TOWARDS A HOLOGRAPHIC BOSE-HUBBARD MODEL

Mitsutoshi Fujita (YITP, Kyoto U.)

Collaborators: S. Harrison, A. Karch, R. Meyer, M. Tezuka, and N. Paquette

Based on MF-Harrison-Karch-Meyer-Paquette, JHEP04(2015)068 and MF-Meyer-Tezuka, unpublished work

Motivation

Broken translation invariance in the real materials
 Translation invariance broken on the lattice

 Introduction of Holographic lattices
 Periodic functions of the chemical potential *Horowitz, Santos, D. Tong "12 Horowitz, Santos, "13*

 Holographic lattices of impurities in the probe limit
 Observing holographic large N dimerization transition

Kachru-Karch-Yaida "09, "10

Motivation

- Bose-Hubbard model as the effective theory on an optical lattice including the hopping term
 - ♦ The extension to the SU(N) Bose-Hubbard model Conjecture of MF-Harrison-Karch-Meyer-Paquette 2014

To compute the VEV of the hopping term in both sides of the duality concretely and compare them

Δ

Boson-Hubbard model

The effective theory of the cold bosons on an optical lattice: Including the hopping term and short-range repulsive interactions U on each a site

$$H = -w \sum_{\langle ij \rangle} (b_i^{\dagger} b_j + b_j^{\dagger} b_i) - \mu \sum_j n_j + \frac{U}{2} \sum_j n_j (n_j - 1), \quad n_j = b_j^{\dagger} b_j$$

w : the hopping integral U(1) symmetry: $b_i \rightarrow e^{i\theta}b_i$

Only two phases at *T*=0: *Fisher-Weichman-Grinstein-Fisher*, ``89

U/w>>1: Mott insulator phase (localized bosons)

U/w<<1: Superfluid phase (delocalization)

U(1) symmetry is broken in SF

Lobe-shaped structure

Phase structure of the ground state like the lobe-shape

Derivation of the phase structure (SF/Mott Transition)

How to derive the phase structure in the boson-Hubbard model?

The mean-field approach introducing $\,\psi\,$

$$S_{\infty}(\psi) = \beta N\left(\frac{1}{2}r(\mu_b, t_{hop}, T)|\psi|^2 + u(\mu_b, T)|\psi|^4 + O(|\psi|^6)\right)$$

In the Mott insulator phase, $\psi = 0$

w=0 state: an exact eigenstate $|n_0\rangle$ of the total number operator

The ground state at non-zero w: not a simple state like $|n_0>$

2015/08/15

Towards a holographic Bose-Hubbard model

Experimental result: ⁸⁷Rb cold atoms: By changing the bottom of the potential, bosons moving around the sites (delocalization).

From *H.T.C. Stoof, Nature 415, 25 (2002)*

Velocity distribution of cold atoms in Superfluid

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Velocity distribution of cold atoms in Mott insulator

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

A HOLOGRAPHIC CONSTRUCTION OF LARGE N BOSON-HUBBARD MODEL

2015/08/15

To realize the lobe-shaped phase structure of the boson-Hubbard model

However, large *N* limit necessary to cause the phase transition in the finite volume system.

The AdS/CFT correspondence (Summary)

The large N bose hubbard model side		Gravity side
Occupation number per a site	$n_i = b_i^{a\dagger} b_{ia}$	$U(1)^n$ gauge fields A_i
Chemical potential	$\mu_{\rm i}$	
Hopping parameter	$t_{ m hop}$	Bi-fundamental scalar $\phi_{i,j}$
Bi-local condensate $(i \neq j)$	$b^{a\dagger}_i b_{ja}$	
Coulomb repulsive parameter U		IR cutoff $u_{\rm h}$
Spin indices: <i>a=1,,N</i>		Focusing on two-site model later $(i,j=1,2)$.

Holographic construction 2

An IR potential in the lagrangian

• Affecting the phase structure of the holographic model

AdS_2 hard wall with cutoff $u_h/t_{hop} >> 1$

• Appearance of instable modes above the energy scale greater than u_h Maldacena-Michelson-Strominger, 1998

Dirac quantization of charges (occupation number)

• Quantization of the coefficient of F1 and Dbrane interactions in terms of the string theory

Homogeneous phase or Non-homogeneous phase

Homogeneous phase : $A_t^{(1)}$

$$^{(1)} = A_t^{(2)}$$

IR b.c. : Dirichlet type

Corresponding Mott insulator phase

Localized bosons

Non-homogeneous phase : A_t^{\prime}

$$A^{(1)} \neq A^{(2)}_t$$

IR b.c. : Neumann type

SF (Large kinetic energy,

c.f. Axial vector of hard/soft wall AdS/QCD

delocalization)

Lobe-shaped phase structure of the holographic model

Realizing the lobe-shaped structure in the large N limit

 $t_{\rm hop}/U >> 1$ non-homogenous phase favored

Generated VEV of bi-local

 $t_{\rm hop}/U \ll 1$ | Mott phase favored The amplitude of the lobe $t_{hop} \approx \frac{1}{2}$

Lobe-shaped phase structure of the holographic model

2015/08/15

- * Except for μ_b axis, Symmetry breaking U(1)xU(1) -> U(1)
 - ♦ Spontaneous symmetry breaking at μ_b axis
 - ♦ Appearance of a Goldstone mode at μ_b axis
- Large *N* first order phase transition except at μ_b axis • 2nd order phase transition at μ_b axis
- Order parameter of the phase transition

 $\delta n = n_1 - n_2$ $dF / dt_{hop} \approx \left\langle b_i^{\dagger} b_j \right\rangle$

Perturbative Spectrum at small hopping (Dirichlet bc at hard wall):

Always gapped in Mott insulator phase

$$\Delta = \pi Un \, (n: \, \text{Integer}, \, n > 0)$$

Existence of the zero mode in non-homogeneous phase

The effective hopping parameter in the gravity dual (homogeneous phase)

17

(N_c=170, Left: fixed occupation number Right: fixed bulk mass)
Bi-local's VEV approaching to 0 in large U limit (Mott
insulator)

Bulk mass M contributing to dependence on N_c

<u>2015/08/15</u>

The effective hopping parameter in the gravity dual (non-homogeneous phase)

♦ Numerical approach failed for large mass *M* region above the BF bound $M_{BF}^{2} = -\frac{1}{4}$

* Similar results in the weak coupling $q \ll 1$

Large N Bose-Hubbard model side

Effective hopping in the large N Bose-Hubbard model

Numerical result of VEV of hopping term fixing the particle number

Left (*p=2*): Mott insulator phase in even # of particle system at large U (VEV ~ 1/U)

Right (p=3): VEV non-zero at large U in the system of odd # of particles and odd # of components \Leftrightarrow b.c. φ =const in 2d gravity?

Discussion

2015/08/15

- Realizing the lobe shape of the phase structure of the boson-Hubbard model
- * The Mott/non-homogeneous phase transition as 1^{st} order by using dF/dt_{hop} as the order parameter
 - ♦ Comparision of dF/dt_{hop} : $SU(N_c)$ Bose-Hubbard model fitting with the gravity dual when $N_c \sim 170$
- * A top down model: a D3/D5/D7 system where N D3 are replaced by the AdS_5 soliton
 - $\label{eq:starses} \begin{array}{l} \diamond \quad \text{Non-Abelian D5s wrapping } AdS_2 xS^4 \\ \text{Dual to the effective theory on the lattice} \end{array}$

THANK YOU!