Some aspects of bimetric gravity

Mikael von Strauss

Institut d'Astrophysique de Paris

September 24, 2014

Based on:

- MvS, J. Enander, A. Schmidt-May, E. Mörtsell & S. F. Hassan arXiv:1111.1655
- S. F. Hassan, A. Schmidt-May & MvS arXiv:1203.5283, arXiv:1204.5202, arXiv:1208.1515, arXiv:1208.1797, arXiv:1212.4525, arXiv:1303.6940 arXiv:1407.2772

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

Motivation (Original)

Cosmology and the Dark sector(s)

- Cosmological constant problem. Can a small graviton mass naturally explain the observed smallness of Λ?
- The Dark sectors. Can a modification of Einstein gravity "remedy" the inclusion of unknown energy sources?

Understand spin-2 interactions in field theory

Understand spin-2 interactions in field theory

Good understanding of lower spin theories

- Spin-0: Higgs(?!), Inflaton(??), $\pi^{0,\pm}$ mesons,...
- Spin-1/2: Leptons, quarks, baryons
- Spin-1: Photon, gluons, Z, W[±], vector mesons,...

Understand spin-2 interactions in field theory

Good understanding of lower spin theories

• Spin-0: Higgs(?!), Inflaton(??), $\pi^{0,\pm}$ mesons,...

Klein-Gordon:
$$\left(\Box - m^2\right) \phi = 0$$

Spin-1/2: Leptons, quarks, baryons

Dirac:
$$(i\partial - m) \psi = 0$$

Spin-1: Photon, gluons, Z, W[±], vector mesons,...

Maxwell, Proca:
$$\partial^{\nu}F_{\nu\mu} - m^2A_{\mu} = 0$$

Understand spin-2 interactions in field theory

Good understanding of lower spin theories

• Spin-0: Higgs(?!), Inflaton(??), $\pi^{0,\pm}$ mesons,...

Klein-Gordon:
$$\left(\Box - m^2\right) \phi = 0$$

Spin-1/2: Leptons, quarks, baryons

Dirac:
$$(i\partial - m) \psi = 0$$

Spin-1: Photon, gluons, Z, W[±], vector mesons,...

Maxwell, Proca:
$$\partial^{\nu}F_{\nu\mu} - m^2A_{\mu} = 0$$

What about spin-2?

Spin-2: Graviton, mesons,...

Understand spin-2 interactions in field theory

Good understanding of lower spin theories

• Spin-0: Higgs(?!), Inflaton(??), $\pi^{0,\pm}$ mesons,...

Klein-Gordon:
$$\left(\Box - m^2\right) \phi = 0$$

Spin-1/2: Leptons, quarks, baryons

Dirac:
$$(i\partial - m) \psi = 0$$

Spin-1: Photon, gluons, Z, W[±], vector mesons,...

Maxwell, Proca:
$$\partial^{\nu}F_{\nu\mu} - m^2A_{\mu} = 0$$

What about spin-2?

Spin-2: Graviton, mesons,...

Einstein-Hilbert (massless):
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 0$$

But no consistent theory of massive/interacting spin-2??

Understand spin-2 interactions in field theory

Good understanding of lower spin theories

• Spin-0: Higgs(?!), Inflaton(??), $\pi^{0,\pm}$ mesons,...

Klein-Gordon:
$$\left(\Box - m^2\right) \phi = 0$$

Spin-1/2: Leptons, quarks, baryons

Dirac:
$$(i\partial - m) \psi = 0$$

• Spin-1: Photon, gluons, Z, W^{\pm} , vector mesons,...

Maxwell, Proca:
$$\partial^{\nu}F_{\nu\mu} - m^2A_{\mu} = 0$$

What about spin-2?

Spin-2: Graviton, mesons,...

Einstein-Hilbert (massless):
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 0$$

But no consistent theory of massive/interacting spin-2 ... until recently!!

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

Fierz-Pauli theory

The FP equation:

Linear massive spin-2 field $h_{\mu
u}$ in background $ar{g}_{\mu
u}$

$$ar{\mathcal{E}}_{\mu
u}^{
ho\sigma}\,h_{
ho\sigma}-rac{2\Lambda}{d-2}\Big(h_{\mu
u}-rac{1}{2}ar{g}_{\mu
u}h_{
ho}^{
ho}\Big)+rac{m_{ ext{FP}}^2}{2}\,ig(h_{\mu
u}-rac{a}{2}ar{g}_{\mu
u}h_{
ho}^{
ho}ig)\,=0$$

Fierz-Pauli theory

The FP equation:

