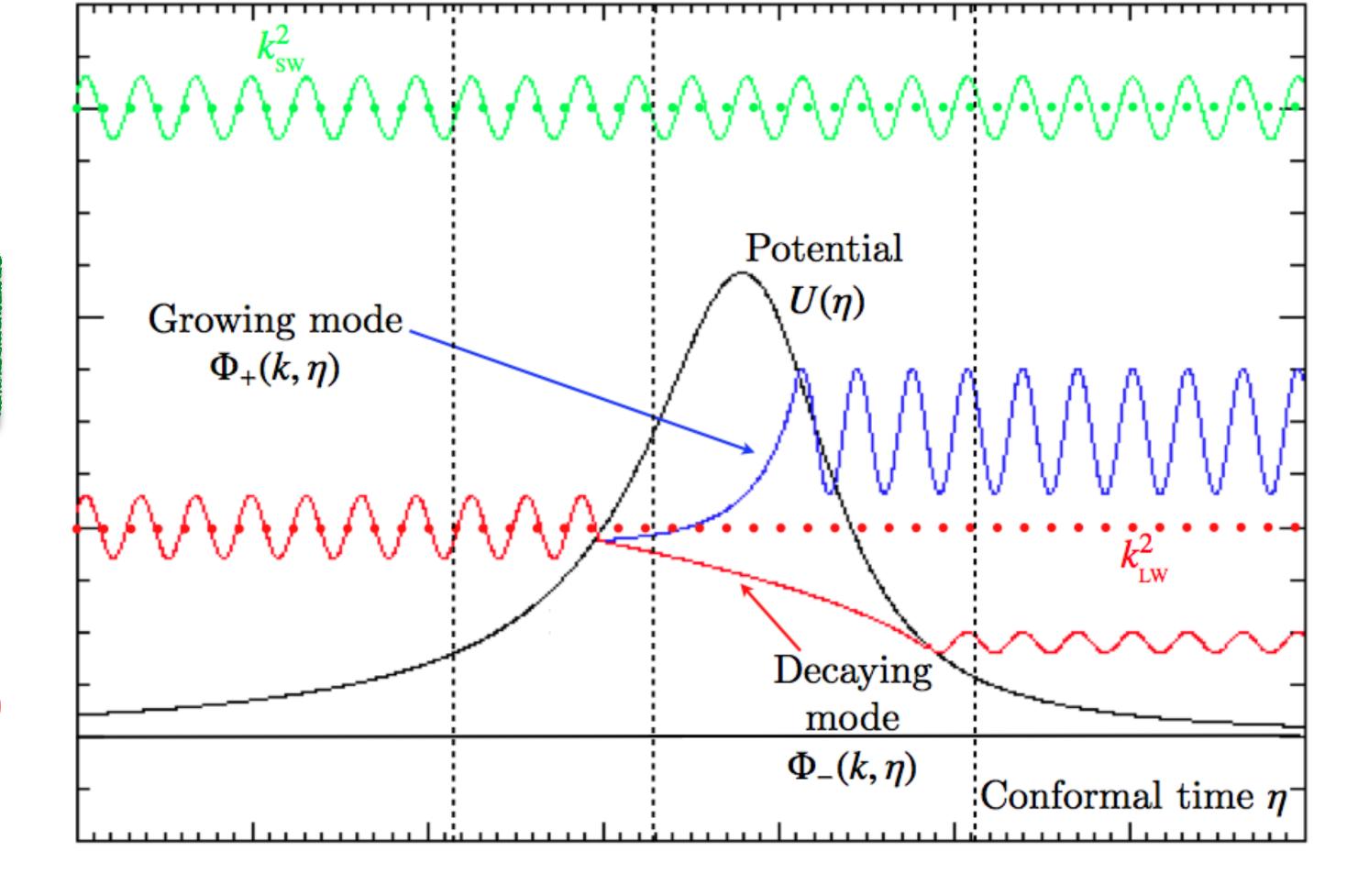
Vacuum state

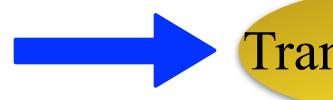


Initial conditions fixed!

 $\frac{\mathrm{d}^2\Psi}{\mathrm{d}x^2} + \frac{2m}{\hbar^2} \left[E - U(x) \right] \Psi = 0$

(time independent Schrödinger equation)





Cargèse / 22 september 2014

Transmission & Reflexion coefficients!

Primordial Power Spectrum Standard case

$$\underbrace{f_{\boldsymbol{k}}^{\prime\prime} + \omega^2(\boldsymbol{k}, \eta) f_{\boldsymbol{k}} = 0}_{\text{Uniquely determines } f_{\boldsymbol{k}}} \text{ with } \omega^2(\boldsymbol{k}, \eta) = k^2 - \frac{\beta(\beta+1)}{\eta^2} \text{ and } f_{\boldsymbol{k}}(k\eta \to -\infty) = e^{ik\eta}/\sqrt{2k}$$

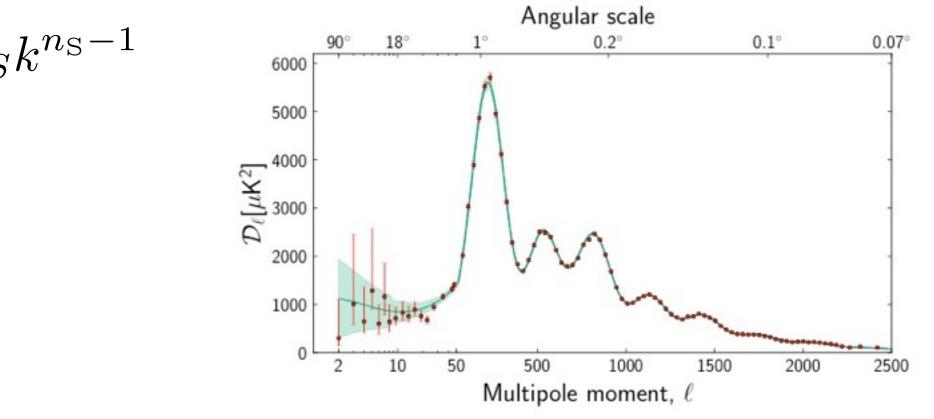
Evaluated at the end of inflation($k\eta \rightarrow 0^-$), this

and eventually
$$P_{\zeta}(k) = \frac{1}{2a^2 M_{\rm Pl}^2 \epsilon_1} P_v(k) = A_S$$

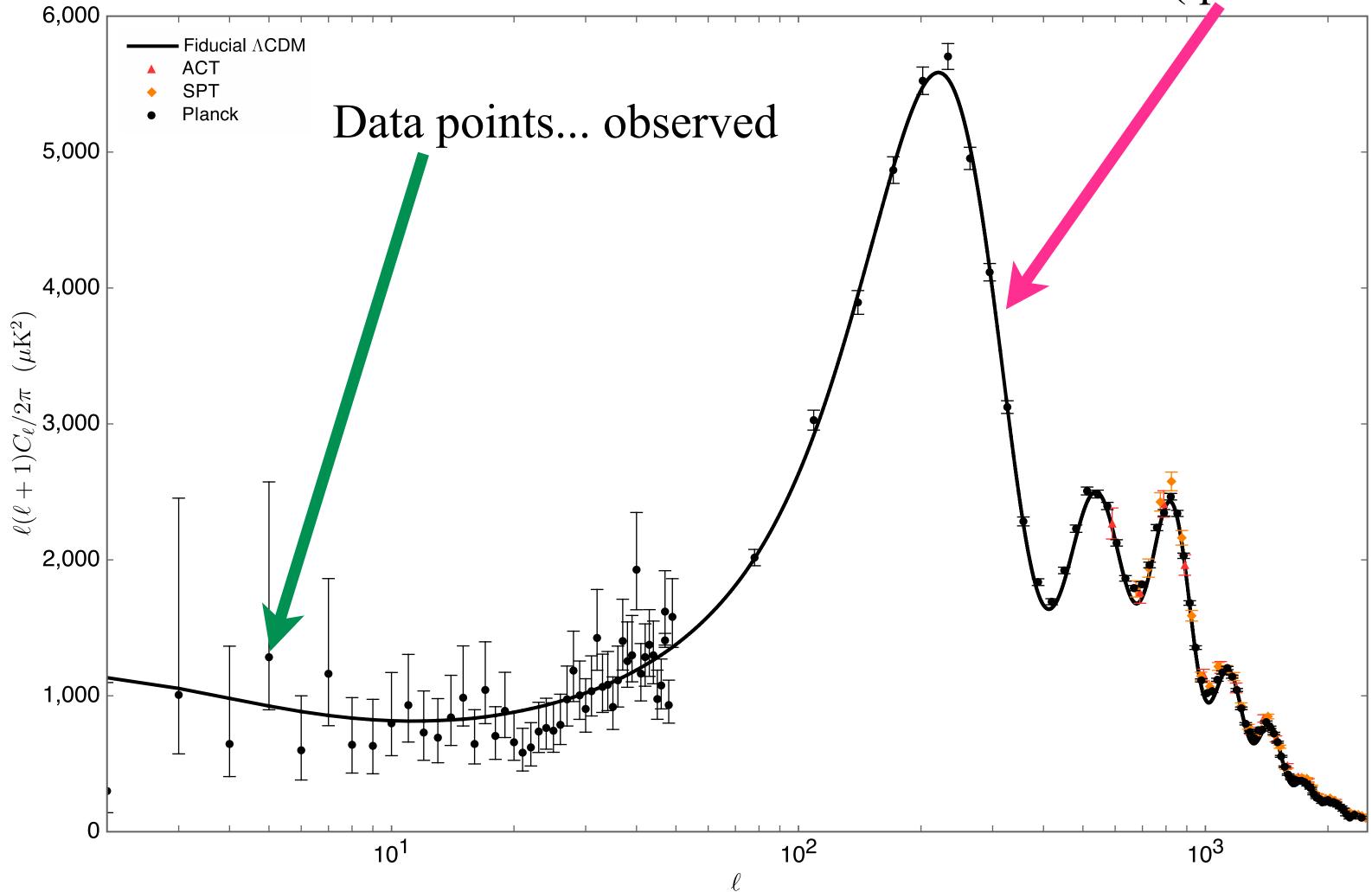
with
$$n_{\rm S} = 2\beta + 5 \underset{\beta \sim -2}{\simeq} 1$$

Planck: $1 - n_{\rm s} = 0.0389 \pm 0.0054$

gives
$$P_v(k) = \frac{k^3}{2\pi^3} \left(\langle \hat{v}_k^2 \rangle - \langle \hat{v}_k \rangle^2 \right)$$



Planck + ACT + SPT data



Cargèse / 22 september 2014

Theoretical prediction (quantum vacuum fluctuations)

Recall: Hamiltonian

$$H = \int \mathrm{d}^{3}\boldsymbol{k} \left\{ p_{\boldsymbol{k}} p_{\boldsymbol{k}}^{*} + v_{\boldsymbol{k}} v_{\boldsymbol{k}}^{*} \left[k^{2} \right] \right\}$$

collection of parametric oscillators with time dependent frequency

Simpler model: spectator scalar field in an expanding and finite size Universe

$$\phi_{\mathbf{k}} = \frac{\sqrt{V}}{(2\pi)^{3/2}} \left(q_{\mathbf{k}1} + iq_{\mathbf{k}2} \right) \qquad H = \sum_{\mathbf{k}, \ r=1,2} \frac{1}{2a^3} \pi_{\mathbf{k}r}^2 + \frac{1}{2}ak^2 q_{\mathbf{k}r}^2$$

$$a^3 \to m$$

 $k/a \to \omega$

$$i\frac{\partial\psi}{\partial t} = \sum_{r=1}^{2} \left(-\frac{\partial_r^2}{2m} + \frac{1}{2}m\omega^2 q_r^2 \right)$$

dBB trajectory of the field component $\dot{q}_r = m^{-1}\Im m$

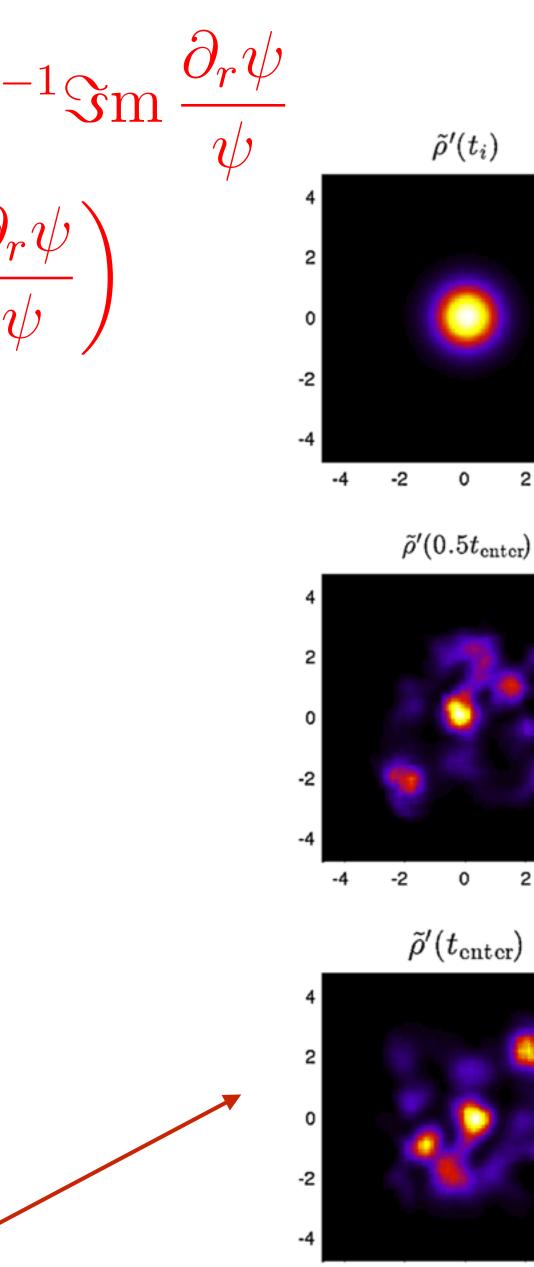
Statistical distribution $\frac{\partial \rho}{\partial t} + \sum \partial_r \left(\frac{\rho}{m} \Im \left(\frac{\partial_r \psi}{\psi}\right)\right)$

$$i\frac{\partial\psi}{\partial t} = \sum_{r=1}^{2} \left(-\frac{\partial_{r}^{2}}{2m} + \frac{1}{2}m\omega^{2}q_{r}^{2} \right)$$

Relaxation of a 2D harmonic oscillator (time dependent mass & frequency)

(constant mass & frequency)

