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Basic Motivations



Motivation (Original)

Cosmology and the Dark sector(s)

739 DARK ENERGY

..\2%% DARK MATTER
3.69% INTERGALACTIC GAS
0.4% STARS, ETC.

@ Cosmological constant problem. Can a small graviton
mass naturally explain the observed smallness of A?

@ The Dark sectors. Can a modification of Einstein gravity
“remedy" the inclusion of unknown energy sources?
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Motivation (More general)
Understand spin-2 interactions in field theory

Good understanding of lower spin theories
@ Spin-0: Higgs(?!), Inflaton(??), #%* mesons,. ..
Klein-Gordon: (O —m?) ¢ =0
@ Spin-1/2: Leptons, quarks, baryons
Dirac: (i) —m)y =0
@ Spin-1: Photon, gluons, Z, W=, vector mesons,.. .
Maxwell, Proca:  9”F,, — m?A, =0
What about spin-27?

@ Spin-2: Graviton, mesons,. ..
Einstein-Hilbert (massless): R, — g, AR =0

But no consistent theory of massive/interacting spin-2
until recently!!
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Linear massive spin-2 fields + History



Fierz-Pauli theory
The FP equation:
Linear massive spin-2 field h,,, in background g,.,
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Fierz-Pauli theory
The FP equation:
Linear massive spin-2 field h,,, in background g,.,

_ _ 2 _
ENy Moo — % <h/w - %guvh£> + % (A — guhy) =0
[Fierz, Pauli (1939)]

<D - mgp) B =0, VFA, =0, G"h, =0

Problem: Nonlinear completion in terms of g, = 9, + .
Generically removes a constraint, resulting in a propagating
ghost-mode. [Boulware,Deser (1972)]



Ghost?

Classically: Negative kinetic energy, unbounded Hamiltonian.

Quantum theory: Loss of probability interpretation (P > 1)



Historical progress
Construction of a ghost free theory of massive interacting
spin-2 fields



Historical progress
Construction of a ghost free theory of massive interacting
spin-2 fields

@ Free linear theory without a ghost [Fierz, Pauli (1939)]



Historical progress
Construction of a ghost free theory of massive interacting
spin-2 fields
@ Free linear theory without a ghost [Fierz, Pauli (1939)]
@ No-go for interacting nonlinear theory [Boulware, Deser (1972)]



Historical progress
Construction of a ghost free theory of massive interacting
spin-2 fields
@ Free linear theory without a ghost [Fierz, Pauli (1939)]
@ No-go for interacting nonlinear theory [Boulware, Deser (1972)]

@ Goldstone “theorem" for spin 2
[Arkani-Hamed, Georgi, Schwartz (2003)]



Historical progress
Construction of a ghost free theory of massive interacting
spin-2 fields
@ Free linear theory without a ghost [Fierz, Pauli (1939)]
@ No-go for interacting nonlinear theory [Boulware, Deser (1972)]

@ Goldstone “theorem" for spin 2
[Arkani-Hamed, Georgi, Schwartz (2003)]

@ “Proof" of ghost in massive gravity
[Creminelli, Nicolis, Papucci, Trincherini (2005)]



Historical progress
Construction of a ghost free theory of massive interacting
spin-2 fields
@ Free linear theory without a ghost [Fierz, Pauli (1939)]
@ No-go for interacting nonlinear theory [Boulware, Deser (1972)]

@ Goldstone “theorem" for spin 2
[Arkani-Hamed, Georgi, Schwartz (2003)]

@ “Proof" of ghost in massive gravity
[Creminelli, Nicolis, Papucci, Trincherini (2005)]

@ Nonlinear massive spin-2 field in flat space shown to be
ghost free in a “decoupling limit"
[de Rham, Gabadadze, Tolley (2011)]



Historical progress
Construction of a ghost free theory of massive interacting
spin-2 fields
@ Free linear theory without a ghost [Fierz, Pauli (1939)]
@ No-go for interacting nonlinear theory [Boulware, Deser (1972)]

@ Goldstone “theorem" for spin 2
[Arkani-Hamed, Georgi, Schwartz (2003)]

@ “Proof" of ghost in massive gravity
[Creminelli, Nicolis, Papucci, Trincherini (2005)]

@ Nonlinear massive spin-2 field in flat space shown to be
ghost free in a “decoupling limit"
[de Rham, Gabadadze, Tolley (2011)]

@ Nonlinear massive spin-2 field in curved space shown to
be ghost free nonlinearly [Hassan, Rosen (2011-2012)]



Historical progress
Construction of a ghost free theory of massive interacting
spin-2 fields
@ Free linear theory without a ghost [Fierz, Pauli (1939)]
@ No-go for interacting nonlinear theory [Boulware, Deser (1972)]