Linear massive spin-2 field $h_{\mu
u}$ in background $ar{g}_{\mu
u}$

$$ar{\mathcal{E}}_{\mu
u}^{
ho\sigma}\,h_{
ho\sigma}-rac{2\Lambda}{d-2}\Big(h_{\mu
u}-rac{1}{2}ar{g}_{\mu
u}h_{
ho}^{
ho}\Big)+rac{m_{ ext{FP}}^2}{2}\,\left(h_{\mu
u}-ar{g}_{\mu
u}h_{
ho}^{
ho}
ight)\,=0$$
[Fierz, Pauli (1939)]

$$\left(\Box-m_{\mathrm{FP}}^2\right)h_{\mu\nu}=0\,,\quad
abla^\mu h_{\mu
u}=0\,,\quad ar{g}^{\mu
u}h_{\mu
u}=0\,$$

Fierz-Pauli theory

The FP equation:

Linear massive spin-2 field $h_{\mu
u}$ in background $ar{g}_{\mu
u}$

$$ar{\mathcal{E}}_{\mu
u}^{
ho\sigma}\,h_{
ho\sigma}-rac{2\Lambda}{d-2}\Big(h_{\mu
u}-rac{1}{2}ar{g}_{\mu
u}h_{
ho}^{
ho}\Big)+rac{m_{ ext{FP}}^2}{2}\,\left(h_{\mu
u}-ar{g}_{\mu
u}h_{
ho}^{
ho}
ight)\,=0$$
 [Fierz, Pauli (1939)]

$$\left(\Box - m_{\mathrm{FP}}^2\right) h_{\mu
u} = 0 \,, \quad
abla^{\mu} h_{\mu
u} = 0 \,, \quad ar{g}^{\mu
u} h_{\mu
u} = 0 \,.$$

Problem: Nonlinear completion in terms of $g_{\mu\nu}=\bar{g}_{\mu\nu}+h_{\mu\nu}$. Generically removes a constraint, resulting in a propagating ghost-mode. [Boulware, Deser (1972)]

Ghost?

Classically: Negative kinetic energy, unbounded Hamiltonian.

Quantum theory: Loss of probability interpretation (P > 1)

Construction of a ghost free theory of massive interacting spin-2 fields

Construction of a ghost free theory of massive interacting spin-2 fields

Free linear theory without a ghost

[Fierz, Pauli (1939)]

Construction of a ghost free theory of massive interacting spin-2 fields

- Free linear theory without a ghost [Fierz, Pauli (1939)]
- No-go for interacting nonlinear theory [Boulware, Deser (1972)]

Construction of a ghost free theory of massive interacting spin-2 fields

- Free linear theory without a ghost [Fierz, Pauli (1939)]
- No-go for interacting nonlinear theory [Boulware, Deser (1972)]
- Goldstone "theorem" for spin 2

[Arkani-Hamed, Georgi, Schwartz (2003)]

Construction of a ghost free theory of massive interacting spin-2 fields

- Free linear theory without a ghost [Fierz, Pauli (1939)]
- No-go for interacting nonlinear theory [Boulware, Deser (1972)]
- Goldstone "theorem" for spin 2

[Arkani-Hamed, Georgi, Schwartz (2003)]

"Proof" of ghost in massive gravity

[Creminelli, Nicolis, Papucci, Trincherini (2005)]

Construction of a ghost free theory of massive interacting spin-2 fields

- Free linear theory without a ghost [Fierz, Pauli (1939)]
- No-go for interacting nonlinear theory [Boulware, Deser (1972)]
- Goldstone "theorem" for spin 2

[Arkani-Hamed, Georgi, Schwartz (2003)]

"Proof" of ghost in massive gravity

[Creminelli, Nicolis, Papucci, Trincherini (2005)]

 Nonlinear massive spin-2 field in flat space shown to be ghost free in a "decoupling limit"

[de Rham, Gabadadze, Tolley (2011)]

Construction of a ghost free theory of massive interacting spin-2 fields

- Free linear theory without a ghost [Fierz, Pauli (1939)]
- No-go for interacting nonlinear theory [Boulware, Deser (1972)]
- Goldstone "theorem" for spin 2

[Arkani-Hamed, Georgi, Schwartz (2003)]

"Proof" of ghost in massive gravity

[Creminelli, Nicolis, Papucci, Trincherini (2005)]

 Nonlinear massive spin-2 field in flat space shown to be ghost free in a "decoupling limit"

[de Rham, Gabadadze, Tolley (2011)]

 Nonlinear massive spin-2 field in curved space shown to be ghost free nonlinearly [Hassan, Rosen (2011-2012)]

Construction of a ghost free theory of massive interacting spin-2 fields

- Free linear theory without a ghost [Fierz, Pauli (1939)]
- No-go for interacting nonlinear theory [Boulware, Deser (1972)]
- Goldstone "theorem" for spin 2

[Arkani-Hamed, Georgi, Schwartz (2003)]

"Proof" of ghost in massive gravity

[Creminelli, Nicolis, Papucci, Trincherini (2005)]