Cargèse / 22 september 2014



0

0

-2

-4

0

2

4

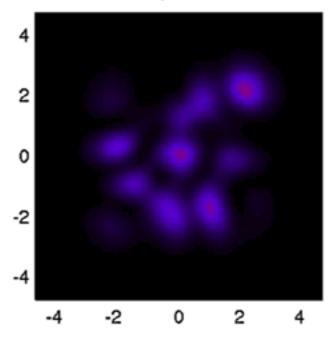
2

4

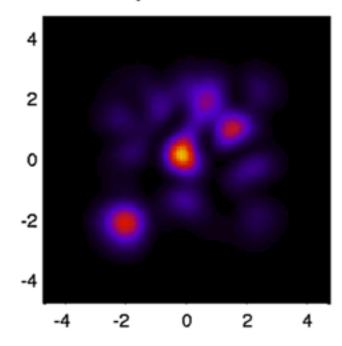
2

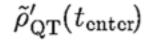
4

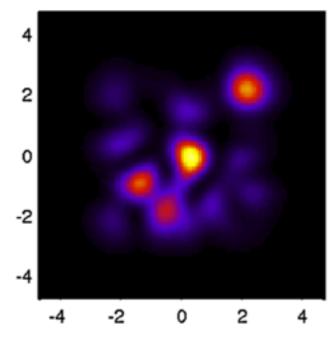
 $ilde{
ho}_{ ext{QT}}'(t_i)$



 $ilde{
ho}'_{
m QT}(0.5t_{
m enter})$

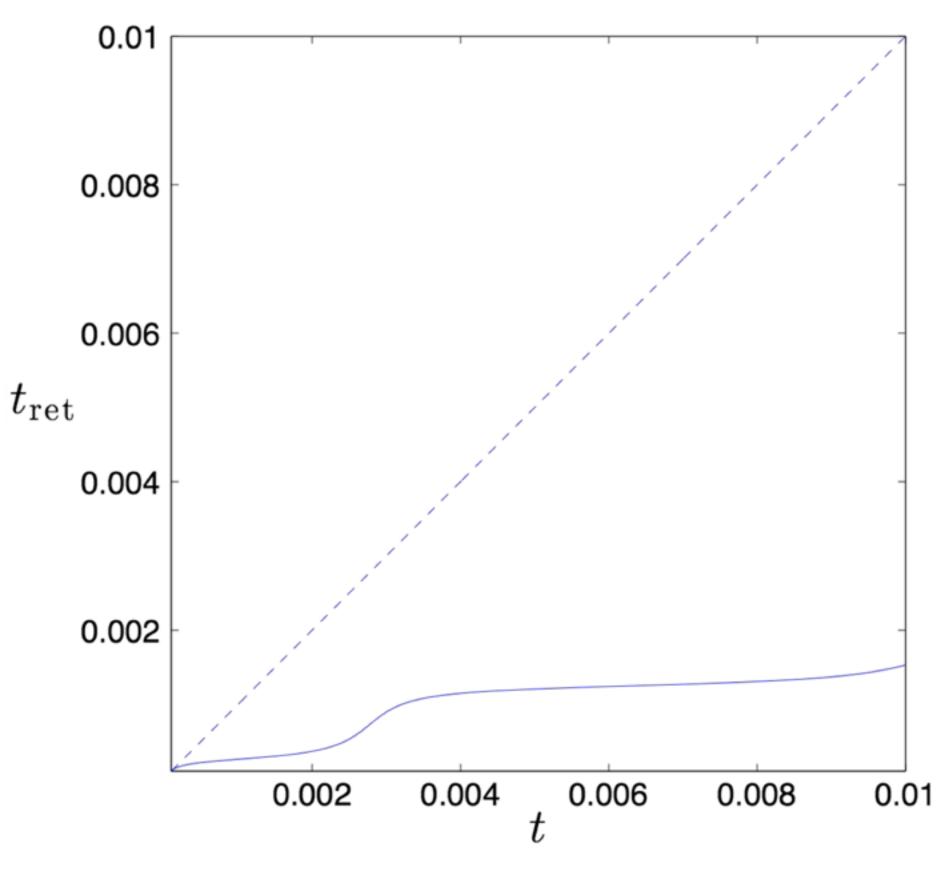






Out-of-equilibrium time evolution

- Usual behaviour = evolves towards equilibrium (Minkowski or slowly expanding Universe)
- expansion: there is a retarded time... 0



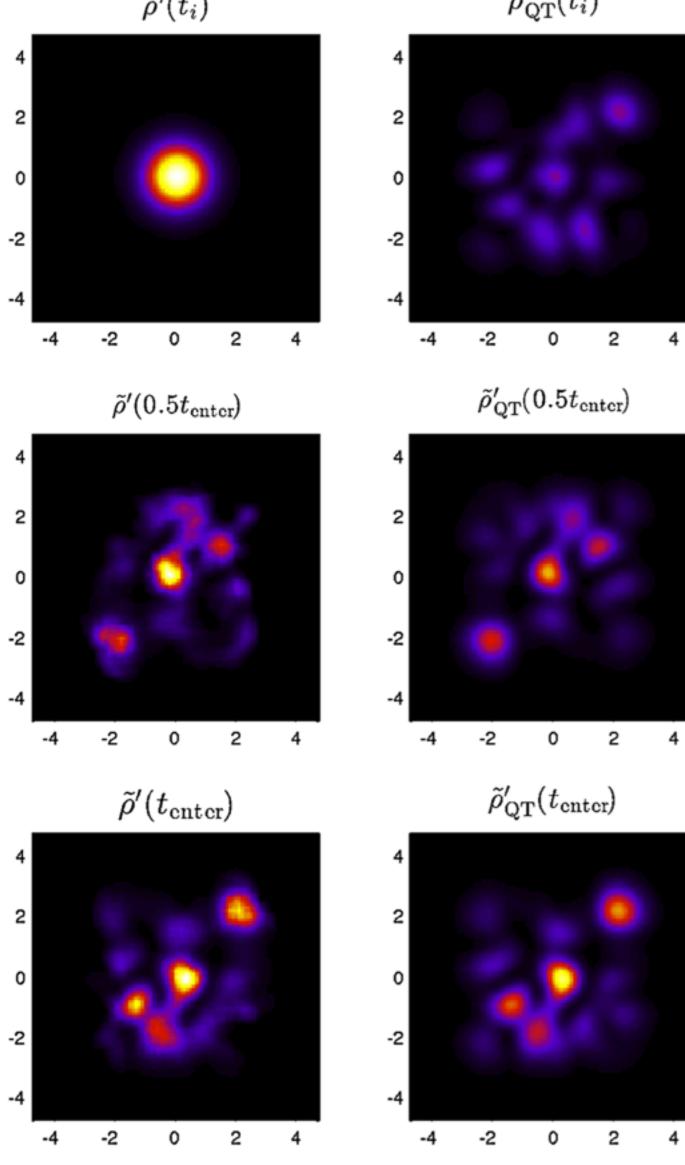
Cargèse / 22 september 2014

 $\tilde{
ho}'(t_i)$

 $ilde{
ho}_{ ext{QT}}'(t_i)$

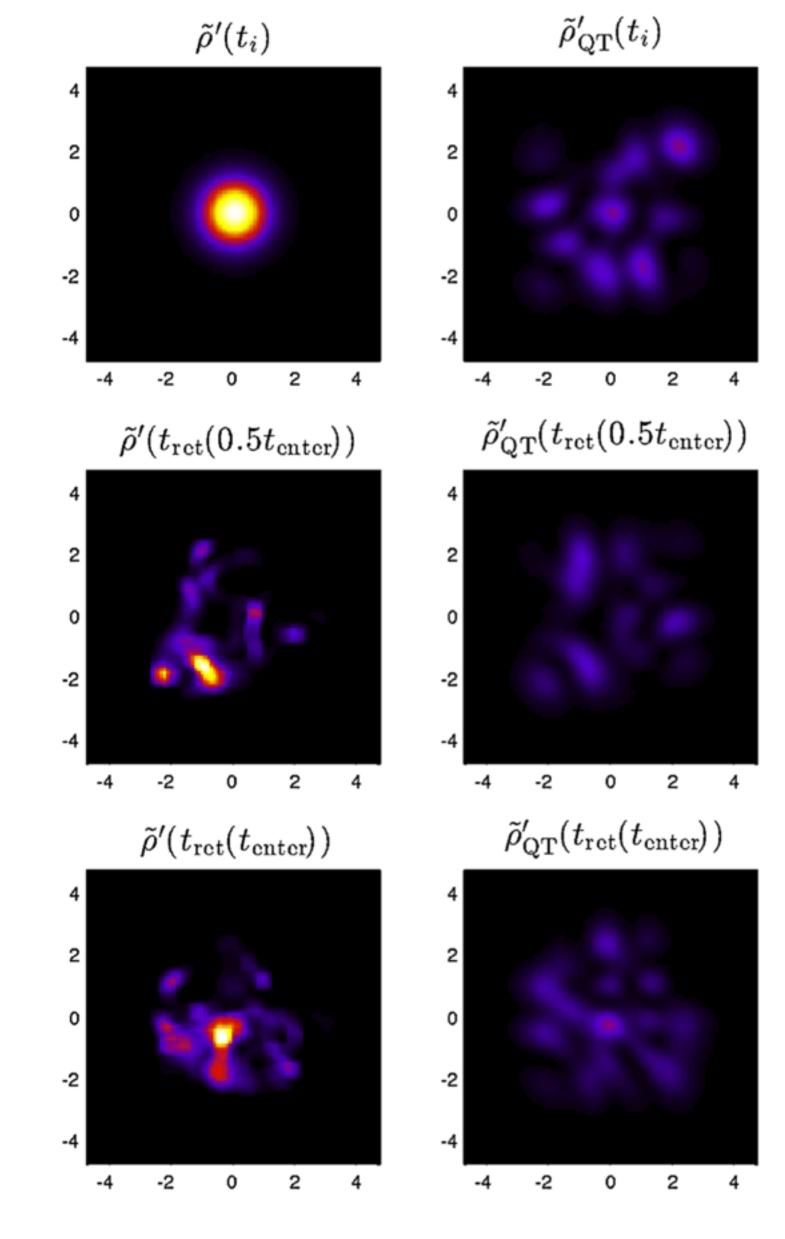
4

4



without expansion

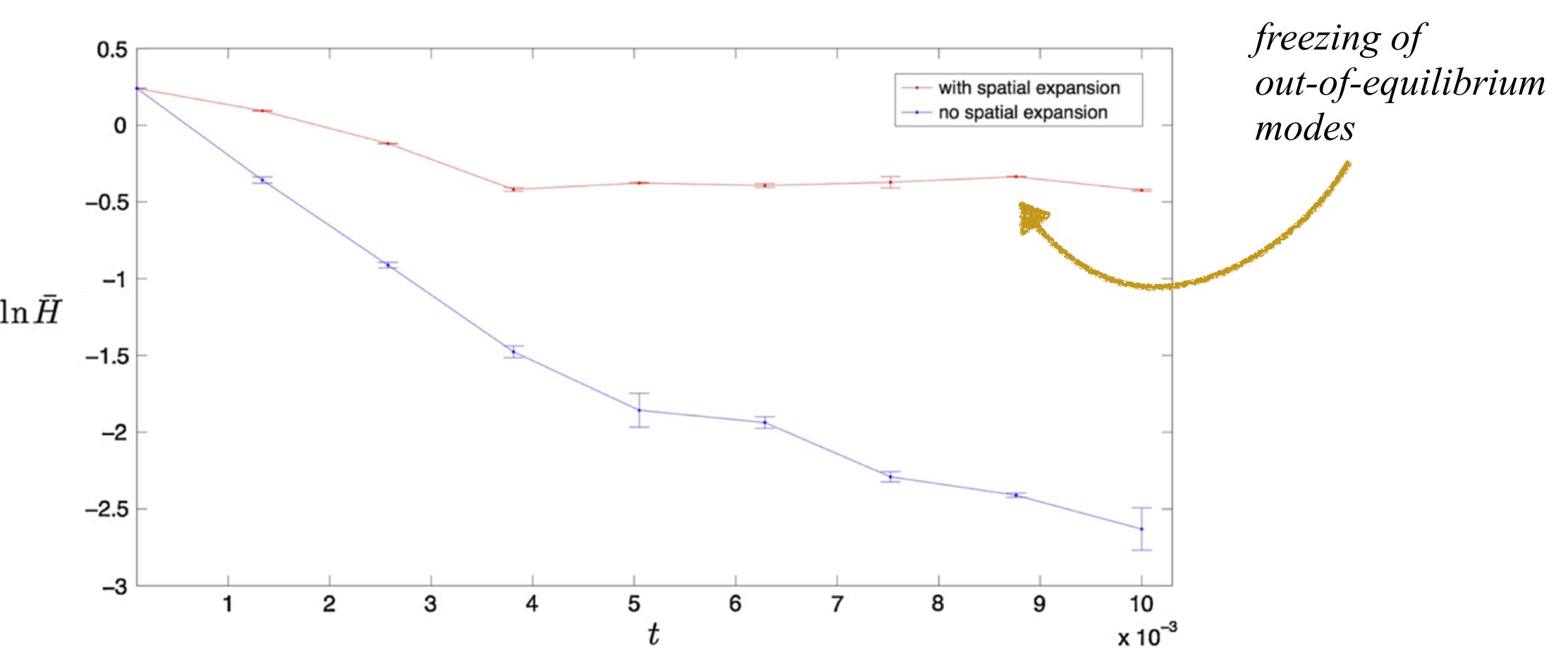
Cargèse / 22 september 2014 S. Colin & A. Valentini, *Phys. Rev.* D88 103515 (2013)