@ Goldstone “theorem" for spin 2
[Arkani-Hamed, Georgi, Schwartz (2003)]

@ “Proof" of ghost in massive gravity
[Creminelli, Nicolis, Papucci, Trincherini (2005)]

@ Nonlinear massive spin-2 field in flat space shown to be
ghost free in a “decoupling limit"
[de Rham, Gabadadze, Tolley (2011)]
@ Nonlinear massive spin-2 field in curved space shown to
be ghost free nonlinearly [Hassan, Rosen (2011-2012)]
@ Fully dynamical theory of interacting spin-2 shown to be
ghost free nonlinearly [Hassan, Rosen (2011-2012)]
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Ghost free bimetric theory
The basic construction:
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Ghost free bimetric theory
The basic construction:

£ =m372\/|gIR(g) — 2m?\/|gIV(S; Bn) + m{—2\/If|R(f)
S=/g7'f, VIgIV(S:Bn) —f ' Ba-n)

V(S; Bn) = Zﬂnen(s Bo + Z Bnen(S |9~ f|Bqg

Elementary symmetrlc polynomlals
eO(X) =1 ) &4 (X) = [X]v eZ(X) = %([XF — [Xz])a
es(X) = g([XI° — 3[K|[X?] + 2[%°]) ,
ea(X) = 53 ([X]* — B[X]°[%?] + 3[%X*)? + B[X][X°] — 6[x%)),

ed(.X) = det(X)
ex(X)=0 for k>d, [enX)~(XK)"]



Ghost free bimetric theory, contd.
Equations of motion:

d
R/U/(g) - %g/u/R(g) + % ng = 2,,,,1?7—,31/

1 I yf o 1 f
R/u/(f) - équR(f) + m’?,g pr - Zm?*Z T;w

Bianchi constraints (for conserved sources):

Ivrve, =0="v*V/,

related through the covariance identity

VIgloveve, = —Ifl 'V,
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Bimetric cosmology



Cosmological solutions
Isotropic & homogeneous ansatz :
guwdxtdx” = —dt? + 2(t) dx?
fodxtdx” = —X2(t)dt? + Y?(t) dx?

The Bianchi constraint imply X = 2 = ‘j‘j—a.



Cosmological solutions
Isotropic & homogeneous ansatz :

guwdxtdx” = —dt? + 2(t) dx?
fudxtdx” = —X2(t)dt? + Y2(t) dx?

The Bianchi constraint imply X = ’é = %.
The equations of motion reduce to

H+f = 3% (Bo+368 % +362 (5)°+ 5 (X))
together with the quartic expression
0?83 (£)" + (30282 — Bs) (%)° +3 (0281 — B5) (%)°
+ (S +0?h—36) L - 81 =0,

where p = —TO0 is the energy density of the matter fluid.



Cosmological solutions, contd.

Model By | Bi | Bo | Bs | Bs | Qm = p-value | log-evidence
ACDM free | 0 0 0 0 |free | 546.54 0.8709 -278.50
(B1,9%) 0 |free| O 0 0 |free | 551.60 0.8355 -281.73
(B2,99%) 0 0 |free| O 0 |free | 894.00 | < 0.0001 -450.25
(B3,9%) 0 | 0 | 0 [free|] 0 |free| 170050 | < 0.0001 -850.26
(B1,B5,9%) 0 |free |free| O 0 |free | 546.52 0.8646 -279.77
(By,B3,9%) 0 |free| 0 |free| 0 |free| 542.82 0.8878 -280.10
(Bo, B3,9%) 0 0 |free|free| 0 |free | 548.04 0.8543 -280.91
(B1,B4,9%) 0 |free| O 0 | free | free | 548.86 0.8485 -281.42
(B2, B4,9%) 0 0 |free| 0 |free |free | 806.82 | < 0.0001 -420.87
(B3, B4, 2%) 0 0 0 | free | free | free | 685.30 | 0.0023 -351.14
(B1,B5,B3,9%) 0 |free | free | free | 0 | free | 546.50 0.8582 -279.61
(B1,B5,B4,9%) 0 |free |free| 0 | free | free | 546.52 0.8581 -279.56
(B4, B3, B4, 23,) 0 |free| O | free | free |free | 546.78 0.8563 -280.00
(B2, B3,B4,9%) 0 0 | free | free | free | free | 549.68 0.8353 -282.89
(B1, By, B3, By, Q‘,’n) 0 | free | free | free | free | free | 546.50 0.8515 -279.60
Full bimetric model | free | free | free | free | free | free | 546.50 0.8445 -279.82

[Akrami et al (2012)]
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Mass eigenstates



@ What is the physical spectrum of the bimetric theory?