 Nonlinear massive spin-2 field in flat space shown to be ghost free in a "decoupling limit"

[de Rham, Gabadadze, Tolley (2011)]

- Nonlinear massive spin-2 field in curved space shown to be ghost free nonlinearly [Hassan, Rosen (2011-2012)]
- Fully dynamical theory of interacting spin-2 shown to be ghost free nonlinearly [Hassan, Rosen (2011-2012)]

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

Ghost free bimetric theory

The basic construction:

$$\mathcal{L} = m_g^{d-2} \sqrt{|g|} R(g) - 2m^d \sqrt{|g|} V(S; \beta_n) + m_f^{d-2} \sqrt{|f|} R(f)$$

$$S = \sqrt{g^{-1} f}, \quad \sqrt{|g|} V(S; \beta_n) = \sqrt{|f|} V(S^{-1}; \beta_{d-n})$$

$$V(S; \beta_n) = \sum_{n=0}^d \beta_n e_n(S) = \beta_0 + \sum_{n=1}^{d-1} \beta_n e_n(S) + \sqrt{|g^{-1} f|} \beta_d$$

Ghost free bimetric theory

The basic construction:

$$\mathcal{L} = m_g^{d-2} \sqrt{|g|} R(g) - 2m^d \sqrt{|g|} V(S; \beta_n) + m_f^{d-2} \sqrt{|f|} R(f)$$

$$S = \sqrt{g^{-1} f}, \quad \sqrt{|g|} V(S; \beta_n) = \sqrt{|f|} V(S^{-1}; \beta_{d-n})$$

$$V(S; \beta_n) = \sum_{n=0}^d \beta_n e_n(S) = \beta_0 + \sum_{n=1}^{d-1} \beta_n e_n(S) + \sqrt{|g^{-1} f|} \beta_d$$

Elementary symmetric polynomials

$$\begin{split} e_0(\mathbb{X}) &= 1 \;, \qquad e_1(\mathbb{X}) = [\mathbb{X}] \;, \qquad e_2(\mathbb{X}) = \tfrac{1}{2}([\mathbb{X}]^2 - [\mathbb{X}^2]), \\ e_3(\mathbb{X}) &= \tfrac{1}{6}([\mathbb{X}]^3 - 3[\mathbb{X}][\mathbb{X}^2] + 2[\mathbb{X}^3]) \;, \\ e_4(\mathbb{X}) &= \tfrac{1}{24}([\mathbb{X}]^4 - 6[\mathbb{X}]^2[\mathbb{X}^2] + 3[\mathbb{X}^2]^2 + 8[\mathbb{X}][\mathbb{X}^3] - 6[\mathbb{X}^4]) \;, \\ &\vdots \\ e_d(\mathbb{X}) &= \det(\mathbb{X}) \\ e_k(\mathbb{X}) &= 0 \quad \text{for} \quad k > d \;, \quad \left[\; e_n(\mathbb{X}) \sim (\mathbb{X})^n \; \right] \end{split}$$

Ghost free bimetric theory, contd.

Equations of motion:

$$egin{aligned} R_{\mu
u}(g) - rac{1}{2}g_{\mu
u}R(g) + rac{m^d}{m_g^{d-2}}V^g_{\mu
u} &= rac{1}{2m_g^{d-2}}T^g_{\mu
u} \ R_{\mu
u}(f) - rac{1}{2}f_{\mu
u}R(f) + rac{m^d}{m_f^{d-2}}V^f_{\mu
u} &= rac{1}{2m_f^{d-2}}T^f_{\mu
u} \end{aligned}$$

Bianchi constraints (for conserved sources):

$${}^g
abla^\mu V^g_{\mu
u} = 0 = {}^f
abla^\mu V^f_{\mu
u}$$

related through the covariance identity

$$\sqrt{|g|}\,{}^g\nabla^\mu V^g_{\mu\nu} = -\sqrt{|f|}\,{}^f\nabla^\mu V^f_{\mu\nu}$$

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

Cosmological solutions

Isotropic & homogeneous ansatz:

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + a^2(t) d\vec{x}^2$$

 $f_{\mu\nu} dx^{\mu} dx^{\nu} = -X^2(t) dt^2 + Y^2(t) d\vec{x}^2$

The Bianchi constraint imply $X = \frac{\dot{Y}}{\dot{a}} = \frac{dY}{da}$.