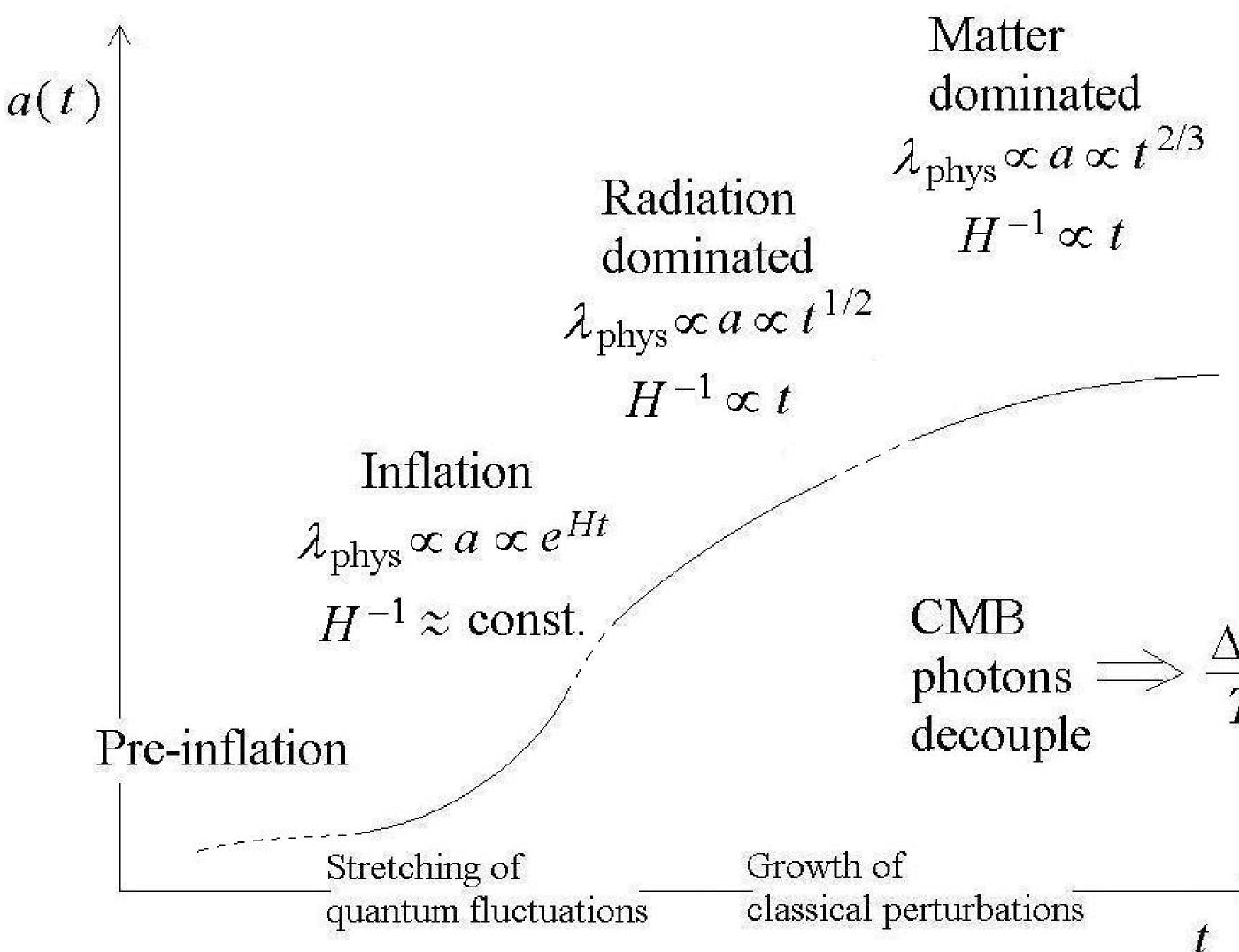
with expansion

$$H \equiv \int \mathrm{d}q \,\rho \ln\left(\frac{\rho}{|\Psi|^2}\right)$$

measures "out-of-equilibrium-ness"

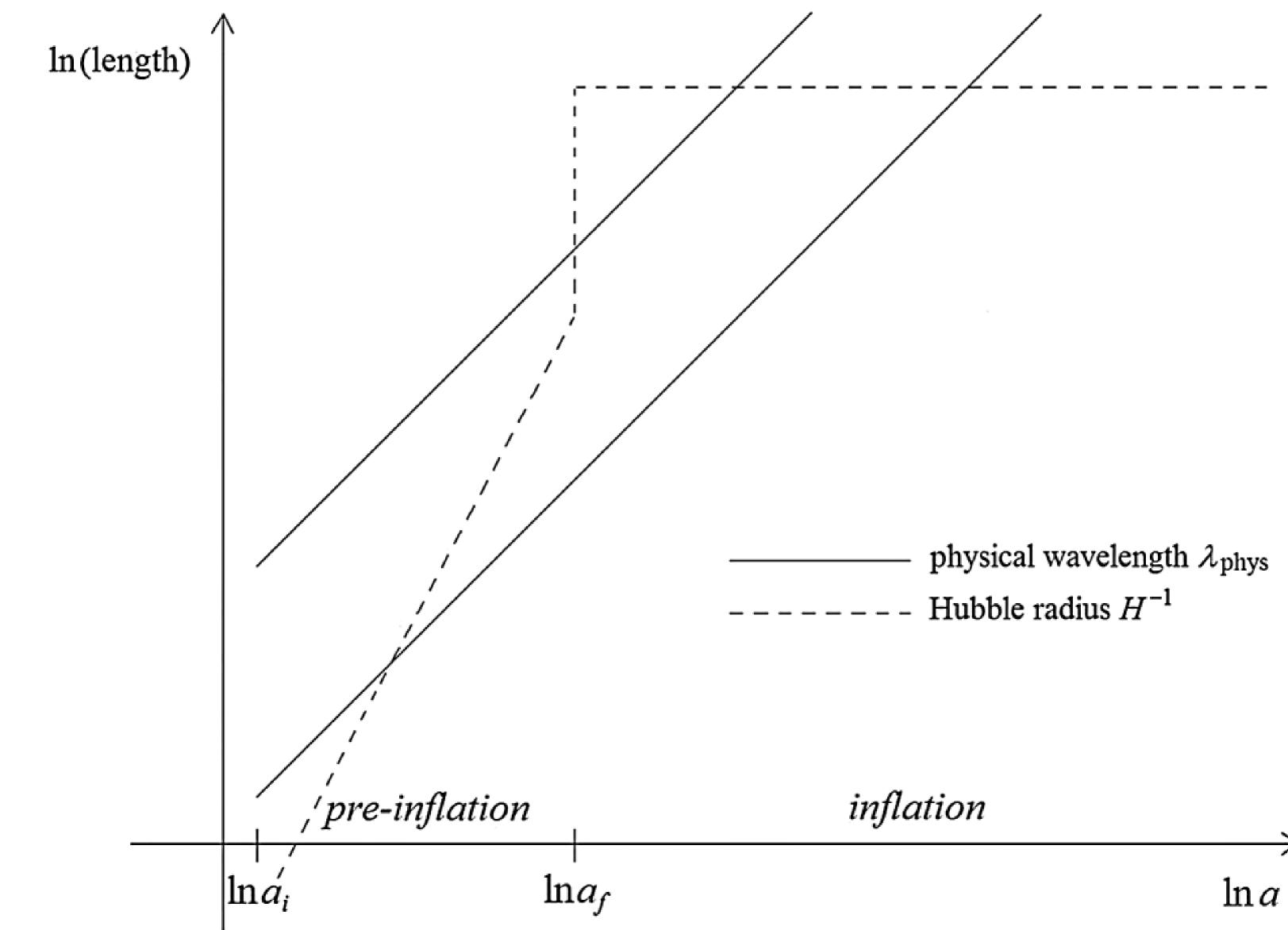


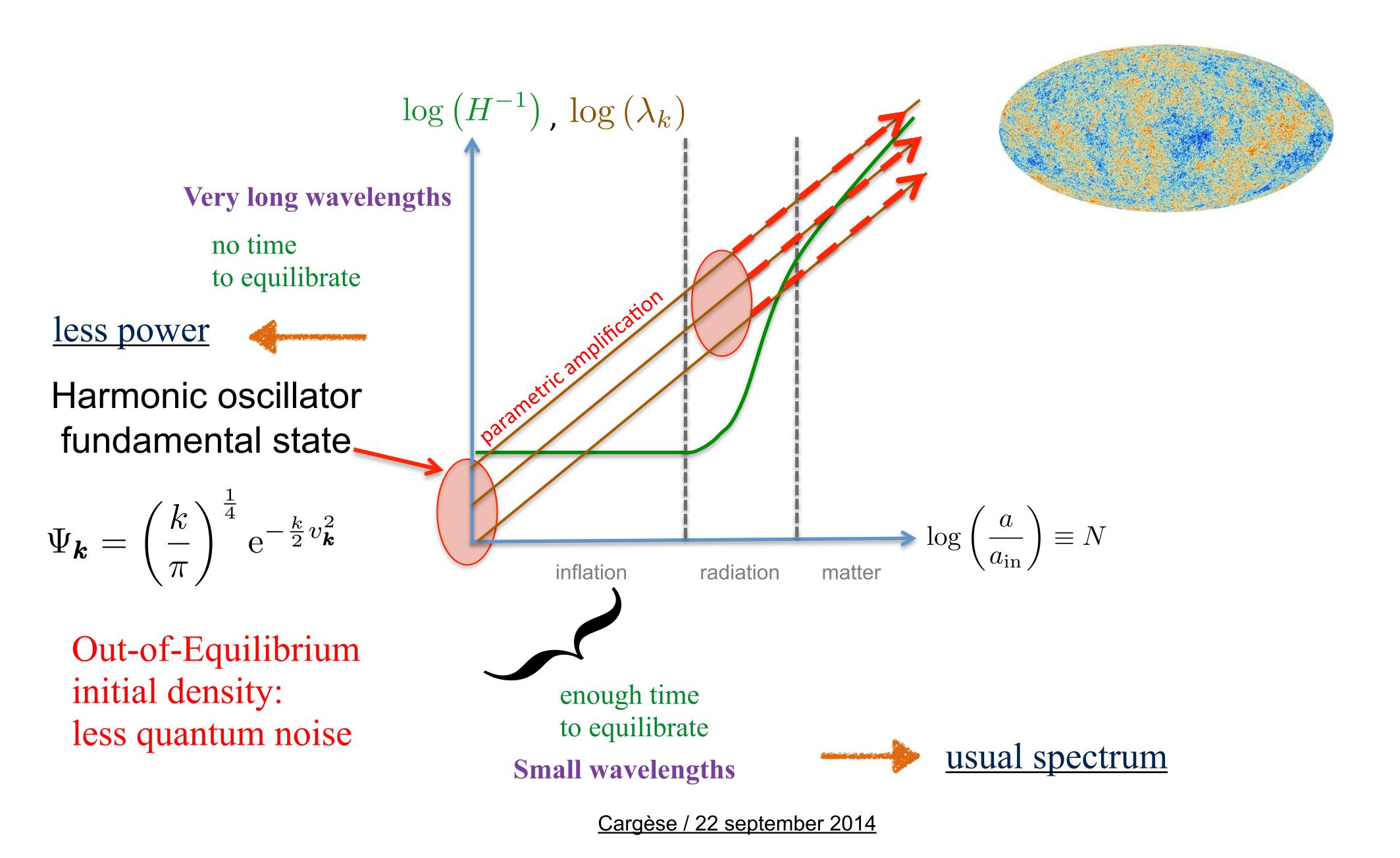
A simplified model



Cargèse / 22 september 2014

 $\frac{\Delta T}{T}$





Initial out-of-equilibrium conditions

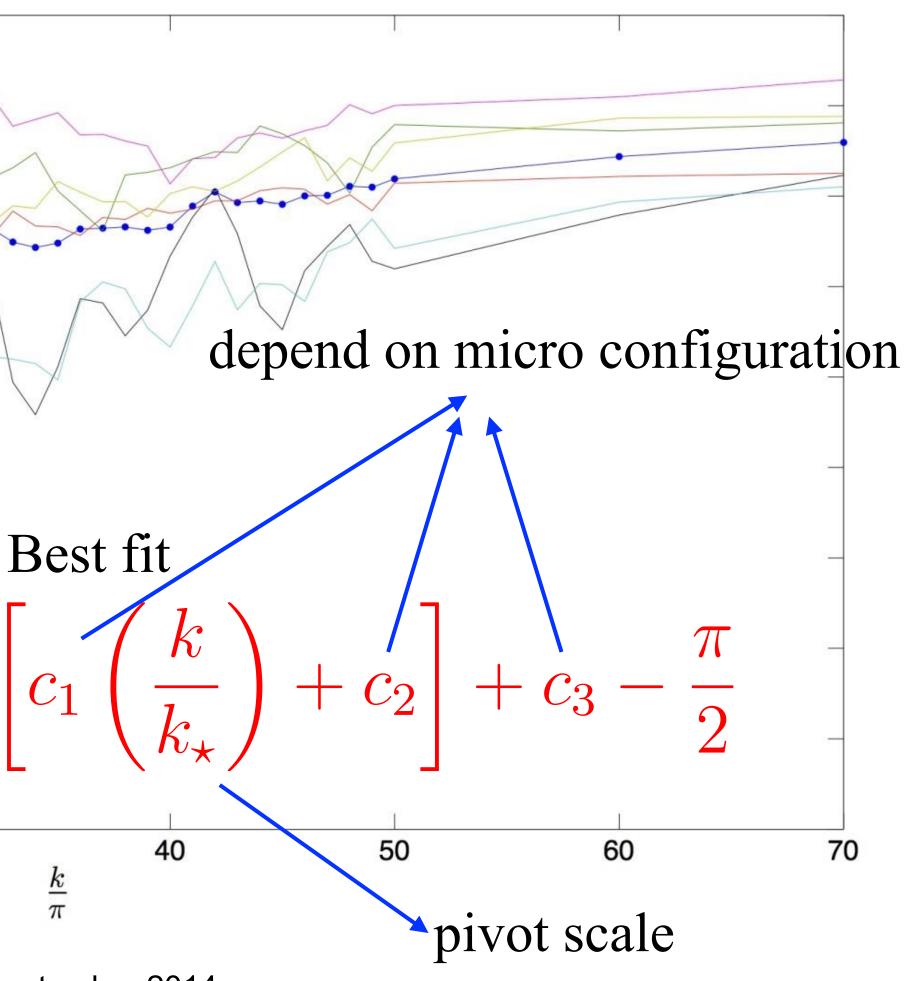
S. Colin & A. Valentini, arXiv:1407.8262