@ Solutions close to GR?



Proportional backgrounds

For proportional ansatz f,, = ¢2g,.:
Ru(@) — 18 A@) + ()G =

1 29w A )9 =2
and as a consequence

Ng = Ay, Tgyz

1

a2
g

(

T2,
a2—d T[W

2—d 7f
« T;w

).

_ my

_mg



Proportional backgrounds
For proportional ansatz f,, = ¢2g,.:
_ - Ag\ - T2
R,u (g) - %g/w'q(g) + <Ai]> 9 = 2,771? (azstfw> , = %
and as a consequence
Ng=Ne, T9,=0279T],

md = d—1 n md 2—d J d-—1 n
/\QZWZ n ) Pn=gg=lac) 2 no1)CPn=N
n=0 n=1
Generically gives ¢ = ¢(a, 8n)

Conceptually very important class of solutions



Proportional backgrounds

First a remark; For any covariant bimetric theory it is
“straightforward" to find a striking restriction on classical
solutions:

If one metric is an Einstein metric, the other metric is also an
Einstein metric (proportional to the first metric).



Mass spectrum

Fluctuations on the proportional background:
For the linear modes (79" = 0):

My, = 2 (5qu - czégm,) , 6Gu = (5gw + ad—ch—“(st)

The field equations are

822 8Goo — 2% (6Guw — 16 G756y ) =0,

Ep" M, 7\2 <5M;w = 1é/,u/épo—5Mp0')
+ ;th%‘P (5M/w GWGPU‘SMm) =0



Mass spectrum

Fluctuations on the proportional background:
For the linear modes (79" = 0):

My, = 2 (5qu - czégm,) , 6Gu = (5gw + ad—ch—“(st)

The field equations are

Cpo 2A = -
&l 0Gpo — g=2 (56#1, — GG 5Gpa> =0,

cpo 2A R (po
£ 6M,, — 2y (5/\/1”” ~1G,.G 5/\/1,)0)
+ %’771%13 (5M/w - é/w GPU‘SMm) =0

The FP mass of 6 M:

d Tl /d-2
o= 2 (000 Y (3 )
k=1

Mg
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@ Can we solve for one metric ... at least perturbatively?



Higher derivative equations

Solving the g,,,, equation for f,,, in a curvature expansion gives
the solution:

a a a a
f/w = a1g,ul/+m2 PIW_" 34P5V iPPHV—i_FigWeZ(P)"'O(Rs/ms)



Higher derivative equations

Solving the g,,,, equation for f,,, in a curvature expansion gives
the solution:

a as as as
fuur = &1 Gt Pt 4P§,, 4PPW—i—WgWeg(P)—FO(Rs/ms)
Plugging this solution back in the f,,, equations result in a
higher derivative equation for g, :

b1

b c c c
0= Agu + F;g,w MNP+ LB, + 11P§,,+ 12PPW

C
+ ﬁgﬂyPP"Ppg + 4g,“,P2 + O(R®/mP)

Here G, is the Einstein tensor, P,, the Schouten tensor
P, = Ry — ﬁgﬂyﬂ and B, the Bach tensor

~Byy = V2Pu+V,V,P-V,V,P?,—V Y, P, +2P2 PP P,,

1
V_EQHV



Higher derivative equations

Solving the g,,,, equation for f,,, in a curvature expansion gives
the solution:

a as as as
fw/ - a1g,u,u+m PlLV+ 4P5u 4PPHV+WQMV62(P)+O(R3/m6)
Plugging this solution back in the f,,, equations result in a
higher derivative equation for g, :

b1

0= Aguv + g,w 2 \Puv
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Partial masslessness



@ Any special corners of the bimetric theory parameter
space?

@ Enhanced symmetries?



Partial masslessness

In standard linear Fierz-Pauli massive gravity on de Sitter
backgrounds the “Higuchi bound" plays a special role

mI%—P >2A/(d —1) (unitary)

[Higuchi (1989)]
For m2, = 2A/(d — 1) the massive field acquires a new gauge
symmetry under

2 _
Bus = By + (V0 + T8 ) €(X)

[Deser, Waldron (2001)]
This symmetry removes one propagating degree of freedom.

Question: Can this gauge symmetry be extended nonlinearly?



Partial masslessness, contd.

Some recent work:

@ Cubic PM vertices (~ h®) ind = 4 [Zinoviev (2006)]

@ Cubic PM vertices exist only in d = 3,4 with 2 derivatives
For d > 4, higher derivative theory needed.
[Joung, Lopez, Taronna (2012)]

We can identify a nonlinear bimetric theory as a candidate PM
theory and verify all of these known results
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@ Naturally addressed in bimetric theory—dynamical
background.
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Partial masslessness, contd.