Cosmological solutions

Isotropic & homogeneous ansatz:

$$g_{\mu\nu} dx^{\mu} dx^{\nu} = -dt^2 + a^2(t) d\vec{x}^2$$

 $f_{\mu\nu} dx^{\mu} dx^{\nu} = -X^2(t) dt^2 + Y^2(t) d\vec{x}^2$

The Bianchi constraint imply $X = \frac{Y}{a} = \frac{dY}{da}$. The equations of motion reduce to

$$H^{2} + \frac{k}{a^{2}} = \frac{\rho}{3m_{g}^{2}} + \frac{m^{4}}{3m_{g}^{2}} \left(\beta_{0} + 3\beta_{1} \frac{Y}{a} + 3\beta_{2} \left(\frac{Y}{a}\right)^{2} + \beta_{3} \left(\frac{Y}{a}\right)^{3}\right)$$

together with the quartic expression

$$\alpha^{2}\beta_{3}\left(\frac{\gamma}{a}\right)^{4} + \left(3\alpha^{2}\beta_{2} - \beta_{4}\right)\left(\frac{\gamma}{a}\right)^{3} + 3\left(\alpha^{2}\beta_{1} - \beta_{3}\right)\left(\frac{\gamma}{a}\right)^{2} + \left(\frac{\alpha^{2}\rho}{m^{4}} + \alpha^{2}\beta_{0} - 3\beta_{2}\right)\frac{\gamma}{a} - \beta_{1} = 0,$$

where $\rho = -T_0^0$ is the energy density of the matter fluid.

Cosmological solutions, contd.

Model	<i>B</i> ₀	<i>B</i> ₁	B ₂	<i>B</i> ₃	B ₄	Ω_m	$\chi^2_{\rm min}$	p-value	log-evidence
ΛCDM	free	0	0	0	0	free	546.54	0.8709	-278.50
(B_1,Ω_m^0)	0	free	0	0	0	free	551.60	0.8355	-281.73
(B_2,Ω_m^0)	0	0	free	0	0	free	894.00	< 0.0001	-450.25
(B_3,Ω_m^0)	0	0	0	free	0	free	1700.50	< 0.0001	-850.26
(B_1, B_2, Ω_m^0)	0	free	free	0	0	free	546.52	0.8646	-279.77
(B_1, B_3, Ω_m^0)	0	free	0	free	0	free	542.82	0.8878	-280.10
(B_2, B_3, Ω_m^0)	0	0	free	free	0	free	548.04	0.8543	-280.91
(B_1, B_4, Ω_m^0)	0	free	0	0	free	free	548.86	0.8485	-281.42
(B_2, B_4, Ω_m^0)	0	0	free	0	free	free	806.82	< 0.0001	-420.87
(B_3, B_4, Ω_m^0)	0	0	0	free	free	free	685.30	0.0023	-351.14
$(B_1, B_2, B_3, \Omega_m^0)$	0	free	free	free	0	free	546.50	0.8582	-279.61
$(B_1, B_2, B_4, \Omega_m^0)$	0	free	free	0	free	free	546.52	0.8581	-279.56
$(B_1, B_3, B_4, \Omega_m^0)$	0	free	0	free	free	free	546.78	0.8563	-280.00
$(B_2, B_3, B_4, \Omega_m^0)$	0	0	free	free	free	free	549.68	0.8353	-282.89
$(B_1, B_2, B_3, B_4, \Omega_m^0)$	0	free	free	free	free	free	546.50	0.8515	-279.60
Full bimetric model	free	free	free	free	free	free	546.50	0.8445	-279.82

[Akrami et al (2012)]

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

• What is the physical spectrum of the bimetric theory?

Solutions close to GR?

Proportional backgrounds

For proportional ansatz $ar{f}_{\mu
u} = c^2 ar{g}_{\mu
u}$:

$$R_{\mu\nu}(\bar{g}) - \frac{1}{2}\bar{g}_{\mu\nu}R(\bar{g}) + {\Lambda_g \choose \Lambda_f}\bar{g}_{\mu\nu} = \frac{1}{2m_g^{d-2}}{\bar{T}_{\mu\nu}^f \choose \alpha^{2-d}}\bar{T}_{\mu\nu}^f$$
, $\alpha = \frac{m_f}{m_g}$

and as a consequence

$$\Lambda_g = \Lambda_f$$
, $\bar{T}_{\mu\nu}^g = \alpha^{2-d} \bar{T}_{\mu\nu}^f$

Proportional backgrounds

For proportional ansatz $ar{f}_{\mu
u} = c^2 ar{g}_{\mu
u}$:

$$R_{\mu\nu}(\bar{g}) - \frac{1}{2}\bar{g}_{\mu\nu}R(\bar{g}) + {\Lambda_g \choose \Lambda_f}\bar{g}_{\mu\nu} = \frac{1}{2m_g^{d-2}}{\bar{T}_{\mu\nu}^f \choose \alpha^{2-d}}\bar{T}_{\mu\nu}^f$$
, $\alpha = \frac{m_f}{m_g}$

and as a consequence

$$\Lambda_g = \Lambda_f$$
, $\bar{T}^g_{\mu\nu} = \alpha^{2-d} \bar{T}^f_{\mu\nu}$

$$\Lambda_{g} = \frac{m^{d}}{m_{g}^{d-2}} \sum_{n=0}^{d-1} {d-1 \choose n} c^{n} \beta_{n} = \frac{m^{d}}{m_{g}^{d-2}} (\alpha c)^{2-d} \sum_{n=1}^{d} {d-1 \choose n-1} c^{n} \beta_{n} = \Lambda_{f}$$

Generically gives $c = c(\alpha, \beta_n)$

Conceptually very important class of solutions

Proportional backgrounds

First a remark; For any covariant bimetric theory it is "straightforward" to find a striking restriction on classical solutions:

If one metric is an Einstein metric, the other metric is also an Einstein metric (proportional to the first metric).

