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A. Constraints on space-time transformations due to contracted-tensor covariance

Al. The theorem that the contraction of an upper index with a lower index of any tensor itself transforms as a |
tensor whose rank is less by two—e.g., that the contraction T/ of the mixed tensor T}' is a scalar—is obviously an
indispensable linchpin of Einstein’s GR.



A2. But this theorem holds only at space-time points where z%(x*), the space-time transformation that is involved,
satisfies, in conjunction with its inverse x¥(z“), the relation,

(0 /D+)(Dz” /OT) = 5. (1)

Although Eq. (1) of course follows from the chain rule of the calculus, that doesn't of itself imply that Eq. (1) is
always true.

A3. In fact, if any component of the Jacobian matrix 9z /0x* happens to be nonfinite at some space-time point, or
if any component of the matrix-inverse thereof happens to be nonfinite there, then at that space-time point the left-
hand side of Eq. (1) is ill-defined as a finite real number, whereas the right-hand side of Eq. (1) remains well-defined
as a finite real number.

A4. Therefore at any such point Eq. (1) is self-inconsistent. Thus the space-time transformation z%(x*) cannot be
regarded as physical in Einstein’s GR at such a point; indeed, in classical theoretical physics nonfinite entities don't
even make sense.

A5. Because of Einstein's Principle of Equivalence, space-time transformations are fundamental to GR. Therefore
the physical need to bar infinities from these transformations’ Jacobian matrices and the inverses thereof impacts the

entirety of GR. )




B. Constraints on metric tensors due to contracted-tensor covariance

B1. According to Einstein's Principle of Equivalence, any metric tensor is locally a matrix congruence transform of
the Minkowski metric tensor with a Jacobian matrix of some space-time transformation.

B2. Therefore, in light of the results of the previous section, a metric tensor can be physical only at space-time
points where it and its inverse have exclusively finite components and as well have signatures that are equal to the
(4, —,—, —) signature of the Minkowski metric tensor.

B3. However, there actually exist metric-tensor solutions of the Einstein field equation which on a subset of space-time
flout these requirements to be physical, just as there exist solutions of the Maxwell and Schrédinger equations which
likewise flout conditions that are required for those solutions to be physical: such unphysical solutions of the latter
two field-theoretic equations are discarded.

B4. To gain familiarity with the factors that foster occurrences of unphysical solutions of field-theory equations,
and to as well gain familiarity with the proper way to handle such occurrences, we begin with a class of very simple
unphysical solutions of the source-free Maxwell equations.




C. Unphysical static uniform-field solutions of source-free electromagnetism

C1. The source-free Maxwell equations, namely,
V-E=0, VXxE=-(1/¢)B, V-B=0 and V xB=(1/¢)E,
clearly are satisfied by all static uniform E and B fields.

C2. However unless those static uniform-field solutions completely vanish, their resulting electromagnetic field energy,
namely (1/2) [ d°r (|E|? + |B|?), diverges. Therefore those solutions are unphysical, and indeed are shunned in
source-free electromagnetic field theory.

C3. The divergent field energies of those unphysical static uniform Maxwell-equation field solutions are strikingly
reminiscent of the divergent wave-function normalizations which occur for a class of unphysical wave-function solutions
of Schrodinger equations.




D. Unphysical non-normalizable Schrodinger-equation solutions
D1. The stationary-state Schrodinger equation for the simple harmonic oscillator,

(1/2)[=(1*/m)(d*/dz®) + mw*a’|m,.. (%) = BoscWpe. (2),

has for each nonnegative value of E,s. two linearly-independent solutions (parabolic cylinder functions). When
x — 400 or x — —oo, all linear combinations of those two solutions are either strongly unbounded or else strongly
approach zero.

D2. But it is only when E, takes on one of the discrete values [n + (1/2)]hw, n = 0,1,2,..., that there exists a
linear combination of the two solutions which isn't strongly unbounded under at least one of the two circumstances
x — +o0 and x — —o0.

D3. All the remaining nonnegative values of E,q. are therefore associated to solutions of the stationary-state harmonic
oscillator Schrodinger equation that are not normalizable and hence are unphysical. All non-normalizable, unphysical
Schrodinger-equation solutions are discarded without further ado.