@ Naturally addressed in bimetric theory—dynamical
background.

@ Proportional backgrounds—de Sitter.

Recall the fluctuation equations on proportional backgrounds

e 5 "
gﬁu 0Gpo — d—gz (5G/w - %GMVGP 5Gp0> =0,

cpo 2 = Yo
&z SMyo — 55 (0My, — $GuGP76M,, )
+ 2 (IM,, — G GP7M,,) = 0



Nonlinear Partial masslessness in d=4
PM symmetry in linearized bimetric theory:

My — M, + (vuay + T Gw)g(x) . 0Gu — 0G,,
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Take £ = & (constant). Transformation of the original bimetric
variables:
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Nonlinear Partial masslessness in d=4
PM symmetry in linearized bimetric theory:

My — M, + (v,tay + M Gw)g(x) . 0Gu — 0G,,

Take £ = & (constant). Transformation of the original bimetric
variables:

5QWH5QW+3%§0§W, 6f;w Héfuu+b%§0guu
For dynamical backgrounds, this is equivalent to
g,,w = g,ul/ + a%fo g;w ) ?,,w = ?,uu + b%§0 g,uzz

f=c?)g d#c
Not a valid background solution! No PM symmetry?? (caveat!)



Nonlinear Partial masslessness in d=4

' and g are solutions only if ¢ is not determined by Ag = Ay,
By + (352 — 04250) c+ (353 — 304251) c?
+ (Bs — 80%83) ¢ — 02fac* = 0
¢ is undetermined for,
a?Bo =3z, 3028, = Bs B1=pB3=0

This gives the unique candidate nonlinear PM theory. Has been
verified that this global symmetry exist fully nonlinearly.



Nonlinear Partial masslessness in d=4

Side remark and further support:
A quartic equation in a cosmological setup
0?83 ()" + (3028, - Ba) (£)° +38 (o281 - B) (¥)°
+ (%80 —38) ¥~ B1 =0
leaves the function Y(t)/a(t) undetermined for PM parameters!

Solutions with a cosmological gauge symmetry!



Conformal gravity & Partial masslessness
Even more compelling:
The HD equation for PM parameters is given to lowest order in

curvature by
B;ux =0

@ To lowest order in curvature the PM candidate has a Weyl
symmetry!

@ Establishes a gauge symmetry also close to flat space,
away from de Sitter!



Nonlinear PM theory
Checks:

Ford=23,4wefindthat m?, = 2%

For d > 4, 5, = 0. Nonlinear PM exist only for d = 3, 4.
Higher dimensions need higher derivatives, works out.
Realization of the &y global gauge transformation in the
nonlinear theory.

Physical parameters independent of gauge parameter &.

Full Gauge symmetry of the nonlinear theory? Weyl
symmetry in low curvature limit supports its existence, but
not yet found.



Nonlinear PM theory
Checks:

Ford =2,3,4wefindthat m2, = "¢

[Hassan, Schmidt-May, MvS (2012)]
For d > 4, 5, = 0. Nonlinear PM exist only for d = 3, 4.
[Hassan, Schmidt-May, MvS (2012)]
Higher dimensions need higher derivatives, works out.
[Hassan, Schmidt-May, MvS (2012)]
Realization of the &y global gauge transformation in the
nonlinear theory. [Hassan, Schmidt-May, MvS (2012)]
Physical parameters independent of gauge parameter &.
[Hassan, Schmidt-May, MvS (2012)]
Full Gauge symmetry of the nonlinear theory? Weyl
symmetry in low curvature limit supports its existence, but
not yet found. [Hassan, Schmidt-May, MvS (2013)]



Outline of the talk

Generalizations



@ Higher derivative extension and PM in higher dimensions

@ Interactions of several massive spin-2 fields

@ Vielbein formulation
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Summary

@ The ghost free bimetric theory has solutions
indistuingishable from ACDM at the background level.

@ It describes massive and massless spin-2 fields.
Alternatively, it describes a massive spin-2 field coupled to
gravity and extends to multi-spin-2 considerations.

@ Fluctuations with FP masses exist around f = c2g
backgrounds. Covers all GR background solutions.

@ The nonlinear PM candidate leaves ¢ undetermined and
has a global scaling symmetry. Can exist only in d = 3 and
d = 4, in 2-derivative theories. But can exist in higher
dimensions with more than 2 derivatives. Consistent with
all known results.

@ Higher derivative single metric formulaton exist. The PM
subset coincides with Conformal gravity in a derivative
expansion and support existence of an extra gauge
symmetry.



The end is only the beginning ...

Thanks for your attention!
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