Mass spectrum

Fluctuations on the proportional background:

For the linear modes ($\bar{T}^{g,f} = 0$):

$$\delta \textit{M}_{\mu\nu} = \frac{1}{2c} \left(\delta \textit{f}_{\mu\nu} - \emph{c}^2 \delta \emph{g}_{\mu\nu} \right) \,, \quad \delta \emph{G}_{\mu\nu} = \left(\delta \emph{g}_{\mu\nu} + \alpha^{\emph{d}-2} \emph{c}^{\emph{d}-4} \delta \emph{f}_{\mu\nu} \right)$$

The field equations are

$$\begin{split} \bar{\mathcal{E}}_{\mu\nu}^{\rho\sigma} \, \delta G_{\rho\sigma} - \frac{2\tilde{\Lambda}_g}{d-2} \Big(\delta G_{\mu\nu} - \frac{1}{2} \bar{G}_{\mu\nu} \bar{G}^{\rho\sigma} \delta G_{\rho\sigma} \Big) &= 0 \,, \\ \bar{\mathcal{E}}_{\mu\nu}^{\rho\sigma} \, \delta M_{\rho\sigma} - \frac{2\tilde{\Lambda}_g}{d-2} \Big(\delta M_{\mu\nu} - \frac{1}{2} \bar{G}_{\mu\nu} \bar{G}^{\rho\sigma} \delta M_{\rho\sigma} \Big) \\ &+ \frac{1}{2} \tilde{m}_{FP}^2 \left(\delta M_{\mu\nu} - \bar{G}_{\mu\nu} \bar{G}^{\rho\sigma} \delta M_{\rho\sigma} \right) = 0 \end{split}$$

Mass spectrum

Fluctuations on the proportional background:

For the linear modes ($\bar{T}^{g,f} = 0$):

$$\delta \emph{M}_{\mu\nu} = \frac{1}{2c} \left(\delta \emph{f}_{\mu\nu} - \emph{c}^2 \delta \emph{g}_{\mu\nu} \right) \,, \quad \delta \emph{G}_{\mu\nu} = \left(\delta \emph{g}_{\mu\nu} + \alpha^{\emph{d}-\emph{2}} \emph{c}^{\emph{d}-\emph{4}} \delta \emph{f}_{\mu\nu} \right)$$

The field equations are

$$\begin{split} \bar{\mathcal{E}}_{\mu\nu}^{\rho\sigma}\,\delta G_{\rho\sigma} - \frac{2\tilde{\Lambda}_g}{d-2} \Big(\delta G_{\mu\nu} - \tfrac{1}{2}\bar{G}_{\mu\nu}\bar{G}^{\rho\sigma}\delta G_{\rho\sigma}\Big) &= 0\,, \\ \bar{\mathcal{E}}_{\mu\nu}^{\rho\sigma}\,\delta M_{\rho\sigma} - \frac{2\tilde{\Lambda}_g}{d-2} \Big(\delta M_{\mu\nu} - \tfrac{1}{2}\bar{G}_{\mu\nu}\bar{G}^{\rho\sigma}\delta M_{\rho\sigma}\Big) \\ &+ \tfrac{1}{2}\tilde{m}_{FP}^2 \left(\delta M_{\mu\nu} - \bar{G}_{\mu\nu}\bar{G}^{\rho\sigma}\delta M_{\rho\sigma}\right) = 0 \end{split}$$

The FP mass of δM :

$$\tilde{m}_{\text{FP}}^2 = \frac{m^d}{m_g^{d-2}} (\alpha c)^{2-d} \sum_{k=1}^{d-1} {d-2 \choose k-1} c^k \beta_k$$

and $\tilde{\Lambda}_g = \Lambda_g$

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

Higher derivative equations

Solving the $g_{\mu\nu}$ equation for $f_{\mu\nu}$ in a curvature expansion gives the solution:

$$f_{\mu
u} = a_1 g_{\mu
u} + rac{a_2}{m^2} P_{\mu
u} + rac{a_3}{m^4} P_{\mu
u}^2 + rac{a_4}{m^4} P P_{\mu
u} + rac{a_5}{m^4} g_{\mu
u} e_2(P) + \mathcal{O}(R^3/m^6)$$