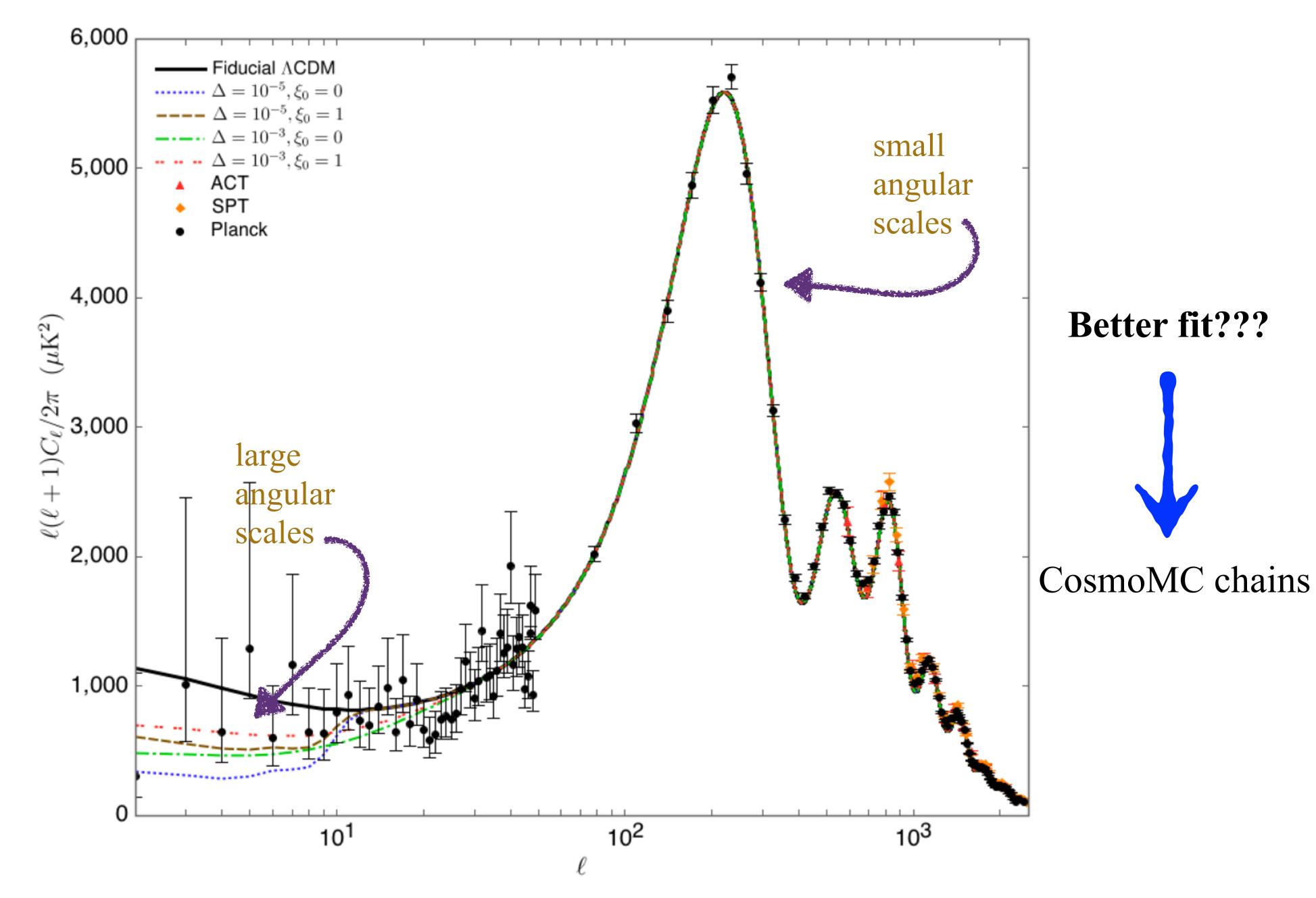
0.9 0.8 0.7 $\xi^{0.6}$ 0.5 0.4 0.3 $\xi(k) = \tan^{-1}$ c_1 0.2 0.1[∟]0 10 20 30 $\frac{k}{\pi}$

Cargèse / 22 september 2014

 $\mathcal{P}(k) = \mathcal{P}(k)_{\mathrm{QE}} \xi(k)$

width deficit

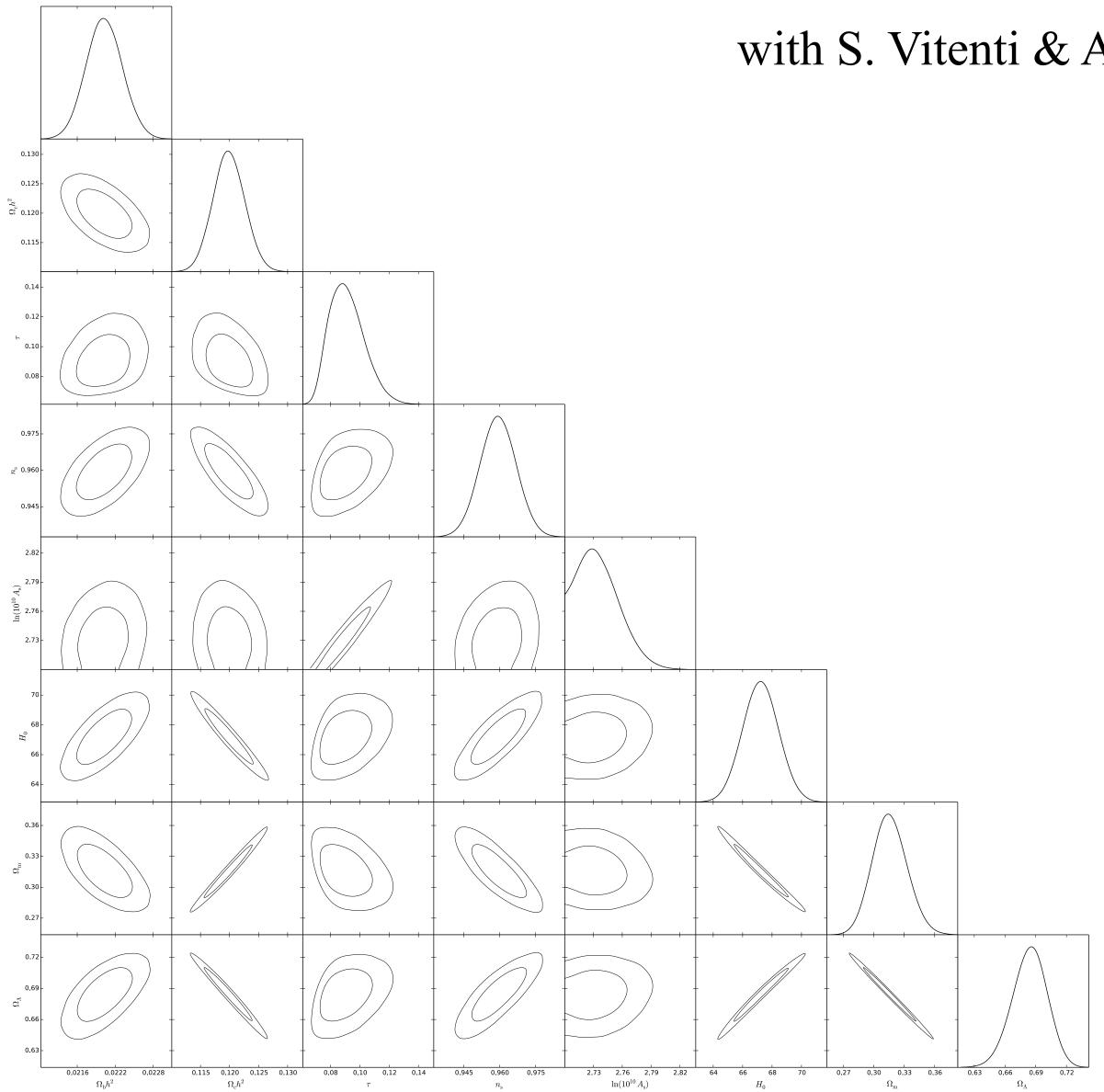




Results...

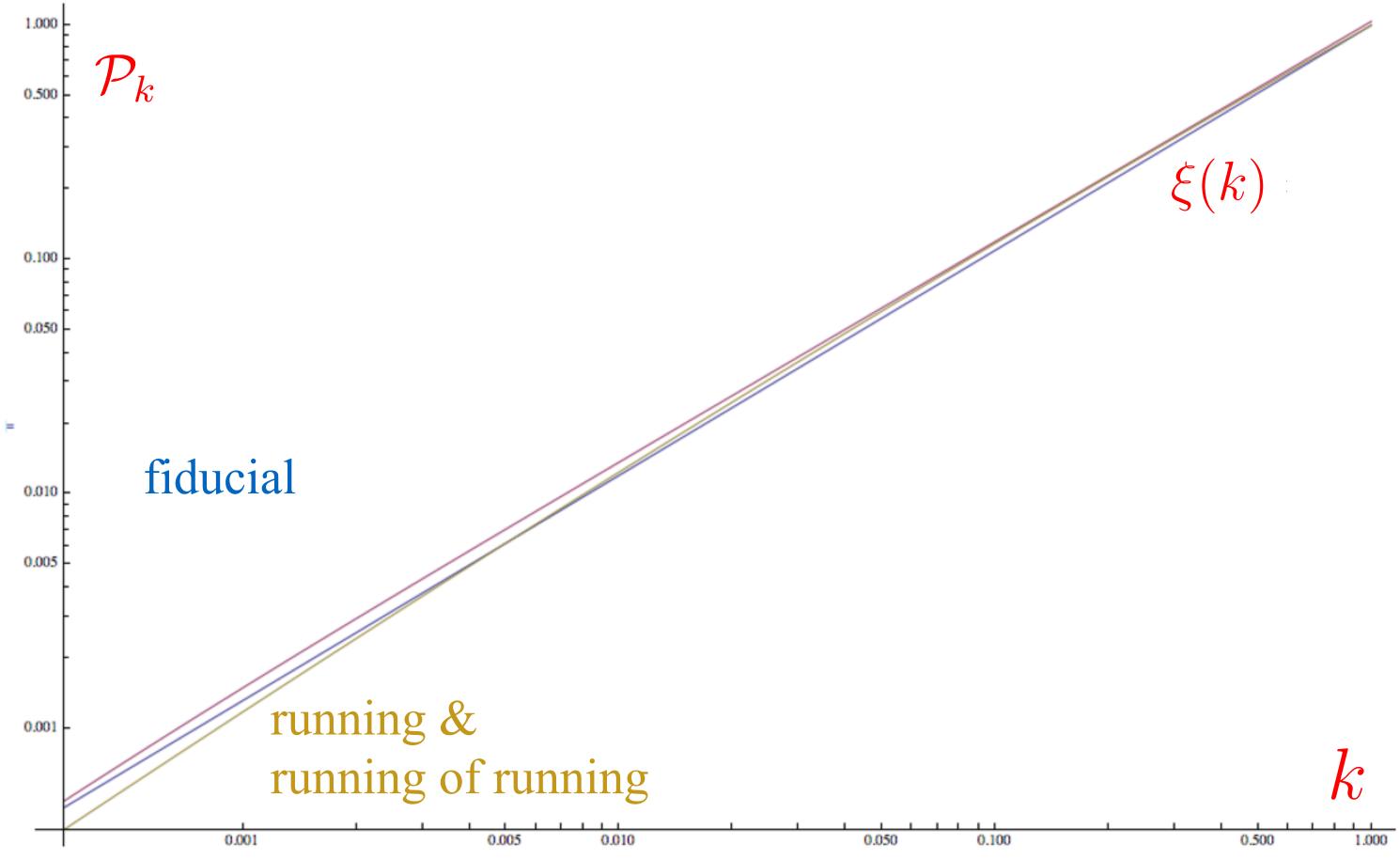
work in progress!