D4. The discrete negative energy spectrum of the hydrogen atom is likewise associated with the massive discarding
of non-normalizable, unphysical Schrodinger-equation solutions. But we shall now see that non-normalizability isn’t

the only unphysical boundary condition which Schrodinger-equation solutions can manifest.
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E. Unphysical rotationally non-periodic Schrodinger-equation solutions

E1l. The stationary-state Schrodinger equation for the simple rotator of moment of inertia I is,
_(1/2)(h2/1) (d2/d02)¢Erot (9) - EI'Othrot (0)
For each nonnegative value of E.; this equation has the two linearly-independent solutions,

Vi (0) = CE_ exp |Fi( Ewor(21/57))36)]

rot

E2. These Schrodinger-equation solutions lack the physically-required rotational periodicity of 27 in 6 unless E,q;
assumes one of the discrete values (nh)%/(2I), n = 0,1,2,... . The Schrodinger-equation solutions for the remaining
nonnegative values of E, are rotationally non-periodic and hence unphysical; they are discarded without further ado.

E3. The last three sections have made it apparent that unphysical solutions of field-theory equations (1) must be
discarded and (2) reflect unphysical boundary conditions—for example field behavior at large distances that precludes
normalization or finite energy, or field non-periodicity in variables in which the physics is periodic. With these two
guidelines firmly in mind, we now cogitate on the unphysical points present in the Einstein field equation’s empty-space

Schwarzschild metric-tensor solution. 6




F. Are Schwarzschild-solution unphysical points really located in empty space?

F1. The empty-space Schwarzschild solution is usually combined with the Newtonian positive point-mass idealization
as its source. But is this Newtonian idealization self-consistent in a relativistic gravitational theory where an object’s
negative internal gravitational energy diminishes its effective mass?

F2. Let's check the relativistic self-consistency of this Newtonian idealization by attempting to produce such a
positive point mass by progressively reducing the separation d between two such idealized point masses which each
have positive mass M- /2. The effective mass M of this system is of course given by,

Mc* = Msc® — G(Ms/2)?/d.
When d — oo, M — M. But when d — 0 for fixed M>, M — —ool
F3. The optimal cure for this is to choose M- at each value of d so as to maximize M. The result thereof is,
Mpax(d) = (¢*/G)d. [This maximum value of M at d occurs for the choice M- (d) = 2(c?/G)d.] (2)

The Myax(d) result of Eq. (2) shows conclusively that as d — 0 a positive point mass can't be produced.
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F4. In addition, Eq. (2) draws our attention to an inherent self-gravitational limit on a system's effective mass that is
proportional to its largest linear dimension, with the constant of proportionality being of order (¢?/G). This implies
that a system of effective mass M is compelled to have its largest linear dimension be of order (G /c®*)M or greater.

F5. The spherically-symmetric empty-space Schwarzschild metric-tensor solution with a source of effective mass M
has unphysical points which lie on a spherical shell whose radius is of order (G /c?) M—namely the very same order
as the smallest possible radius of its spherically-symmetric source of effective mass M.

F6. It is therefore highly plausible that the unphysical points of the spherically-symmetric empty-space Schwarzschild
solution always lie within its source, which is not empty space, and therefore is a region where the empty-space
Schwarzschild solution doesn’t even apply.

F7. That this is indeed the case is confirmed by the fact that in spherically-symmetric “standard” coordinates
the self-gravitationally shrinking dust cloud of effective mass M treated by Oppenheimer and Snyder never (quite)
shrinks to the radius 2(G/c?) M, which is precisely the radius of the shell of unphysical points of the Schwarzschild
solution that also has a source of effective mass M and is expressed in those same spherically-symmetric “standard”
coordinates.




F8. We thus see that the unphysical boundary conditions which permit the presence of the unphysical points of
the spherically-symmetric empty-space Schwarzschild solution are always at loggerheads with the smallest physically-
possible radius of its spherically-symmetric nonempty-space source (which has effective mass M and therefore radius

of order (G/c*)M or greater).

F9. For those who are wondering about the singularities in the Oppenheimer-Snyder solution in spherically-symmetric
“comoving” coordinates, it is to be noted that the space-time transformation of the Oppenheimer-Snyder solution
from “standard” coordinates, where that solution is well-behaved, to “comoving” coordinates is unphysical. Moreover,
the definition of “comoving” time requires the clocks of an infinite number of observers, and therefore isn't physically
observable. The related property of “comoving” metrics that gop = 1 is incompatible with the requirement that in the
static weak-field limit (goo — 1)/2 becomes the Newtonian gravitational potential ¢, as well as with the requirement
that in the static limit (goo)~? is the gravitational time dilation factor. Therefore “results” presented in terms of
“comoving” coordinates fail to have direct physical interpretation.