Higher derivative equations

Solving the $g_{\mu\nu}$ equation for $f_{\mu\nu}$ in a curvature expansion gives the solution:

$$f_{\mu\nu} = a_1 g_{\mu\nu} + \frac{a_2}{m^2} P_{\mu\nu} + \frac{a_3}{m^4} P_{\mu\nu}^2 + \frac{a_4}{m^4} P P_{\mu\nu} + \frac{a_5}{m^4} g_{\mu\nu} e_2(P) + \mathcal{O}(R^3/m^6)$$

Plugging this solution back in the $f_{\mu\nu}$ equations result in a higher derivative equation for $g_{\mu\nu}$:

$$0 = \Lambda g_{\mu\nu} + \frac{b_1}{m^2} \mathcal{G}_{\mu\nu} + \frac{b_{11}}{m^2} \Lambda P_{\mu\nu} + \frac{c_1}{m^4} B_{\mu\nu} + \frac{c_{11}}{m^4} P_{\mu\nu}^2 + \frac{c_{12}}{m^4} P P_{\mu\nu} + \frac{c_{13}}{m^4} g_{\mu\nu} P^{\rho\sigma} P_{\rho\sigma} + \frac{c_{14}}{m^4} g_{\mu\nu} P^2 + \mathcal{O}(R^3/m^6)$$

Here $\mathcal{G}_{\mu\nu}$ is the Einstein tensor, $P_{\mu\nu}$ the Schouten tensor $P_{\mu\nu}=R_{\mu\nu}-\frac{1}{2(d-1)}g_{\mu\nu}R$ and $B_{\mu\nu}$ the Bach tensor

$$-B_{\mu
u}=
abla^2P_{\mu
u}+
abla_{\mu}P-
abla_{
ho}
abla_{
u}P^{
ho}_{
u}-
abla_{
ho}
abla_{
u}P^{
ho}_{\mu}+2P^{2}_{
u}-rac{1}{2}g_{\mu
u}P^{
ho\sigma}P_{
ho\sigma}$$

Higher derivative equations

Solving the $g_{\mu\nu}$ equation for $f_{\mu\nu}$ in a curvature expansion gives the solution:

$$f_{\mu\nu} = a_1 g_{\mu\nu} + \frac{a_2}{m^2} P_{\mu\nu} + \frac{a_3}{m^4} P_{\mu\nu}^2 + \frac{a_4}{m^4} P P_{\mu\nu} + \frac{a_5}{m^4} g_{\mu\nu} e_2(P) + \mathcal{O}(R^3/m^6)$$

Plugging this solution back in the $f_{\mu\nu}$ equations result in a higher derivative equation for $g_{\mu\nu}$:

$$0 = \Lambda g_{\mu\nu} + \frac{b_1}{m^2} \mathcal{G}_{\mu\nu} + \frac{b_{11}}{m^2} \Lambda P_{\mu\nu}$$

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

 Any special corners of the bimetric theory parameter space?

• Enhanced symmetries?

Partial masslessness

In standard linear Fierz-Pauli massive gravity on de Sitter backgrounds the "Higuchi bound" plays a special role

$$m_{\text{FP}}^2 \ge 2\Lambda/(d-1)$$
 (unitary)

[Higuchi (1989)]

For $m_{\rm FP}^2=2\Lambda/(d-1)$ the massive field acquires a new gauge symmetry under

$$h_{\mu
u}
ightarrow h_{\mu
u}+\left(
abla_{\mu}\partial_{
u}+rac{m_{ ext{FP}}^{2}}{d-2}ar{g}_{\mu
u}
ight)\xi(x)$$

[Deser, Waldron (2001)]

This symmetry removes one propagating degree of freedom.

Question: Can this gauge symmetry be extended nonlinearly?

Some recent work:

- Cubic PM vertices ($\sim h^3$) in d=4 [Zinoviev (2006)]
- Cubic PM vertices exist only in d = 3,4 with 2 derivatives For d > 4, higher derivative theory needed.

[Joung, Lopez, Taronna (2012)]

We can identify a nonlinear bimetric theory as a candidate PM theory and verify all of these known results

 Naturally addressed in bimetric theory—dynamical background.

- Naturally addressed in bimetric theory—dynamical background.
- Proportional backgrounds—de Sitter.

- Naturally addressed in bimetric theory—dynamical background.
- Proportional backgrounds—de Sitter.