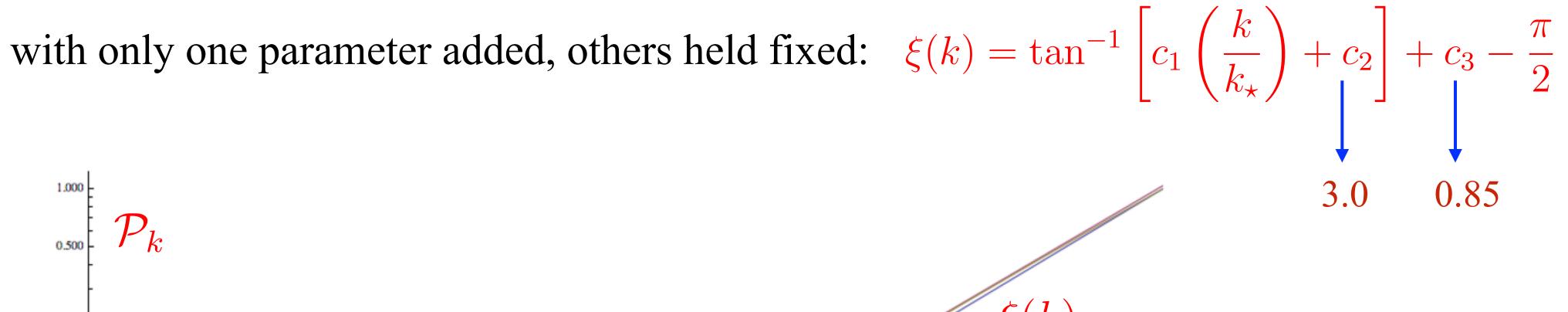
Usual Planck best-fit



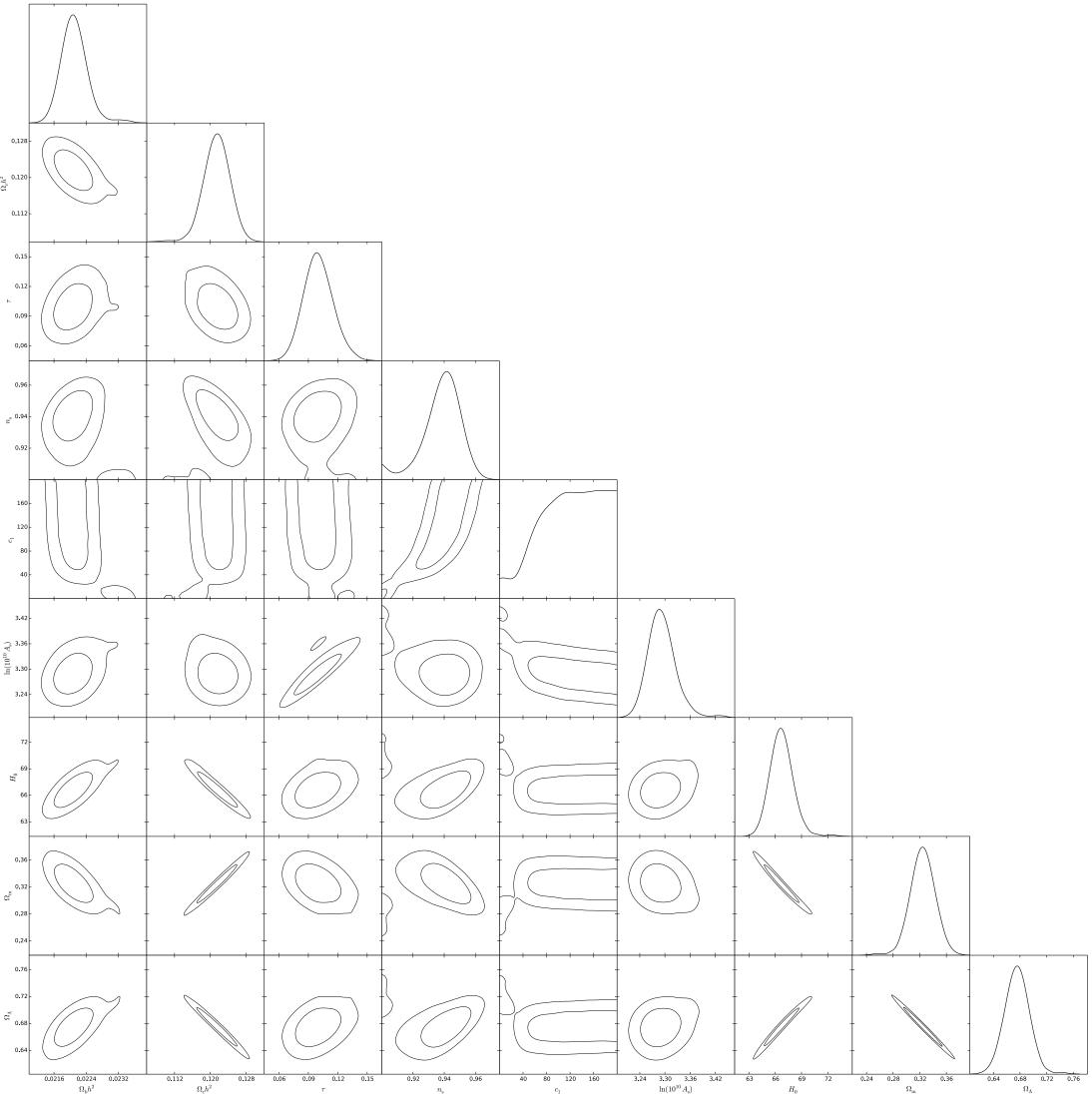
Cargèse / 22 september 2014

with S. Vitenti & A. Valentini



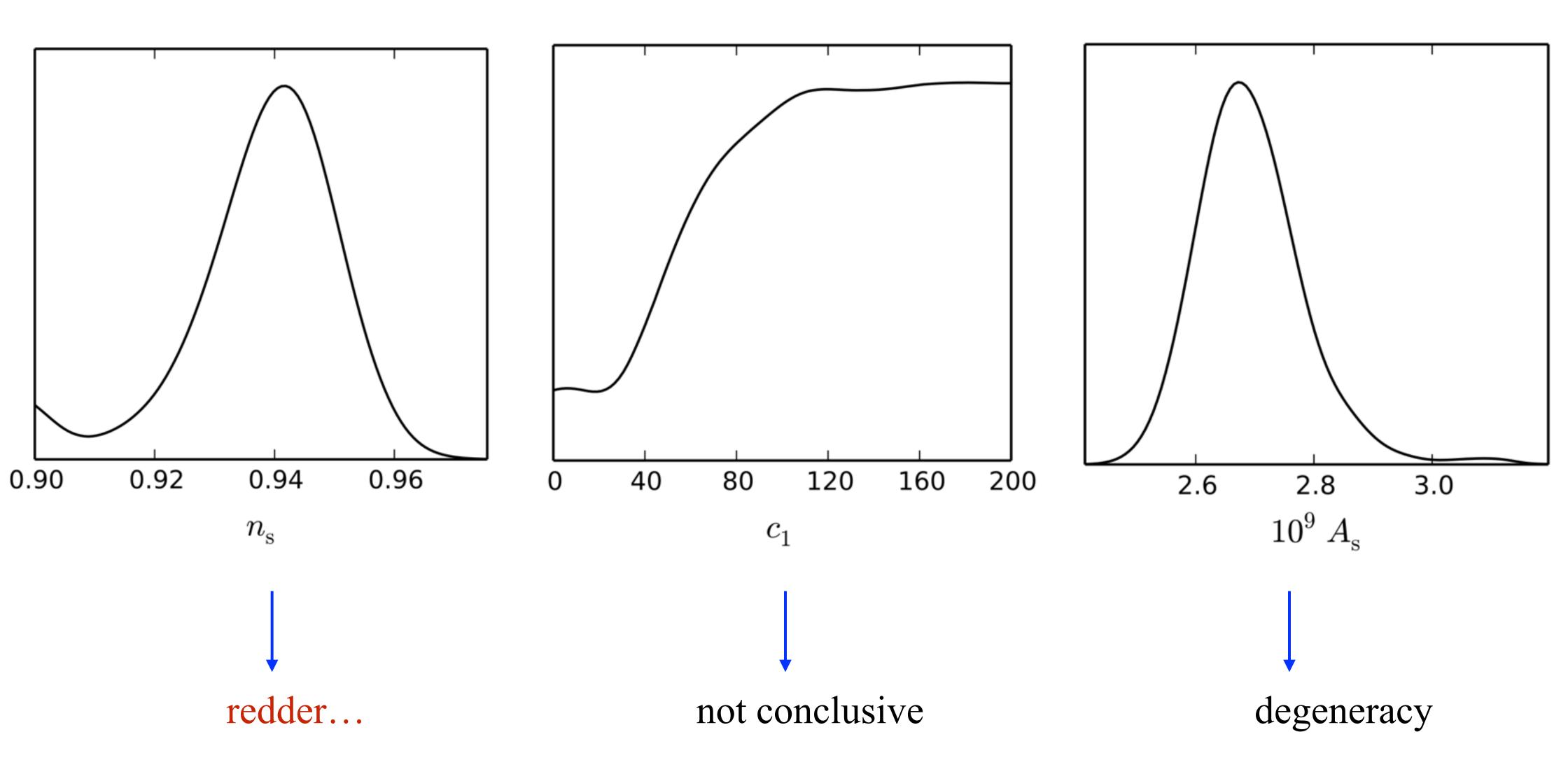


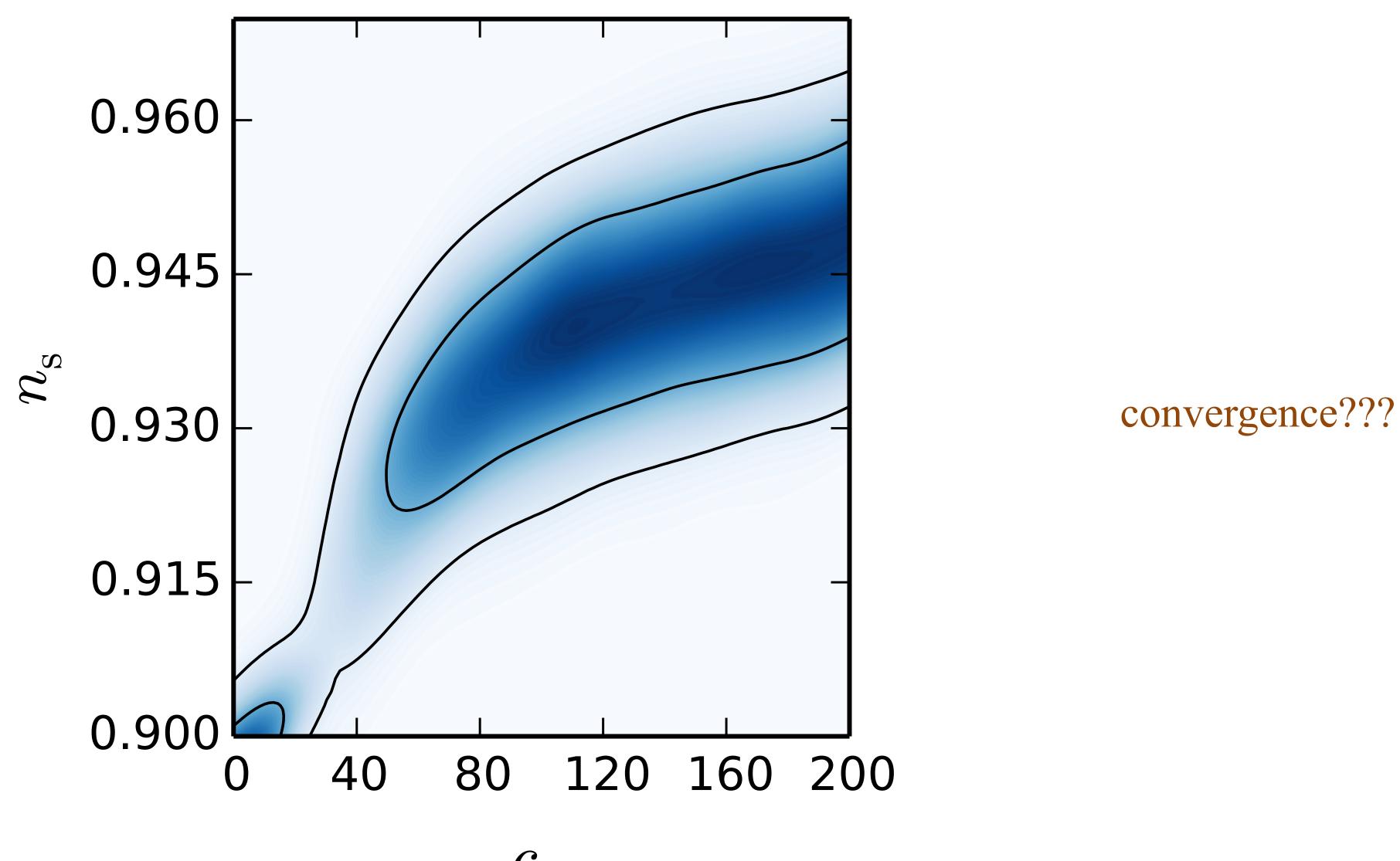
with only one parameter added, others held fixed:



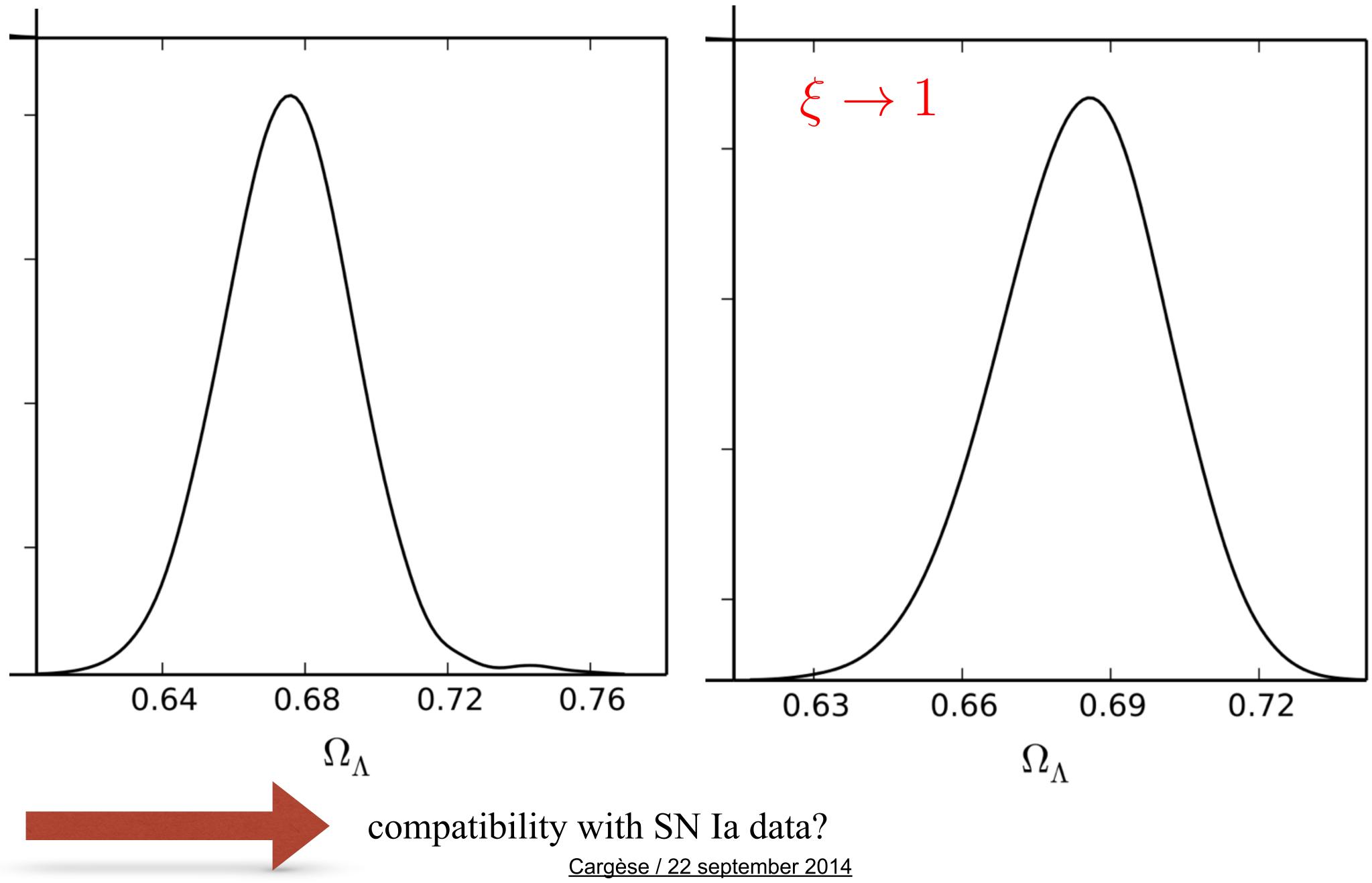
$$\xi(k) = \tan^{-1} \left[c_1 \left(\frac{k}{k_{\star}} \right) + c_2 \right] + c_3 - \frac{\pi}{2}$$

3.0 0.85

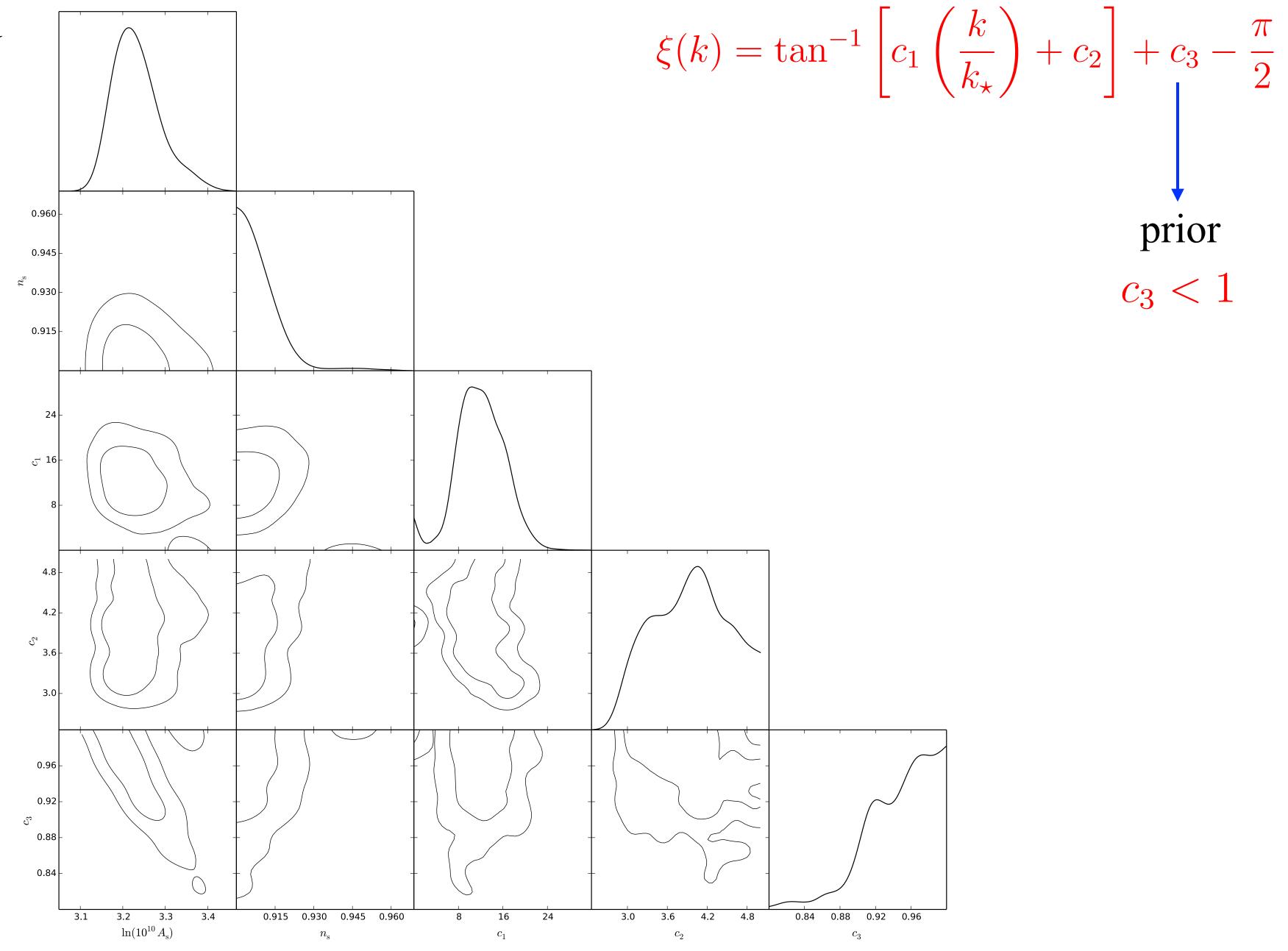


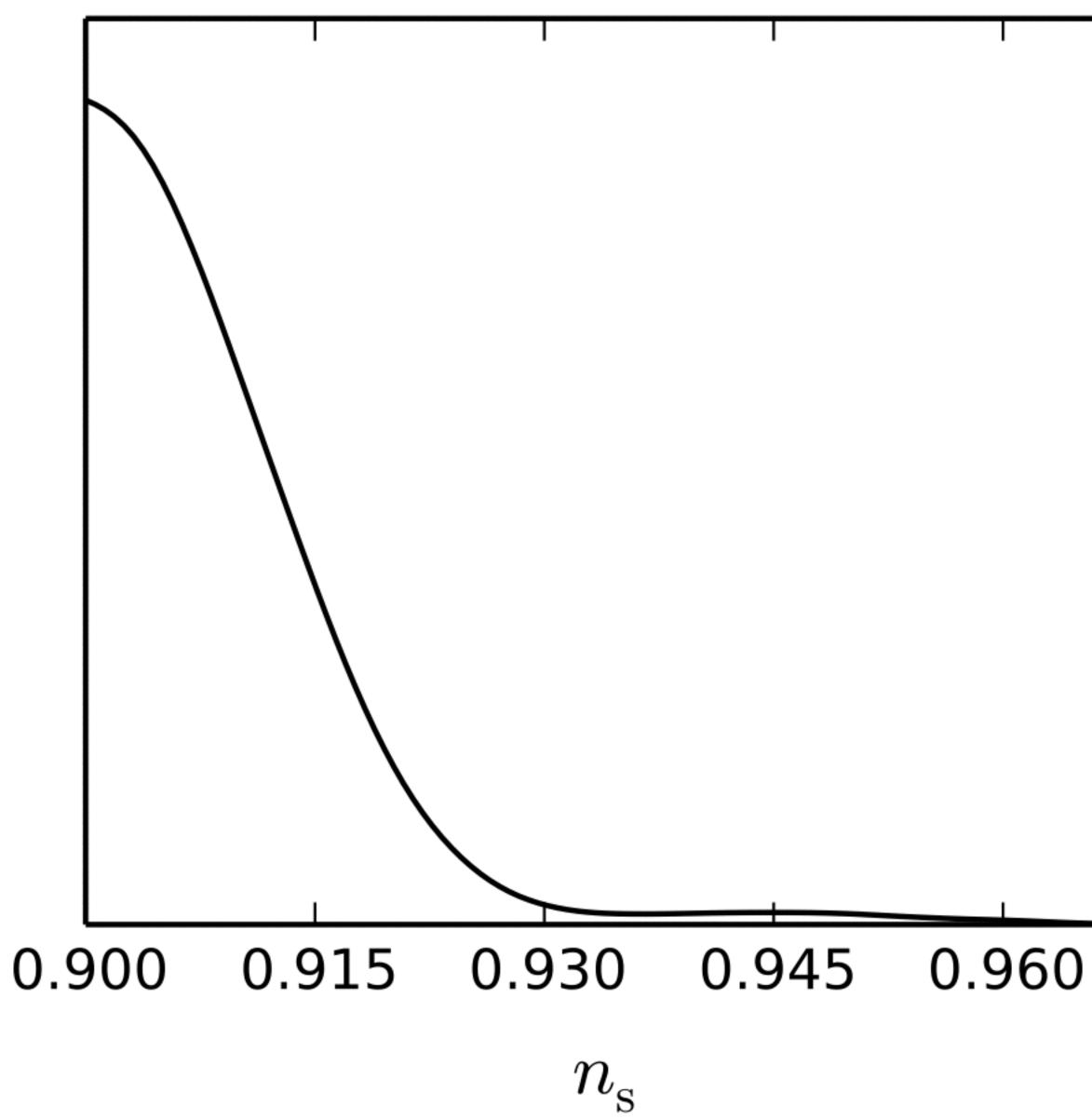


 c_1



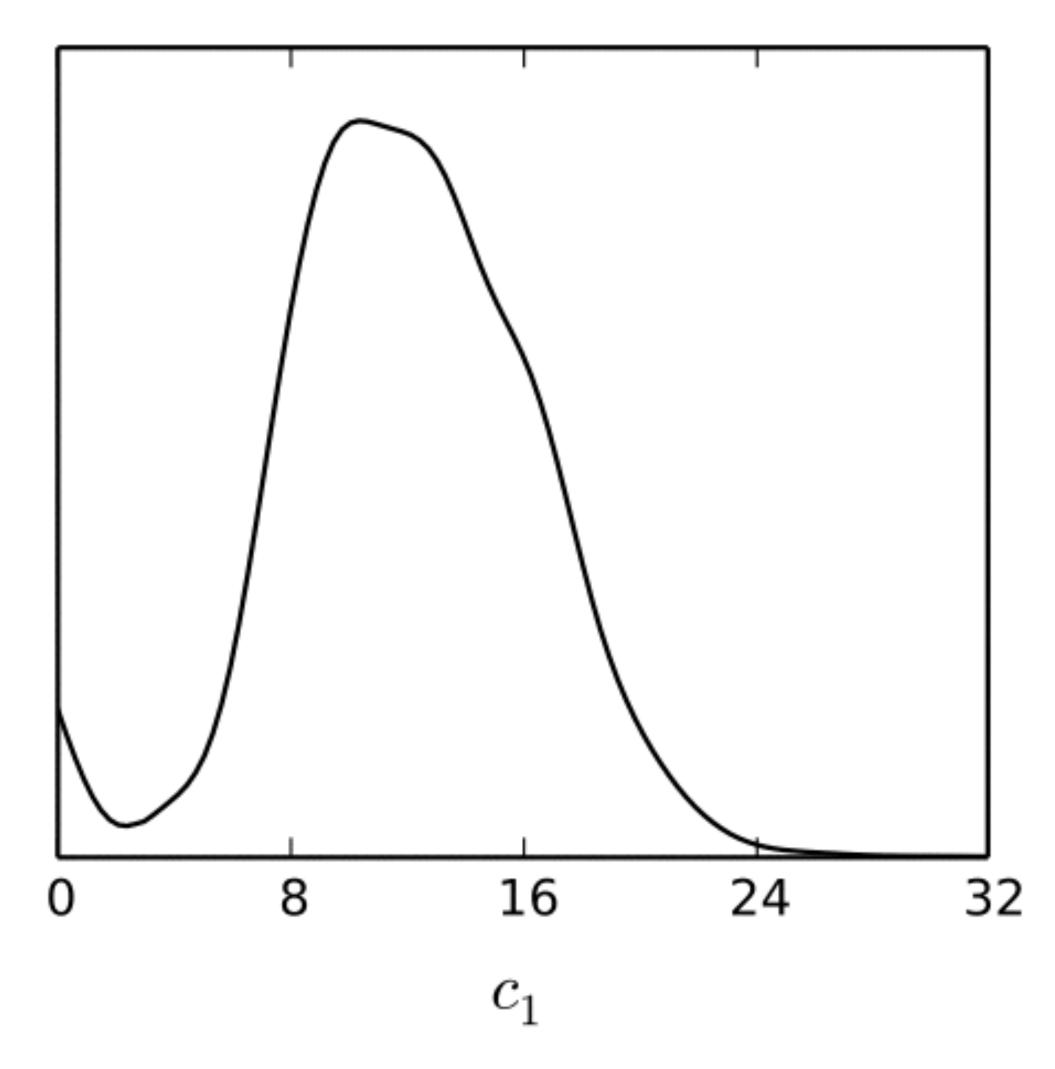
Constrained model





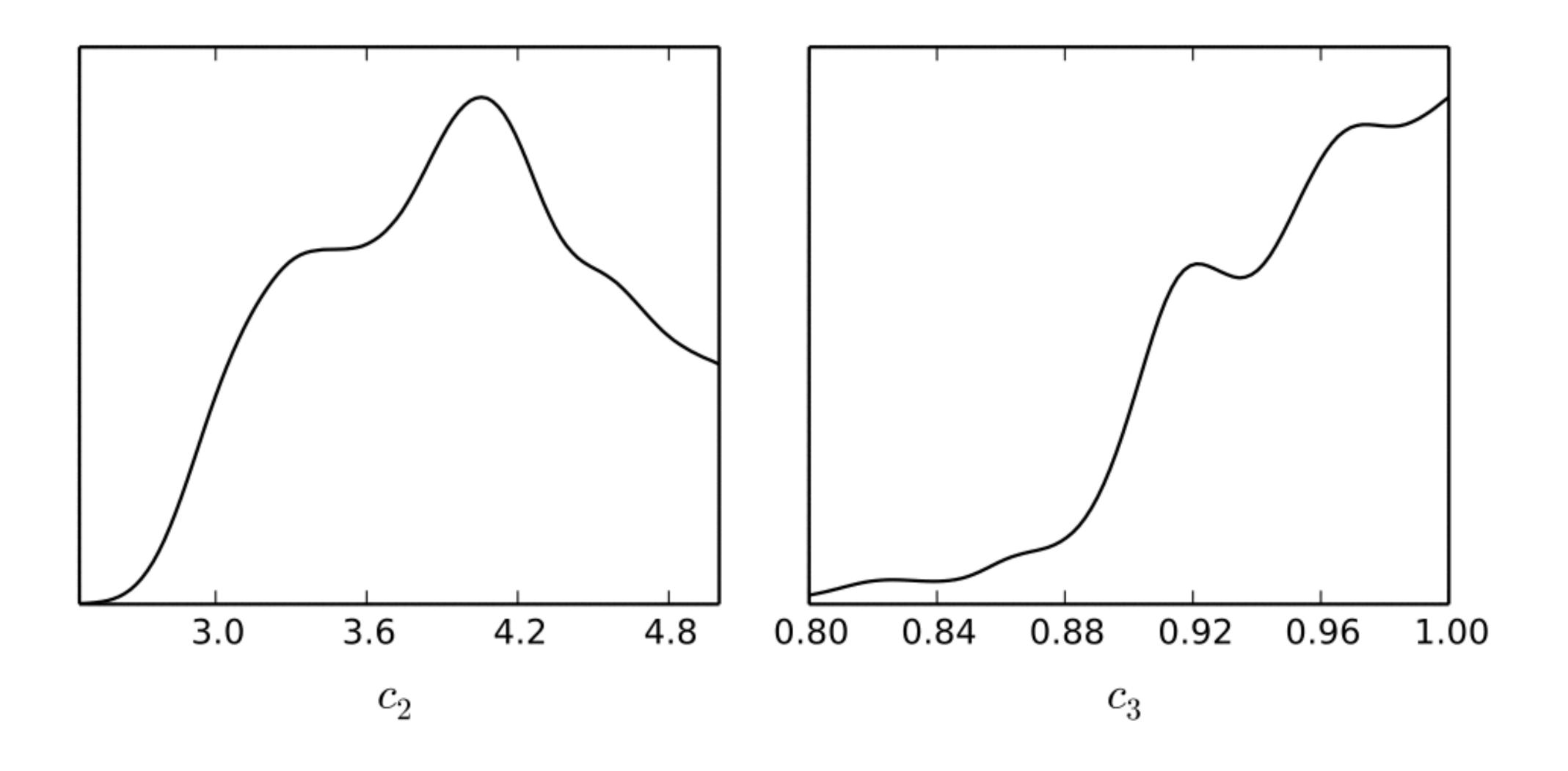
Cargèse / 22 september 2014

demands a very red primordial spectrum



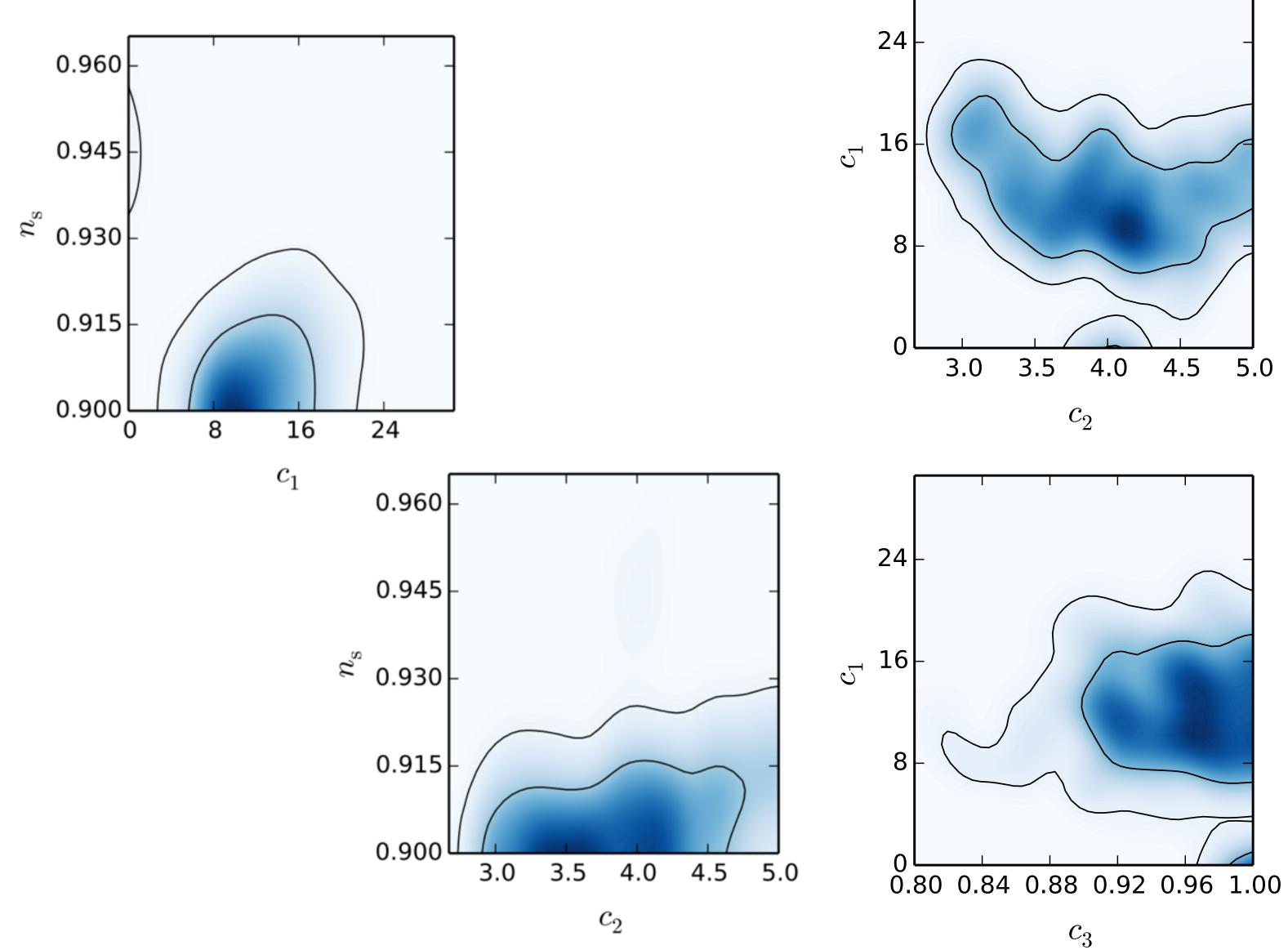
$$\xi(k) = \tan^{-1} \left[c_1 \left(\frac{k}{k_{\star}} \right) + c_2 \right] + c_3 - \frac{\pi}{2}$$

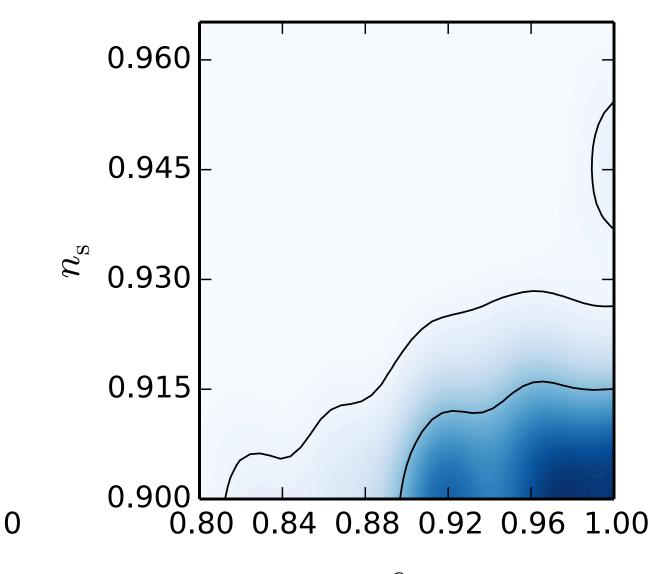
much smaller quantum scale



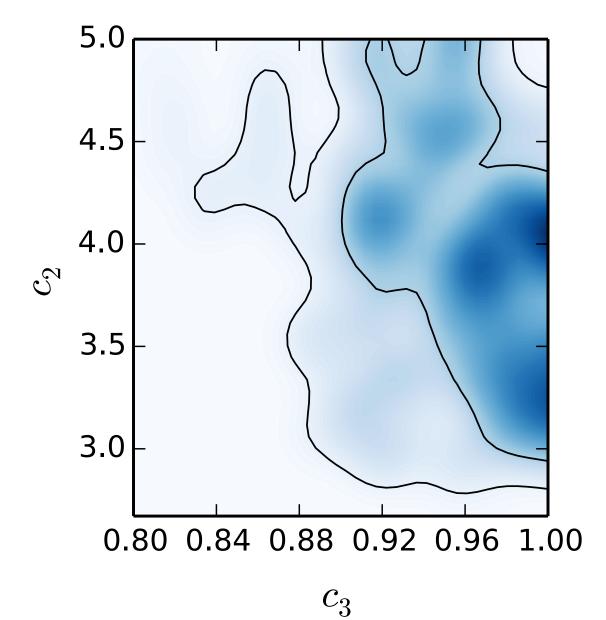
not very conclusive, but seems to favor $c_3 \ge 1$

summary for the constrained model:



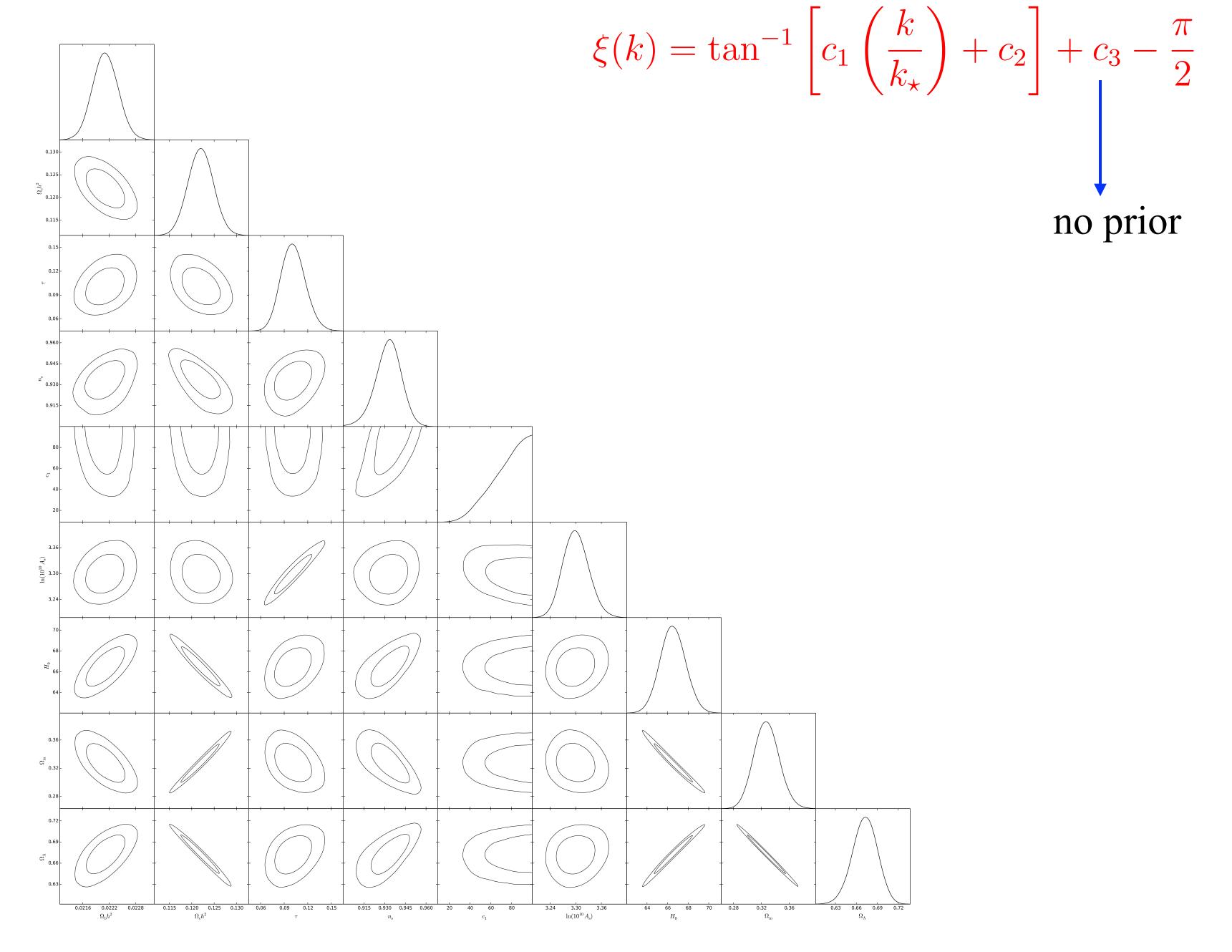


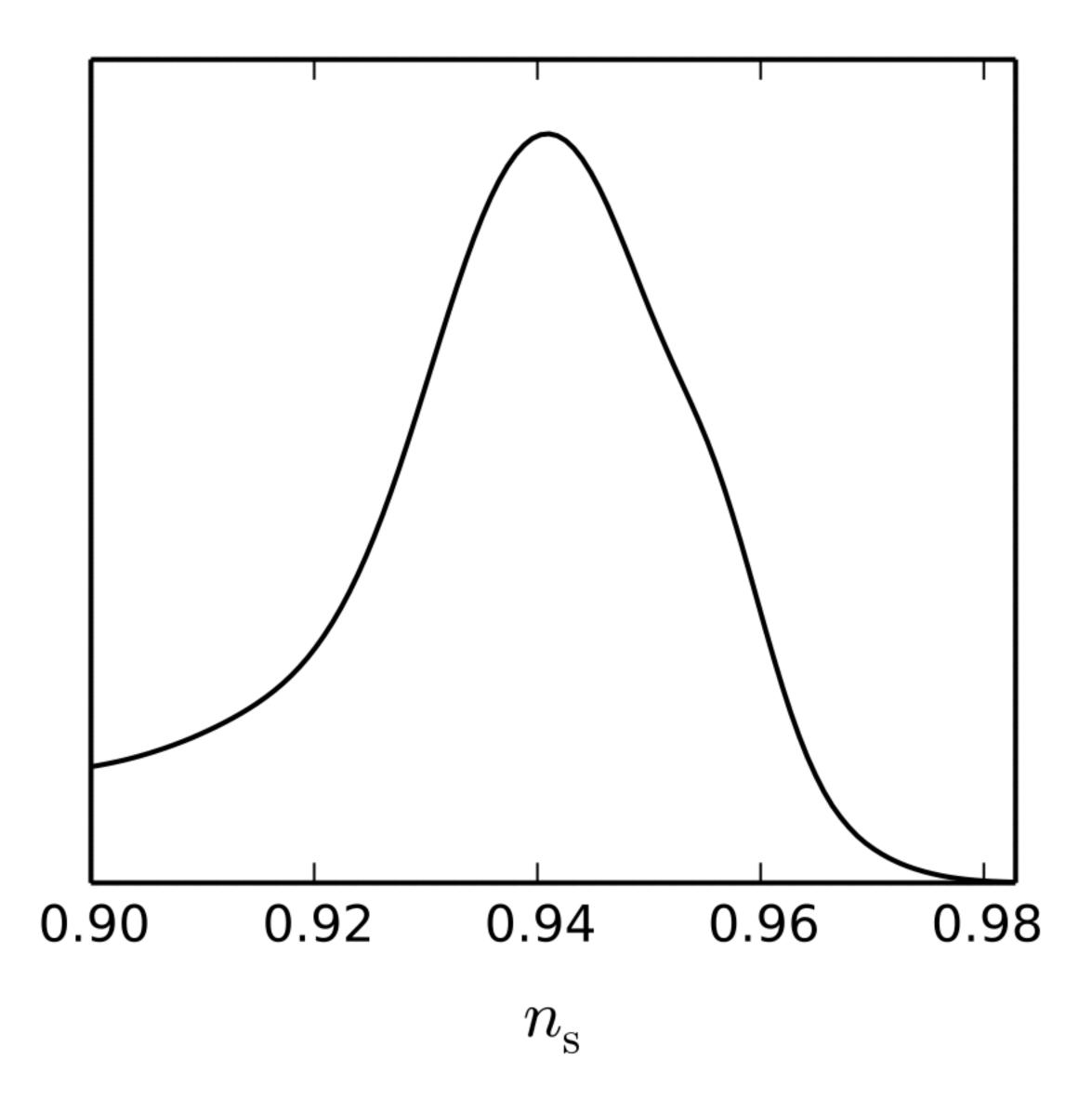
 $\boldsymbol{\Delta}$



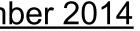
 c_3

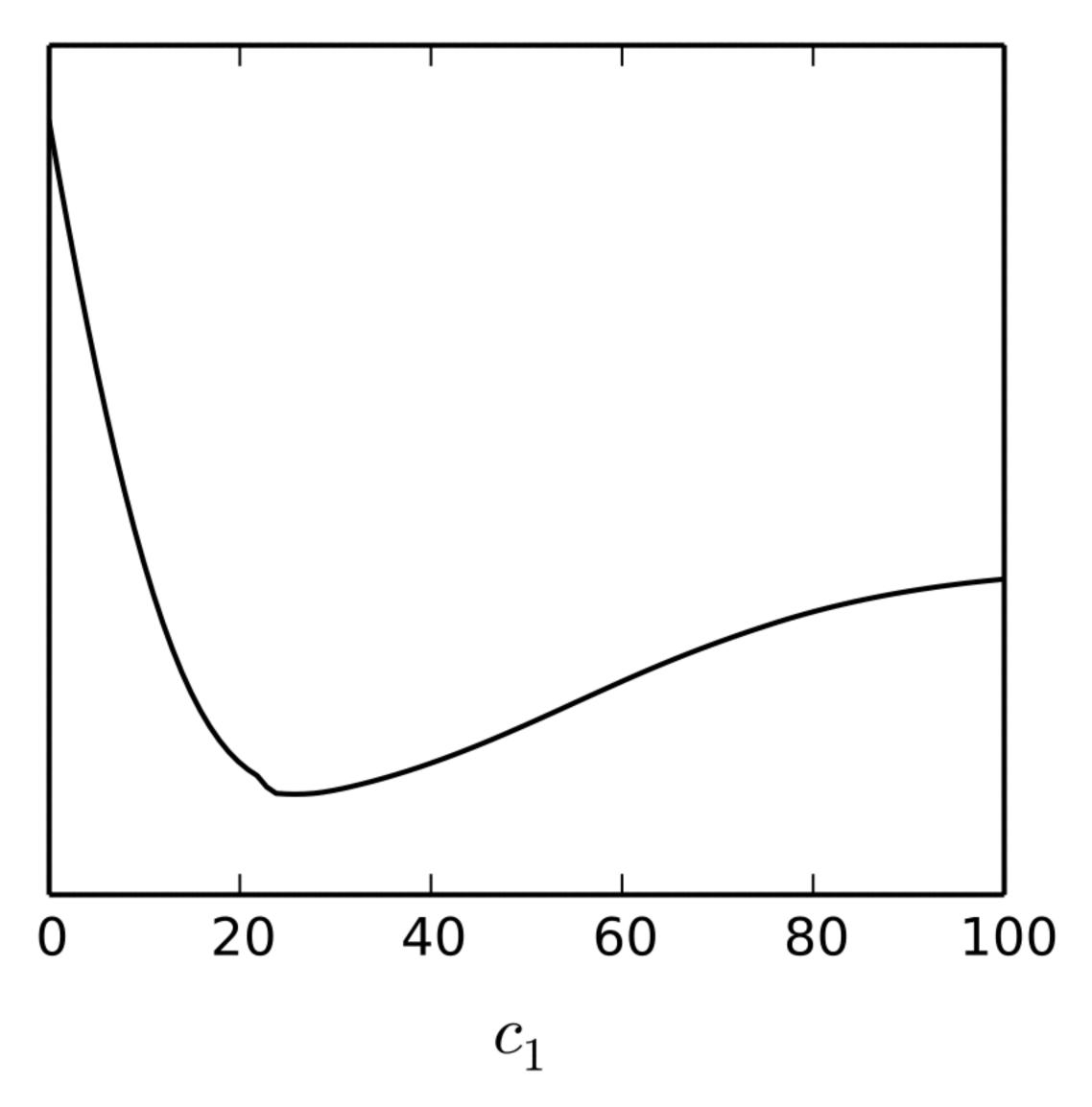
Full model





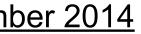
still redder primordial spectrum, but converging!

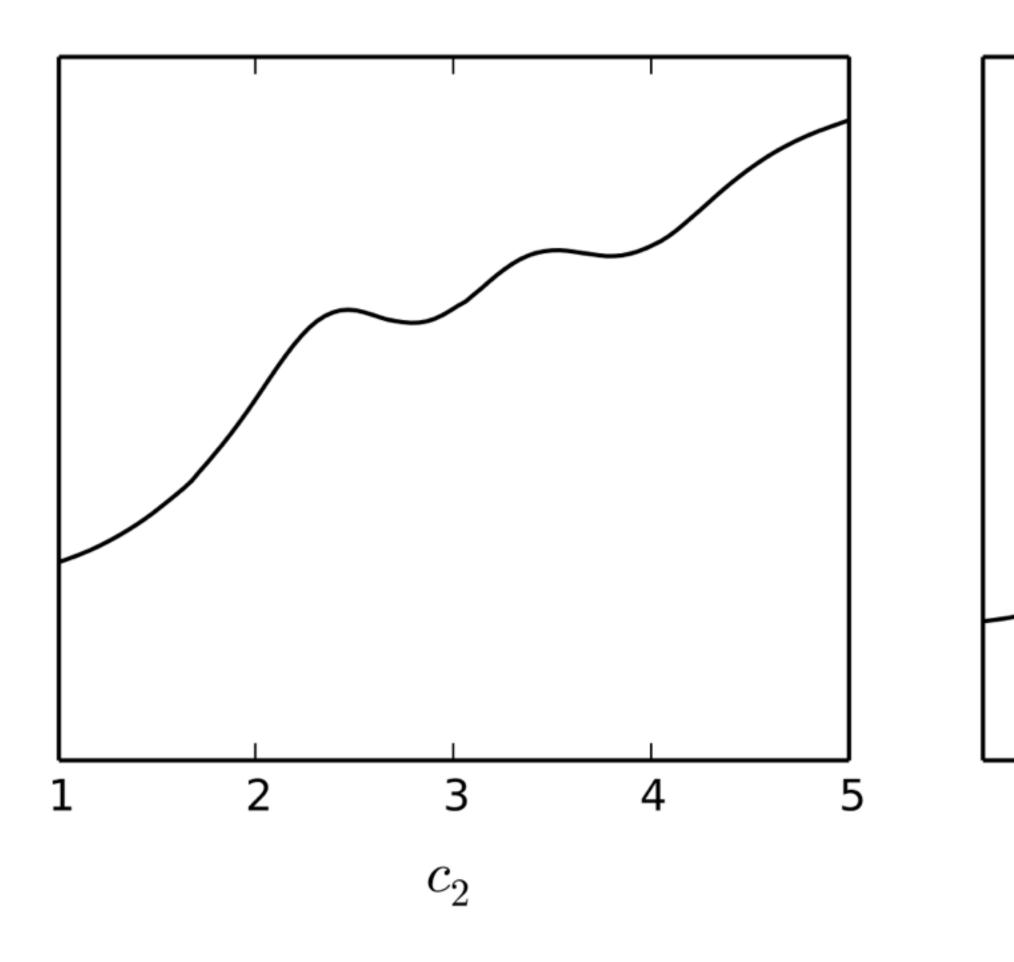




$$\xi(k) = \tan^{-1} \left[c_1 \left(\frac{k}{k_{\star}} \right) + c_2 \right] + c_3 - \frac{\pi}{2}$$

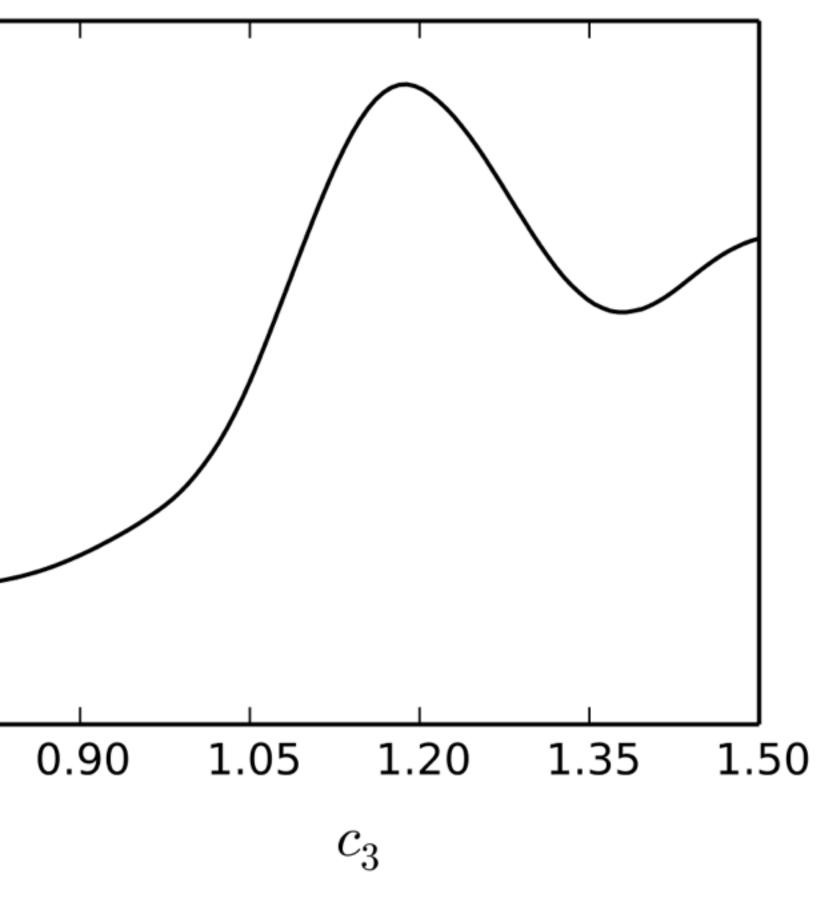