Recall the fluctuation equations on proportional backgrounds

$$\begin{split} \bar{\mathcal{E}}_{\mu\nu}^{\,\rho\sigma}\,\delta G_{\rho\sigma} - \frac{2\tilde{\Lambda}_g}{d-2} \Big(\delta G_{\mu\nu} - \frac{1}{2}\bar{G}_{\mu\nu}\bar{G}^{\rho\sigma}\delta G_{\rho\sigma}\Big) &= 0 \;, \\ \bar{\mathcal{E}}_{\mu\nu}^{\,\rho\sigma}\,\delta M_{\rho\sigma} - \frac{2\tilde{\Lambda}_g}{d-2} \Big(\delta M_{\mu\nu} - \frac{1}{2}\bar{G}_{\mu\nu}\bar{G}^{\rho\sigma}\delta M_{\rho\sigma}\Big) \\ &\quad + \frac{1}{2}\tilde{m}_{FP}^2 \left(\delta M_{\mu\nu} - \bar{G}_{\mu\nu}\bar{G}^{\rho\sigma}\delta M_{\rho\sigma}\right) = 0 \end{split}$$

PM symmetry in linearized bimetric theory:

$$\delta \emph{M}_{\mu
u}
ightarrow \delta \emph{M}_{\mu
u} + \left(
abla_{\mu} \partial_{
u} + rac{m_{ ext{FP}}^2}{2} \, ar{G}_{\mu
u}
ight) \xi(\emph{x}) \,, \qquad \delta \emph{G}_{\mu
u}
ightarrow \delta \emph{G}_{\mu
u}$$

PM symmetry in linearized bimetric theory:

$$\delta \emph{M}_{\mu
u}
ightarrow \delta \emph{M}_{\mu
u} + \Big(
abla_{\mu} \partial_{
u} + rac{\emph{m}_{ ext{FP}}^2}{2} \, ar{\emph{G}}_{\mu
u} \Big) \xi(\emph{x}) \,, \qquad \delta \emph{G}_{\mu
u}
ightarrow \delta \emph{G}_{\mu
u}$$

Take $\xi = \xi_0$ (constant). Transformation of the original bimetric variables:

$$\delta g_{\mu
u}
ightarrow \delta g_{\mu
u} + {\color{red} a \, {\color{blue} \Lambda \over 3} \, \xi_0 \, ar g_{\mu
u} \, ,} \qquad \delta f_{\mu
u}
ightarrow \delta f_{\mu
u} + {\color{blue} b \, {\color{blue} \Lambda \over 3} \, \xi_0 \, ar g_{\mu
u}}$$

PM symmetry in linearized bimetric theory:

$$\delta \emph{M}_{\mu
u}
ightarrow \delta \emph{M}_{\mu
u} + \Big(
abla_{\mu} \partial_{
u} + rac{m_{ ext{FP}}^2}{2} \, ar{G}_{\mu
u} \Big) \xi(\emph{x}) \,, \qquad \delta \emph{G}_{\mu
u}
ightarrow \delta \emph{G}_{\mu
u}$$

Take $\xi = \xi_0$ (constant). Transformation of the original bimetric variables:

$$\delta g_{\mu
u}
ightarrow \delta g_{\mu
u} + {\color{red} a \, {\color{blue} \Lambda \over 3}} \, \xi_0 \, {\color{blue} ar g}_{\mu
u} \, , \qquad \delta f_{\mu
u}
ightarrow \delta f_{\mu
u} + {\color{blue} b \, {\color{blue} \Lambda \over 3}} \, \xi_0 \, {\color{blue} ar g}_{\mu
u}$$

For dynamical backgrounds, this is equivalent to

$$ar{g}'_{\mu
u} = ar{g}_{\mu
u} + a rac{\Lambda}{3} \xi_0 \, ar{g}_{\mu
u} \,, \quad ar{f}'_{\mu
u} = ar{f}_{\mu
u} + b rac{\Lambda}{3} \xi_0 \, ar{g}_{\mu
u}
onumber
onum$$

Not a valid background solution! No PM symmetry??

PM symmetry in linearized bimetric theory:

$$\delta \emph{M}_{\mu
u}
ightarrow \delta \emph{M}_{\mu
u} + \Big(
abla_{\mu} \partial_{
u} + rac{m_{ ext{FP}}^2}{2} \, ar{G}_{\mu
u} \Big) \xi(\emph{x}) \,, \qquad \delta \emph{G}_{\mu
u}
ightarrow \delta \emph{G}_{\mu
u}$$

Take $\xi = \xi_0$ (constant). Transformation of the original bimetric variables:

$$\delta g_{\mu
u}
ightarrow \delta g_{\mu
u} + {\color{red} a \, {\color{blue} \Lambda \over 3} \, \xi_0 \, ar g_{\mu
u} \, ,} \qquad \delta f_{\mu
u}
ightarrow \delta f_{\mu
u} + {\color{blue} b \, {\color{blue} \Lambda \over 3} \, \xi_0 \, ar g_{\mu
u}}$$

For dynamical backgrounds, this is equivalent to

$$egin{align} ar{g}'_{\mu
u} &= ar{g}_{\mu
u} + a_{ar{3}}^{\Lambda} \xi_0 \, ar{g}_{\mu
u} \,, \quad ar{f}'_{\mu
u} &= ar{f}_{\mu
u} + b_{ar{3}}^{\Lambda} \xi_0 \, ar{g}_{\mu
u} \ ar{f}' &= oldsymbol{c}'^2(\xi_0) \, ar{g}' \qquad oldsymbol{c}'
eq oldsymbol{c}
onumber \end{array}$$

Not a valid background solution! No PM symmetry?? (caveat!)