2 possible options: very large & small quantum scale





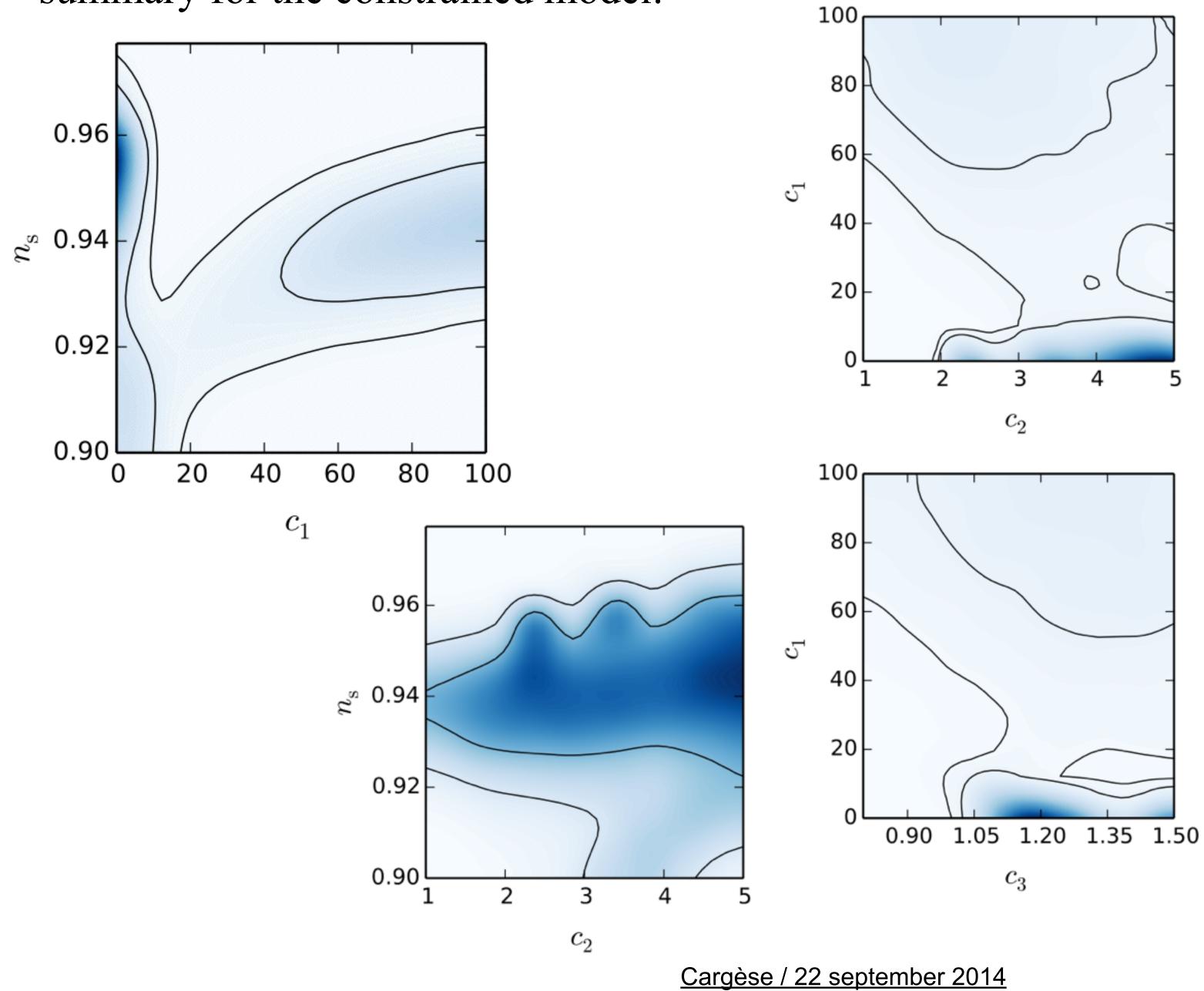
still not very conclusive, but definitely favors

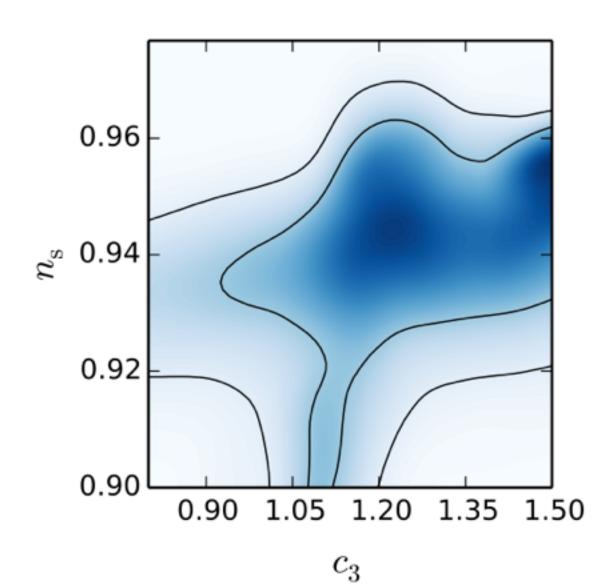
Cargèse / 22 september 2014

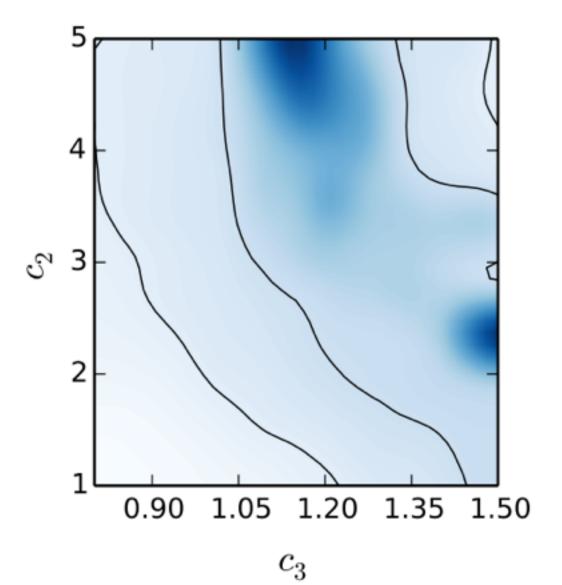


favors $c_3 \ge 1$

summary for the constrained model:







Conclusion

Cosmology can be used to test different formulations/extensions of quantum mechanics

more work still needs be done (other modifications of QM can be tested...)