 $ar{f}'$ and $ar{g}'$ are solutions only if c is not determined by $\Lambda_g=\Lambda_f,$

$$eta_{1} + \left(3eta_{2} - lpha^{2}eta_{0}\right)c + \left(3eta_{3} - 3lpha^{2}eta_{1}\right)c^{2} + \left(eta_{4} - 3lpha^{2}eta_{2}\right)c^{3} - lpha^{2}eta_{3}c^{4} = 0$$

c is undetermined for,

$$\alpha^2 \beta_0 = 3\beta_2$$
, $3\alpha^2 \beta_2 = \beta_4$, $\beta_1 = \beta_3 = 0$

This gives the unique candidate nonlinear PM theory. Has been verified that this global symmetry exist fully nonlinearly.

Side remark and further support:

A quartic equation in a cosmological setup

$$\begin{split} \alpha^2 \beta_3 \left(\frac{\gamma}{a}\right)^4 + \left(3\alpha^2 \beta_2 - \beta_4\right) \left(\frac{\gamma}{a}\right)^3 + 3\left(\alpha^2 \beta_1 - \beta_3\right) \left(\frac{\gamma}{a}\right)^2 \\ + \left(\alpha^2 \beta_0 - 3\beta_2\right) \frac{\gamma}{a} - \beta_1 &= 0 \end{split}$$

leaves the function Y(t)/a(t) undetermined for PM parameters!

Solutions with a cosmological gauge symmetry!

Conformal gravity & Partial masslessness

Even more compelling:

The HD equation for PM parameters is given to lowest order in curvature by

$$B_{\mu
u} = 0$$

- To lowest order in curvature the PM candidate has a Weyl symmetry!
- Establishes a gauge symmetry also close to flat space, away from de Sitter!

Nonlinear PM theory

Checks:

- For d = 2, 3, 4 we find that $m_{\text{FP}}^2 = \frac{2\Lambda_g}{d-1}$
- For d > 4, $\beta_n = 0$. Nonlinear PM exist only for d = 3, 4.
- Higher dimensions need higher derivatives, works out.
- Realization of the ξ_0 global gauge transformation in the nonlinear theory.
- Physical parameters independent of gauge parameter ξ_0 .
- Full Gauge symmetry of the nonlinear theory? Weyl symmetry in low curvature limit supports its existence, but not yet found.

Nonlinear PM theory

Checks:

- For d=2,3,4 we find that $m_{\rm FP}^2=\frac{2\Lambda_g}{d-1}$ [Hassan, Schmidt-May, MvS (2012)]
- For d > 4, $\beta_n = 0$. Nonlinear PM exist only for d = 3, 4. [Hassan, Schmidt-May, MvS (2012)]
- Higher dimensions need higher derivatives, works out.
 [Hassan, Schmidt-May, MvS (2012)]
- Realization of the ξ_0 global gauge transformation in the nonlinear theory. [Hassan, Schmidt-May, MvS (2012)]
- Physical parameters independent of gauge parameter ξ_0 . [Hassan, Schmidt-May, MvS (2012)]
- Full Gauge symmetry of the nonlinear theory? Weyl symmetry in low curvature limit supports its existence, but not yet found.
 [Hassan, Schmidt-May, MvS (2013)]

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

 Higher derivative extension and PM in higher dime 	iensions
---	----------

Interactions of several massive spin-2 fields

Vielbein formulation

Outline of the talk

Basic Motivations

Linear massive spin-2 fields + History

Bimetric theory, some details

Bimetric cosmology

Mass eigenstates

Higher derivative formulation

Partial masslessness

Generalizations

Summary

Summary

- The ghost free bimetric theory has solutions indistuingishable from ΛCDM at the background level.
- It describes massive and massless spin-2 fields.
 Alternatively, it describes a massive spin-2 field coupled to gravity and extends to multi-spin-2 considerations.
- Fluctuations with FP masses exist around $\bar{f} = c^2 \bar{g}$ backgrounds. Covers all GR background solutions.
- The nonlinear PM candidate leaves c undetermined and has a global scaling symmetry. Can exist only in d = 3 and d = 4, in 2-derivative theories. But can exist in higher dimensions with more than 2 derivatives. Consistent with all known results.
- Higher derivative single metric formulaton exist. The PM subset coincides with Conformal gravity in a derivative expansion and support existence of an extra gauge symmetry.

The end is only the beginning ...

Thanks for your attention!